
HAL Id: hal-01006094
https://hal.science/hal-01006094

Submitted on 13 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Blast for Audio Sequences Alignment: a Fast Scalable
Cover Identification

Benjamin Martin, D.G. Brown, Pierre Hanna, Pascal Ferraro

To cite this version:
Benjamin Martin, D.G. Brown, Pierre Hanna, Pascal Ferraro. Blast for Audio Sequences Alignment:
a Fast Scalable Cover Identification. 13th International Society for Music Information Retrieval Con-
ference, 2012, Portugal. p. 529-534. �hal-01006094�

https://hal.science/hal-01006094
https://hal.archives-ouvertes.fr


BLAST FOR AUDIO SEQUENCES ALIGNMENT:
A FAST SCALABLE COVER IDENTIFICATION TOOL

Benjamin Martin1, Daniel G. Brown2, Pierre Hanna1, Pascal Ferraro1

1Université de Bordeaux
CNRS, LaBRI, UMR 5800

{bmartin,hanna,ferraro} @labri.fr

2University of Waterloo
Cheriton School of Computer Science

dan.brown@uwaterloo.ca

ABSTRACT

Searching for similarities in large musical databases is com-

mon for applications such as cover song identification. The-
se methods typically use dynamic programming to align

the shared musical motifs between subparts of two record-

ings. Such music local alignment methods are slow, as
are the bioinformatics algorithms they are closely related

to. We have adapted the ideas of the Basic Local Align-

ment Search Tool (BLAST) for biosequence alignment to

the domain of aligning sequences of chroma features. Our
tool allows local music sequence alignment in near-linear

time. It identifies small regions of exact match between

sequences, called seeds, and builds local alignments that
include these seeds. Seed determination is a key issue for

the accuracy of the method and closely depends on the

database, the representation and the application. We intro-

duce a particular seeding approach for cover detection, and
evaluate it on both a 2000-piece training set and the million

song dataset (MSD). We show that the heuristic alignment

drastically improves time computation for cover song de-
tection. Alignment sensitivity is still very high on the small

database, but is dramatically weakened on the MSD, due to

differences in chroma features. We discuss the impact of
different choices of these features on alignment of musical

pieces.

1. INTRODUCTION

During the last decade, an increasing number of large mu-

sic datasets have become available. One may now access

a huge amount of music audio, stored for instance on per-

sonal computers, mobile devices or online. In this context,
Music Information Retrieval (MIR) focuses on automatic

classification, organization, description of music content.

To assess musical similarities between pieces, for exam-

ple, a major challenge of MIR is analysing acoustic con-

tent. Using signal processing techniques, music features
are first infered from audio content. Each of them are re-

lated to a specific aspect of music. A fairly typical MIR ap-

proach consists in obtaining such a feature for short frames
of audio signal, hence computing a symbolic string repre-

sentation that carries the change in some musical property

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2012 International Society for Music Information Retrieval.

along a given music track. Such symbolic representations

can be further analysed and compared to detect meaning-
ful similarities. MIR studies typically employ comparison

techniques either custom built or adapted from other fields

of information science [6]. Many such techniques account

for slight variations in musical features. The way we per-
ceive music is known to work at different time scales, and

allows for slight differences in music information received

over time. For instance, one may easily recognize a chorus
sung twice in a song although the singer may sing different

lyrics, the melody may have changed, or the instruments

playing may be different in both occurrences.

Among the many applications of automatic assessment
of musical similarities in music datasets, cover song iden-

tification has been of major concern over the last few yea-

rs [16]. Cover songs are usually defined as multiple rendi-
tions of the same original music piece. They may be played

by other performers from different music genres or with

distinct recording environments [16]. Although two cover

versions of an original song may differ widely in instru-
mentation, singing voices, background noise, key, struc-

tural arrangement, genre, etc., they should hold enough

musical similarity for human perception to identify them
as renditions of the same piece. To detect such similarities,

most retrieval systems use dynamic programming [16]. A

key drawback of such systems is their inability to effi-
ciently scale to the range of musical data available in mu-

sical platforms, i.e. to the order of tens of millions of

tracks [6, 16].

We propose an indexing method that substantially in-
creases the efficiency of alignment-based retrieval systems.

