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Face stability analysis of tunnels excavated under pressurized shields is a major issue in real tunnelling 
projects. Most of the failure mechanisms used for the stability analysis of tunnels in purely cohesive soils 
were derived from rigid block failure mechanisms that were developed for frictional soils, by imposing a 
null friction angle. For a purely cohesive soil, this kind of mechanism is quite far from the actual velocity 
field. This paper aims at proposing two new continuous velocity fields for both collapse and blowout of 
an air-pressurized tunnel face. These velocity fields are much more consistent with the actual failures 
observed in undrained clays. They are based on the normality condition, which states that any plastic 
deformation in a purely cohesive soil develops without any volume change. The numerical results have 
shown that the proposed velocity fields significantly improve the best existing bounds for collapse pressures 
and that their results compare reasonably well with the collapse and blowout pressures provided by a 
commercial finite difference software, for a much smaller computational cost. A design chart is provided for 
practical use in geotechnical engineering.
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1. INTRODUCTION

In real tunnelling projects using a pressurized shield, the main issues of the designer are the face
instabilities and the possible ground settlements that the excavation may induce. This paper only
focuses on tunnel face stability and considers a shield tunnelling under compressed air. In this case,
the applied pressure is uniformly distributed on the tunnel face. The aim of the face stability
analysis is to ensure safety against soil collapse and blowout in front of the tunnel face. A soil
collapse occurs if the applied face pressure is not sufficient to prevent the movement of the soil
mass towards the tunnel. On the other hand, a blowout appears when the applied face pressure is
high enough to ‘push’ the soil towards the ground surface. It is desirable to assess both the collapse
and the blowout face pressures and, thus, determine the acceptable range of air pressure to prevent
both kinds of failure.

The study of the face stability of circular tunnels driven by pressurized shields has been investigated
by several authors in literature. Some authors have considered a purely cohesive soil ([1–9] among
others). In this case, it is usually considered that the stability of the tunnel face is governed by
the so-called load factor N, which was first defined in [1]. This load factor is given by
N= (ss + g �H� st)/cu where ss is the possible surcharge loading acting on the ground surface, st is
*Correspondence to: GuilhemMollon, Grenoble-INP,UJF-Grenoble 1, CNRSUMR5521, 3SR, Grenoble F-38041, France.
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the uniform pressure applied on the tunnel face, H is the depth of the tunnel axis, g is the soil unit
weight and cu is the soil undrained cohesion. For the case of a frictional soil (with or without
cohesion), some authors have performed experimental tests [10–13]. Others [14–25] have performed
analytical or numerical approaches.

This paper focuses on the face stability analysis in the case of a purely cohesive soil. The kinematical
theorem of limit analysis is chosen for this study because this approach is known to provide a rigorous
upper bound of the critical load of a system. In case of collapse of a tunnel face, the critical face
pressure sc is a ‘resisting load’ to failure, and therefore, the kinematical theorem provides an upper
bound of –sc (i.e. a lower bound of sc). On the other hand, the critical face pressure sb in the case of a
face blowout is acting in the same direction as the movement and should be considered as an actual
load. Therefore, the kinematical theorem provides a rigorous upper bound of sb.

For the computation of the collapse and blowout pressures of purely cohesive soils in the framework
of the kinematical approach in limit analysis, a simple and intuitive approach would be to adapt the
rigid block failure mechanisms that already exist for frictional and cohesive soils to the case of a
purely cohesive soil. Notice that the rigid block mechanisms were first introduced by [3] and [16],
and then, several improvements were provided by [22, 24, 25] among others. The rigid-block failure
mechanisms are either translational or rotational. The shape of these blocks is constrained by the
normality condition, which implies that each velocity discontinuity should make an angle ’ with the
corresponding velocity discontinuity surface, ’ being the internal friction angle of the soil. In the
case of non-frictional soils, the shape of the failure mechanisms is still defined by the same
normality condition but with ’=0. Figure 1 shows three typical failure mechanisms obtained by
[22, 24, 25] when imposing ’=0 in the analytical equations (i.e. for the case of a purely cohesive
soil). Notice that, for purely cohesive soils, the collapse and blowout failure mechanisms based on
rigid block mechanisms lead to the same critical surface even if the two velocity fields have
opposite signs. This is a shortcoming as will be seen in the next section. On the other hand, Mollon
et al. ([24] and [25]) have shown that the translational and rotational failure mechanisms composed
of rigid blocks lead to relevant results in the case of frictional soils but may appear unrealistic for
purely cohesive soils. A significant discrepancy exists between the results of these mechanisms and
those obtained from centrifuge tests by [5]. To emphasize this statement, a picture of the collapse of a
tunnel face in undrained clays as obtained by Schofield [4] using centrifuge testing is provided in
Figure 2. From this picture, it clearly appears that the face collapse does not involve the motion of rigid
blocks, but rather a continuous deformation of the soil. There is no localized shear band, and the
motion of the soil mass appears more close to a ‘flow’ than a rigid movement towards the tunnel face.

To solve these issues, a numerical model is first presented hereafter. Its aim is to accurately assess the
critical collapse and blowout pressures without any a priori assumption concerning the shape of the failure
mechanisms. This model is implemented in the commercial code FLAC3D and is described in Section 2. It
will serve as a reference to explore suitable limit analysis velocity fields for purely cohesive soils in both
Figure 1. a, b and c: Rigid block failure mechanisms provided respectively by [22, 24, 25] for C/D = 1 when
imposing ’ = 0�.

2



Figure 2. Picture of a face collapse in undrained clays as obtained by centrifuge experiment (provided by
Schofield [4]).
cases of collapse and blowout. These velocity fields are described in some details in Section 3. Finally,
Section 4 is devoted to a validation of the proposed velocity fields by comparison of their results with
those of the numerical model described in Section 2. The paper ends with a conclusion.
2. NUMERICAL MODEL USING FLAC3D

The numerical simulations presented in this study make use of the three-dimensional (3D) numerical
model shown in Figure 3. These simulations are based on FLAC3D software (Fast Lagrangian
Analysis of Continua [26]). This software is a commercially available 3D finite difference code. A
key parameter used in the software is the so-called ‘unbalanced force ratio’. It is defined at each
calculation step (or cycle) as the average unbalanced mechanical force for all the grid points in the
system divided by the average applied mechanical force for all these grid points. The system may be
stable (in a steady state of static equilibrium) or unstable (in a steady state of plastic flow). A steady
state of static equilibrium is one for which (i) a state of static equilibrium is achieved in the soil-
structure system due to given loads with constant values of the soil displacement (i.e. vanishing
values of the velocity) as the number of cycles increases and (ii) the unbalanced force ratio becomes
smaller than a prescribed tolerance (e.g. 10-5 as suggested in FLAC3D software). On the other hand,
a steady state of plastic flow is one for which soil failure is achieved. In this case, although the
unbalanced force ratio decreases as the number of cycles increases, this ratio does not tend to zero
Figure 3. Numerical model for the analysis of face collapse and blowout.
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but attains a quasi-constant value. This value is usually higher than the one corresponding to the
steady state of static equilibrium, but can be very small and still lead to infinite displacements, that
is, to failure.

The dimensions of the 3D numerical model were 50� 40� 26m in the transversal, longitudinal,
and vertical directions, for a tunnel diameter D= 10m and a cover to depth ratio C/D= 1
(see Figure 3). The model was composed of 215,000 zones (‘zone’ is the FLAC3D terminology for
each discretized element). The tunnel face was composed of 800 zones. To study a purely cohesive
soil, the soil was assigned an elastic perfectly plastic constitutive model based on Tresca failure
criterion (which is identical to a Mohr–Coulomb criterion with j= 0�). This corresponds to an
undrained condition of a clayey soil where the soil plastic deformation takes place without any
volume change. The elastic properties adopted in the analysis were E = 240MPa and n= 0.49.
Notice that the elastic properties do not have any significant impact on the critical pressures. For this
reason, a very high value of E was chosen because it increases the computation speed. The
cylindrical lining of the tunnel was modelled as perfectly rigid.