Our method uses a widely known bio-sequence indexing

technique, BLAST [2]. We adapt this method by investi-

gating the distribution of symbols among features sequen-
ces, and deducing a strategy for efficient indexing. An em-

pirical study and an evaluation are performed on a custom-

built cover song dataset, as well as on the Million Song
Dataset (MSD) [5]. The remainder of this paper is orga-

nized as follows. Previous works are described in Sec-

tion 2. Section 3.1 presents audio representations and align-

ment techniques used, and describes the principle of the
bio-indexing tool we propose to adapt. Section 3 details

the investigation over feature sequences, and describes the

particular settings of our music application. Finally, Sec-
tion 5 presents results obtained for a practical cover song

identification, while concluding remarks and perspectives

are depicted in Section 6.

13th International Society for Music Information Retrieval Conference (ISMIR 2012)

529



2. RELATED WORK

Several heuristics for reducing the computational cost of

dynamic programming have been introduced for MIR ap-
plications. Dannenberg and Hu [7] proposed to discover

patterns in audio sequences by partially exploring the search

space around bands, relying on global thresholds that indi-
cate limits on the deviation from diagonals, implicitly as-

suming that insertions and deletions are rare. Combined

to a clustering technique, this process was used to deduce
suboptimal alignments and infer the structure of audio pie-

ces.

Kilian and Hoos [12] already introduced BLAST in MIR

context, in order to search for approximate patterns in sym-
bolic music. They tested the technique on MIDI excerpts

and emphasized the efficiency of the alignment of similar

patterns with the bi-directional extension of exact match

regions. Authors infered a high potential for BLAST in
a non-symbolic input configuration, but did not test it ex-

plicitly [13]. Although the work presented in this paper

adapts the same BLAST algorithm, it is subtantially dif-
ferent from this study. First, our technique is applied to

feature sequences obtained from audio signals. More im-

portantly, we aim at comparing distinct songs with possi-
bly similar regions, not discovering similar patterns inside

a single piece. Finally, the tool is used in our case as a

filtering technique to allow efficient identification of cover

songs.
Analogously, many studies adapt exact audio identifica-

tion systems to account for musical variations (see [14] and

references therein). For instance, Kurth and Muller [14]

presented an efficient matching technique robust to typi-
cal variations in interpretation of classical music. The ap-

proach here is reversed relative to our: an exact fast fin-

gerprinting system is adapted to account for local slight
variations, whereas we propose to enhance the efficiency

of an accurate slow approximate identification technique.

They report an acceleration of the matching process by a
factor of 15 to 20 while keeping a high robustness to inter-

pretation variations. However, they emphasize that such a

speed-up factor is suitable for efficiently handling datasets

in the order of tens of thousands tracks [14]. To handle
fast search in larger datasets, an indexing system for cover

song identification on the MSD was recently proposed [4].

Landmarks estimations are performed from MSD chroma
features, and heuristic jumpcodes between landmarks en-

code variations of pitch content along cover versions. Au-

thors substantially reduce the problem to binary identifica-
tion tasks, and report a fair effectiveness/efficiency trade-

off with a speed of about 200 seconds to query the MSD.

The method we propose in this paper aims at reducing this

cover song querying time to the order of a few seconds
while keeping a good accuracy in a standard cover retrieval

task.

3. COMPARING MUSIC SEQUENCES

3.1 Music representation

Pitch content plays an important role in the structure of au-

dio pieces, in particular for Western music genres. Com-
mon compositional processes in such music are organized

around melodic and harmonic sequences that listeners iden-

tify, consciously or not, as independent phrases or themes.

Pitch Class Profiles (PCP), also known as chroma fea-

tures, are frequently used to describe these types of in-
formation. These features classify spectral energies into

bins corresponding to the frequency class where they ap-

pear, each class taking into account the cyclical perception

of pitch in human auditory system. The number of pitch
classes p corresponds to the number of frequency bands

considered in each octave. The parameter p is usually set

to 12 to respect the common note scale, but higher val-
ues (generally multiples of 12) can improve the robustness

to tuning issues [9]. Chroma features are usually consid-

ered as the most robust representation for cover song de-
tection [16].

3.2 Music sequences alignment

This symbolic representation as a sequence of symbols or

string can be used to define a similarity measure between
two audio pieces. Such a metric is expected to isolate sig-

nificantly similar sections, or repetitions, assessing their

resemblance.

3.2.1 Relevance for music information

Repetitions in strings have been studied extensively, either

for locating exact repeats or for identifying substrings that

are duplicated within a certain tolerance. In the context of
music sequences, musical similarity does not rely on exact

matches since variations, such as transpositions, interpreta-

tion variations, rhythmic irregularities, background noise,
may alter the representing sequences.

Alignment approaches are well suited for an accurate

recognition of such variations. Widely used for biologi-
cal sequences, such techniques have been extremely suc-

cessful in identifying approximate repetitions between lo-

cal patterns in DNA or RNA strings that reflect, for in-

stance, gene homologies. The relevance of such methods
for music information lies in the same “evolutionary” as-

pect of musical patterns that may slightly change along a

single piece or accross similar pieces. Playing variations of
some musical theme implies changing sound events such

as notes, rhythms, or lyrics, which echoes the mutation of

nucleotides of proteins during biological evolution. There-
fore, alignment techniques are frequently used for identi-

fying similar patterns in cover songs.

3.2.2 Alignment and dynamic programming

The first accurate distance measure for approximate string

comparison in the context of biogical sequences is often

credited to Needleman and Wunsch [15]. A string u of

length n can be transformed into a string v of length m
by applying edit operations on the symbols of u and v.

These operations are insertions, deletions or substitutions,

and each is assigned a cost. The edit distance between u
and v is defined by the minimum total cost of edit oper-

ations required to transform u into v. The global align-

ment of u and v identifies the positions in the sequence u

that are not changed during the process of transforming u
to v, and their new position in that sequence. A variant

of this comparison method, local alignment [18], allows

finding and extracting a pair of regions, one from each
string, which exhibit the highest similarity according to the

scoring scheme assigned to edit operations. In a musical

context, this might correspond to finding matches between

13th International Society for Music Information Retrieval Conference (ISMIR 2012)

530



two verses of a song, or between smaller approximately

duplicated harmonic figures. Its computation is typically
performed by a dynamic programming algorithm filling a

(n+1)×(m+1) matrix. The local alignment of u and v can

be seen as the best scoring path in the dynamic program-

ming matrix. This edit path is easily computed in practice
by tracing back the series of operations performed. More

information about alignment algorithms can be found in

[10].

In the context of pitch content, an improvement of local

alignment [1] allows taking into account a frequent varia-

tion of musical patterns in terms of harmony, namely local
transposition. In Western popular music, for instance, local

transposition happens when an occurrence of a structural

pattern (e.g. chorus) is be played a few semitones higher
than usual. The improvement of the alignment technique

consists in adding a new edit operation, the local transposi-

tion of a string versus another. Consequently, we compute

several matrices that estimate every possible local trans-
position, and allow a jump from one matrix to another by

paying a corresponding transposition cost [1]. This vari-

ant yields more accurate alignments of pitch content, but it
is much slower to compute in practice. If the alphabet of

symbols has a symbols, the slowdown is a factor of a.

3.2.3 Complexity

Dynamic programming givesΘ(nm) running time for com-

puting optimal alignment scores. Tracing back the effec-
tively aligned substrings requires O(n + m). Therefore,

to compare a new song of length n with a database of k
pieces, each of average length m, requires Θ(knm) time.

The naive space complexity is Θ(nm), where we store
the entire dynamic programming matrix, although a sim-

ple trick allows reducing it to Θ(max(m,n)) by keeping

only the last computed lines [10].

Local alignment techniques are particularly useful for

the accurate identification of strong similarities between

sequences [16]. However, the slowness of the dynamic
programming makes them heavy to compute and unadapted

to fast querying of large-scale datasets that comprise mil-

lions of sequences. Facing a similar challenge, bioinfor-

matics researchers developed a fast heuristic-based search
tool dedicated to efficient indexing for local alignment.

3.3 BLAST

The Basic Local Alignment Search Tool (BLAST) [2], re-
duces the computational cost of local alignment. BLAST

relies on the observation that when querying a new se-

quence to a large database, there are likely only a small
number of good alignments, so it filters the database to

avoid computing irrelevant alignments of unrelated sequen-

ces. BLAST partially explores the dynamic programming

search space to filter out many irrelevant comparisons be-
fore computing local alignments. It consists of several

heuristic layers of rules for refining the potential regions

of strong similarity, as described in the next sections.

3.3.1 Seeding the search space

The main heuristic of BLAST lies in the assumption that
significant local alignments include small exact matches.

As represented in Fig. 1-(i), the dashed edit path of the lo-

cal alignment of u and v contains diagonal sections, that

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Seeding the search space. Top-Left: exact

similar sections (plain lines) inside a local alignment path

(dashed line). Top-Right: automatic seeding of the search
space, where identified regions may belong to the local

alignment path (plain lines) or not (dashed lines). Bottom-

left: as result of F1, seeds are quickly clustered and iso-
lated grey dashed seeds are eliminated. Bottom-right: as a

result of F2, seed extensions roughly depict the local align-

ment path. Background grey parts highlight the number of

dynamic programming computations required.

partially correspond to runs of matches (plain lines), i.e.

exact repetitions between small sections of u and v. The

first step of BLAST finds these small common substrings

in order to seed the search space for later local alignments.

A practical way of indexing the search space is to fix a seed
length N , and index every N -length substring (or words)

of every sequence of the dataset in a fast access data struc-

ture.

3.3.2 Filtering seeds

Once seeded as in Fig. 1−(ii), the search space includes hit

regions that may correspond to high-scoring local align-

ment of sequences (plain segments) or to suboptimal re-
gions (dashed segments), where the exact seed match arose

due to coincidence, not true similarity. The second step of

BLAST filters out most seeds that do not correspond to

desired local alignments.

A first filtering technique F1 consists in quickly clus-

tering seeds among the search space, and identifying iso-
lated hits. As illustrated in Fig.1, every correct heuris-

tic alignment should have several seeds around a diago-

nal (plain lines) that sketches the actual local alignment.
Consequently, a pair of sequences that does not have re-

gions comprising a significant number of hits may be fil-

tered out. We use a threshold δ to stand for the maximum
inter-diagonal distance allowed between two consecutive

seeds to be considered as around the same diagonal, i.e.

potentially belonging to the same alignment.

A more accurate, also common, filter F2 is seed exten-

sion. Each seed is extended in both directions to determine

wether it corresponds to a local similar region or not. We
denote by (i, k) and (j, l) the coordinates of a seed in the

search space, i.e. the hit is between the exactly matching

substrings u[i · · · j] and v[k · · · l]. We compute two small
alignments, one starting from (i, k) rolling up towards the

top left corner of the search space, and the other one start-

ing from (j, l) going towards the bottom right corner. Each

13th International Society for Music Information Retrieval Conference (ISMIR 2012)

531



of these alignments, that may be gapped or ungapped, are

quickly stopped if their score drops off under a threshold
value X . This way, extending unrelated sequences quickly

results in stopping the computation, while seeds from lo-

cally similar regions grow towards alignments [3].

4. INDEXING MUSIC DATA

4.1 Evaluation framework

4.1.1 Database

Two datasets were used to evaluate our system. The first

set, TSD, consists of 2, 514 Western popular music pieces

comprising 514 cover songs distributed in 17 cover classes,
coming from personal music collections 1 . We elected as

a second set the million song dataset (MSD) [5], that com-

prises one milliong songs of various musical genres 2 . It
includes the Second Hand Songs dataset 3 , which com-

prises 18, 196 cover songs distributed in 5, 854 cover classes.

This set is to our knowledge the largest available set of

cover song audio features.
Both datasets provide chroma feature sequences. How-

ever, it is worth noting that the implementation of such fea-

tures significantly differs in both cases. In TSD, we used
our own implementation of Harmonic Pitch Class Pro-

files [9] with a constant frame size and a resolution of 36
subdivisions per octave. This representation was success-

fully applied for past MIREX tasks 4 . In MSD, chroma
features were computed using The EchoNest API 5 , and

consist of segment-synchronized 12-dimensional chroma

features, as described in [11]. Thus, each MSD chroma
represents pitch content on 12 dimensions for a variable

audio frame (generally between 80 to 300ms with no over-

lap), whereas each TSD chroma represents pitch content on
36 dimensions for a constant audio frame (743ms with half

overlap). The difference between these two approaches

turns out to have major implications.

4.1.2 Alphabet definition

In its general definition, each B-dimensional chroma fea-

ture consists of B bins that may take any positive value,

so their domain is infinite. However, as explained in Sec-
tion 3.3, the heuristic alignment relies on the identification

of exact similar regions in discrete sequences. Hence, it is

critical for a BLAST approach to first project representing

sequences onto a finite alphabet. A natural quantization is
to detect the most probable chord, by looking for the high-

est scoring triad (root, major/minor third, fifth), and assign-

ing a symbol corresponding to the index of this best triad.
We represent each chroma feature over a 12-letter alpha-

bet ∆ = {a, b, c, . . . , k, l} by the root of the predominant

chord played. The chord mode (major/minor) is not taken
into account since a root-exclusive representation seems to

provide sufficiently meaningful audio representations (see

Section 4.2). The 36-dimensional chroma features are also

reduced down to 12 possible root chord symbols by keep-
ing the multiple of 3 closest to the index of the highest triad

(reduction to a 12 note scale with robustness to de-tuning).

1 See http://www.labri.fr/perso/bmartin/ISMIR12 for the list
2 http://labrosa.ee.columbia.edu/millionsong/
3 http://www.secondhandsongs.com
4 MHRAF submissions in Struct.Seg-11, Cover song-10
5 http://the.echonest.com/

TSD MSD
Seed False False False False
size negative positive negative positive

(i)

3 0.00 8.91 0.11 4.70
4 0.03 3.69 4.28 1.15
5 0.84 1.68 18.3 0.39
6 4.50 0.82 37.2 0.16
7 11.7 0.44 54.7 0.08
8 21.8 0.25 68.6 0.04

(ii)

3 0.00 1.06 0.84 1.33
4 0.21 0.41 7.08 0.23
5 2.59 0.18 22.6 0.06
6 6.67 0.08 41.8 0.02
7 14.9 0.04 58.9 0.01
8 26.0 0.02 72.1 .003

Table 1. Sensitivity/specificity tradeoff on TSD and MSD.

Scores are given as percentages. In (i), all words are in-
dexed in the dataset. In (ii), mono-symbolic words are not

indexed.

This projection is likely to introduce inconsistencies in

compared sequences, due to such a simplistic analysis. How-

ever, in practice the method only requires small sections of

aligned sequences to be identical in order to assess their
similarity, and is tolerant to sparse analysis errors to some

extent.

4.1.3 Transposition invariance

Transposition is a very common variation among cover

versions. Either globally on an entire rendition or locally

accross structural parts, transpositions have to be taken into
account in similarity analysis [17]. As highlighted in [14],

the indexing strategy should hash harmonic progressions

instead of absolute pitch content. While looking for ex-
act matches between two sequences, compared regions are

thus transposed down to a common key. For instance, the

sequencesbcbbfd and deddhd are in fact an exact match

since they describe the same chord variations regardless of
their local key, which differ by a major second. Practically,

this can be seen as translating all words such that they start

with the symbol a.

4.2 Seed determination

The heuristic alignment strongly relies on the selection of

meaningful parts. A key issue for the method is to deter-

mine a seed both sensitive enough to correctly index align-
ments between cover songs, and specific enough to index

as few spurious hits as possible. The first parameter for

optimizing the sensitivity/specificity tradeoff is the length
of the seed. In the following, given a seed length N , we

denote by ∆N the set of all possible words of length N
over ∆.

4.2.1 Sensitivity evaluation

Assessing the sensitivity of a seed can be done by analyz-

ing the alignments of similar sequences. Let N be a seed

length. We must determine how many alignments actually
contain seeds of size N , i.e. how many alignments contain

at least one run of N matches. Thus, we first computed on

both TSD and MSD local alignments between cover songs
using the local transposition variant described in 3.2.2. By

tracing back the alignments, we were able to identify exact

runs of matches. An alignment is considered validated if

13th International Society for Music Information Retrieval Conference (ISMIR 2012)

532



TSD MSD
Word % Word %

aaaaaaa 6.36 aaaaaaa 14.1
ahhhhhh 0.55 aaaaaah 1.45
aaaaaah 0.53 aaaaaaf 1.31
affffff 0.49 affffff 1.13
aaaaaaf 0.46 ahhhhhh 0.98

Table 2. The five most probable words in TSD and MSD

and their frequency of occurrence (in % of the words in

each database) for N = 7 and a 12-letter alphabet.

it can be indexed, i.e. if at least one long enough run is
found. The second and fourth columns of Tab. 1-(i) show

the probabilityPr[false negative] that an alignment can not

be indexed by the method, as a function of the seed length,
on both of the datasets.

4.2.2 Specificity evaluation

To evaluate the specificity of a seed, we need to estimate

the probability of finding two identical runs in unrelated

audio sequences. Practically, for a given word w over ∆N ,
we count the number of occurrences of w in the database

of unrelated sequences (no cover songs). This computa-

tion is stored in a list L and repeated for each possible
word. In the end, L[j] contains the number of instances

of a particular word, and
∑

i L[i] is the total number of

N -long words in the dataset. The probability of finding

one word w in a random chunk of the database is given

by
L[j]∑
i
L[i] , where j is the index in L corresponding to w.

Subsequently, the overall probability of finding two identi-

cal words in the database is given by Pr[false positive] =
1

(
∑

i
L[i])2

∑
j L[j]

2. The third and fifth columns of Tab. 1-

(i) provides the Pr[false positive] computed for each seed

length and for both of the datasets, as percentages.

4.2.3 Word distribution

Table 2 shows the five most probable words in both datasets
for a fixed seed length of 7. The most probable bin is the

mono-symbolic word. Following bins correspond to fre-

quent intervals in tonal music: up-by-fifth (a→h) or down-
by-fifth (a→f). In both of the datasets, mono-symbolic

words occur far more often than other words, representing

6.36% and 14.1% of the words in TSD and MSD, respec-
tively. Thus, mono-symbolic words are likely to be respon-

sible for many false positive hits while not capturing very

sensitive regions in true alignments. We hence re-evaluated

in Tab. 1-(ii) the sensitivity and specificity tradeoff on both
datasets without indexing mono-symbolic words. As a re-

sult, for a seed length of 7 symbols, specificity is increased

by a factor between 8 and 10, while sensitivity is reason-
ably decreased by around 3% in both datasets.

5. RESULTS AND DISCUSSION

Statistical results emphasize a significant difference bet-

ween sequences in both datasets. First, cover song align-
ments share much fewer words in MSD than in TSD. For

instance, for a seed size of 7, only 41.1% of the cover song

alignments in MSD share common multi-symbolic words,
as compared to 85.1% in TSD. Subsequently, the charac-

terization of cover songs in MSD should be more difficult

than in TSD. Moreover, false negative rates suggest that the

distributions of words between both datasets are different,

hence it would not be relevant to put them in common for
evaluation purpose.

To test the relevance of our system in comparison with

alignment methods, we implemented the alignment tech-
niques described in 3.2.2. Since indexing is computed in a

transposition invariant manner, we tested local alignments

with the accurate local transposition variant [1]. We eval-

uated the identification technique using the Mean of Aver-
age Precision (MAP), the standard metric for cover song

retrieval evaluation [8, 16, 17].

From every cover class in TSD, we computed align-
ments of each member to the rest of the class and to confus-

ing songs. Average MAP values are presented in Tab. 3-(i),

and detailed among 8 cover classes of TSD in Fig. 2. We
experimented with the same approach on MSD, more pre-

cisely on a subset that made the alignment computation

practicable. This subset MSD2k was formed by randomly

choosing 30 cover song classes and 2000 confusing songs
from MSD. We discovered that the identification method

did not extend, as indicated by the MAP scores (Tab. 3-

(ii)). We identify two possible reasons: 1) Cover songs
are particularly different from each other in MSD; 2) MSD

chroma features are not as suitable as TSD features for se-

quence alignment. To isolate the second possibility, we re-
computed TSD with the audio features used in MSD, via

the EchoNest API 6 . We repeated the same cover identi-

fication experiment on this new dataset T̃SD and obtained
MAP scores indicated in Tab. 3-(iii). The significant drop

in MAP scores between TSD and T̃SD evaluations suggest
that MSD chroma features do not make for alignable se-

quences. This result, already infered in [4], is substantiated

by the high false negative rate found in MSD sequences

(Tab. 1). We think this is due to critical implementation
differences in chroma features between both datasets such

as chroma dimension, temporal filtering and segment syn-

chronism, which may not be adapted to standard alignment
techniques, as highlighted in [16] for instance.

We implemented the indexing strategy described in 4

on TSD and MSD sequences. Logically, previous results
made MSD heuristic alignments ineffective. MSD is to be

considered here only as a computation performance indi-

cator. From Tab. 1, we chose the seed length N = 7, that

features a reasonable false negative rate of 11.7%, elim-
inating the most dissimilar cover songs, for a low false

positive rate of 0.44% that guarantees high performance

with few spurious hits. For each dataset, we built a ta-
ble hashing every N words in sequences and storing their

positions. Then, for each query, all matching songs were

filtered using either F1 or F1 and then F2. Resulting MAP
scores are given in 3-(iv) and (v). Highly depending on

the dataset, our scores are not intended to be compared to

state-of-the-art results. Their relevance lies in the compar-

ison between basic method and heuristic alignments. As
shown in Fig. 2, BLAST filters seem to slightly decrease

the accuracy of the cover identification. Combining both

filters seems effective for quickly identifying most covers.
Indeed, the overall accuracy of BLAST method on TSD

reaches a MAP score of 30.11%, corresponding to a loss

of 14.71% as compared to an accurate sequence alignment.

6 http://developer.echonest.com/

13th International Society for Music Information Retrieval Conference (ISMIR 2012)

533



Method Dataset
MAP Runtime

(%) (s/query)

(i)

Alignment

TSD 44.82 129
(ii) MSD2k 5.71 388

(iii) T̃SD 7.20 273
(iv) MSD - 193,765

(v)
BLAST-{F1}

TSD 18.06 0.24
(vi) MSD - 12.20

(vii)
BLAST-{F1,F2}

TSD 30.11 0.33
(viii) MSD - 16.9

Table 3. MAP results and computing times for cover iden-
tification on TSD and MSD.

5.1 Computational efficiency

Due to the very high number of entries in the hash table, we

implemented an efficient memory key/value lookup system

in C. Building the index from chord sequences required
about 16 minutes for the whole MSD on our server 7 . The

average querying runtimes for each approach are given in

Tab. 3. Note that we did not use parallel computing in this
study. As expected, alignments imply slow computation,

resulting in about 129 seconds per query on TSD and 388
seconds per query on MSD2k. By counting the number of

symbols in the whole MSD dataset, we infer that approxi-
mately 53 hours would be required to compute alignments.

Note that removing the local transposition variant would

speed-up by a factor of 12, still inadequate for practical
computation. Thanks to BLAST heuristics, computation is

drastically improved with around 12.2 seconds per query

on MSD (0.24 seconds on TSD) with the coarse filter F1,
and 16.9 seconds per query with both filters on MSD (0.33
seconds on TSD), on average.

6. CONCLUSION

We presented a new method for practical cover identifi-

cation on large scale datasets. Inspired by bioinformat-
ics heuristics, we applied BLAST to audio features and

investigated the distribution of music sequences. Results

obtained on our dataset suggest a reasonable loss of ac-
curacy of the retrieval system in exchange for a substan-

tial gain in computing time: estimating cover songs of a

3 minutes feature sequence can be acheived in less than
15 seconds in a million song database. We see this out-

come as a significant step towards the practical search for

approximate patterns in large datasets. Another main re-

sult of our study, although quite unexpected, is the appar-
ent limitation of MSD chroma features regarding sequence

alignment. Future studies on the MSD involving align-

ment techniques should investigate further the distribution
of chroma sequences, and maybe combine them to other

data (e.g. loudness, timbre). Future work will be partic-

ularly focused on enhancing the sensitivity of the identifi-

cation of cover songs, considering for instance spaced or
variable length seeds for BLAST.

7. REFERENCES

[1] J. Allali, P. Ferraro, P. Hanna, and C. Iliopoulos. Local trans-
positions in alignment of polyphonic musical sequences. In
String Processing and Information Retrieval, volume 4726,
pages 26–38. Springer Berlin / Heidelberg, 2007.

7 Hardware: Intel Xeon X5675 @ 3.07GHz, 12M cache, 32GB RAM

0

20

40

60

80

C1 C2 C3 C4 C5 C6 C7 C8

M
A

P
 (

%
) 

Figure 2. MAP scores obtained on 8 cover classes of TSD.

Black: alignment, grey: BLAST-{F1}, BLAST-{F1,F2},

white: alignment with MSD chroma features (T̃SD).

[2] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman,
et al. Basic local alignment search tool. Journal of molecular
biology, 215(3):403–410, 1990.

[3] S.F. Altschul, T.L. Madden, A.A. Schäffer, J. Zhang,
Z. Zhang, W. Miller, and D.J. Lipman. Gapped blast and psi-
blast: a new generation of protein database search programs.
Nucleic acids research, 25(17):3389–3402, 1997.

[4] T. Bertin-Mahieux and D.P.W. Ellis. Large-scale cover song
recognition using hashed chroma landmarks. In IEEE Work-
shop on Applications of Signal Processing to Audio and
Acoustics, pages 117–120, 2011.

[5] T. Bertin-Mahieux, D.P.W. Ellis, B. Whitman, and P. Lamere.
The million song dataset. In Proc. of the 12th International
Conference on Music Information Retrieval, 2011.

[6] M.A. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes,
and M. Slaney. Content-based music information retrieval:
Current directions and future challenges. Proc. of the IEEE,
96(4):668–696, 2008.

[7] R.B. Dannenberg and N. Hu. Pattern discovery techniques
for music audio. In Proc. of the 3rd International Conference
on Music Information Retrieval, pages 63–70, 2002.

[8] J.S. Downie, M. Bay, A.F. Ehmann, and M.C. Jones. Audio
cover song identification: Mirex 2006-2007 results and anal-
yses. In Int. Symp. on Music Information Retrieval (ISMIR),
pages 468–473, 2008.

[9] E. Gómez. Tonal Description of Music Audio Signals. PhD
thesis, Universitat Pompeu Fabra, pages 63–100, 2006.

[10] D. Gusfield. Algorithms on strings, trees, and sequences:
computer science and computational biology. Cambridge
University Press, pages 215–253, 1997.

[11] T. Jehan. Creating Music by Listening. PhD thesis, Mas-
sachusetts Institute of Technology, pages 57–59, 2005.

[12] J. Kilian and H.H. Hoos. Musicblast - gapped sequence
alignment for mir. In Proc. of the 5th International Confer-
ence on Music Information Retrieval, pages 38–41, 2004.

[13] J.F. Kilian. Inferring Score Level Musical Information From
Low-Level Musical Data. PhD thesis, Darmstadt University
of Technology, pages 54–60, 2004.

[14] F. Kurth and M. Müller. Efficient index-based audio match-
ing. IEEE Trans. on Audio, Speech, and Language Process-
ing, 16(2):382–395, 2008.

[15] S.B. Needleman and C.D. Wunsch. A general method appli-
cable to the search for similarities in the amino acid sequence
of two proteins. Journal of Molecular Biology, 48(3):443–
453, 1970.

[16] J. Serrà, E. Gómez, and P. Herrera. Audio cover song identi-
fication and similarity: background, approaches, evaluation,
and beyond, volume 274 of Studies in Computational Intelli-
gence, chapter 14, pages 307–332. 2010.

[17] J. Serrà, E. Gómez, P. Herrera, and X. Serra. Chroma binary
similarity and local alignment applied to cover song identi-
fication. IEEE Trans. on Audio, Speech and Language Pro-
cessing, 16:1138–1151, 2008.

[18] T.F. Smith and M.S. Waterman. Identification of com-
mon molecular subsequences. Journal of molecular biology,
147(1):195–197, 1981.

13th International Society for Music Information Retrieval Conference (ISMIR 2012)

534


	Papers

	Poster Session 3

	BLAST FOR AUDIO SEQUENCES ALIGNMENT: A FAST SCALABLE COVER IDENTIFICATION TOOL