The fastest method for the determination of the critical collapse or blowout pressure would be a
strain-controlled method, but it is not suitable for the stability analysis of tunnels because it assumes
that the deflected shape of the tunnel face is known. This shape is not known a priori, and any
assumption (such as uniform or parabolic deflection) may lead to errors in the determination of the
critical pressures. Thus, a stress-controlled method is used herein. It is illustrated in this section in
the case of collapse; its application to the blowout case being straightforward.

An intuitive and simple approach in the stress-controlled method would consist in successively
applying decreasingly prescribed uniform pressures on the tunnel face and searching for each
applied pressure the static equilibrium until failure occurs. Of course, this requires a significant
number of numerical simulations to obtain a satisfactory value of the critical collapse pressure. This
makes the method very time consuming. A more efficient approach called the bisection method is
suggested in this paper. This method allows the critical collapse pressure of the tunnel face to be
determined with a much smaller computation time within an accuracy of 0.1 kPa. It can be described
as follows:

• Define an initial lower bracket of the tunnel pressure: this pressure is any trial pressure for which
the system is unstable. From a computational point of view, the system is considered as unstable if
the tunnel face extrusion continues to increase (the velocity of this extrusion remaining almost
constant) after 150 000 computation cycles. Notice that the unbalanced force ratio adopted in this
paper was equal to 10-7 because the value of 10-5 suggested in FLAC3D software was shown not to
give an optimal solution in the present case. The choice of 150 000 for the number of cycles has
been determined after several trials; it is large enough to ensure that the system will never be stable if
it is still unstable after running these 150 000 cycles.

• Define an initial upper bracket of the tunnel pressure: this pressure is any trial pressure for which
the system is stable. The system is considered as stable when the unbalanced force ratio drops under
10-7 before 150 000 computation cycles.

• A new value, midway between the upper and lower brackets, is tested. If the system is stable for
this midway value, the upper bracket is replaced by this trial pressure. If the system does not reach
equilibrium, the lower bracket is then replaced by the midway value.

• The previous step is repeated until the difference between the upper and lower brackets is less than
a prescribed tolerance, namely, 0.1 kPa in this study. Because the width of the interval is divided
by two at each step, a convenient method might be to use a first interval with a width equal to n
times 0.1 kPa, n being a power of two.

The average computation time depends on the width of the first interval. For an interval width equal
to 12.8 kPa, it is about 50 hours on a quad-core CPU. The numerical results of the critical collapse and
blowout pressures obtained with this model are provided later in this paper. However, the shapes of the
velocity fields obtained numerically are provided in Figure 4, for the collapse and blowout. Contrarily
to the case of frictional soils (see [24] and [25]), it clearly appears that none of these failures involve
rigid-block movement. Indeed, it appears that the failure propagates from the tunnel face to the
ground surface, involving a continuous deformation of the soil mass. The point of maximum
4



Figure 4. Layout of the a) collapse and b) blowout of the tunnel face as provided by the numerical model.
velocity is located at the invert of the tunnel face in the collapse case and at the crown of the tunnel
face in the blowout case. The qualitative results of the numerical model are consistent with the
experimental observations (as provided in Figure 2 for example) and show that a velocity field
based on rigid blocks is not suitable for the face failure in purely cohesive soils. However, the time
cost of this numerical model does not make it a convenient tool for practitioners. For this reason,
the next section is devoted to the description of two new velocity fields, which are inspired from
the qualitative results of the numerical model. These velocity fields are used in the framework of
the kinematic theorem of limit analysis to obtain estimates of the critical pressures of collapse and
blowout at a limited time cost.
3. LIMIT ANALYSIS MODELS

A tunnel of diameter D excavated under a cover depth C in a purely cohesive soil is considered in this
study. The numerical results of Figure 4 have shown that failure mechanisms involving movement of
rigid blocks (such as the ones presented in Figure 1) are not relevant for the collapse and the blowout of
a tunnel face in a purely cohesive soil. To explore suitable velocity fields, one has to consider failures
involving continuous deformation of the soil mass between the tunnel face and the ground surface.
Within this framework, the most relevant approaches were proposed by [8] and [9]. Their methods
make use of kinematically admissible continuous velocity fields based on elastic deformation fields.
The numerical results obtained by these methods have shown a small improvement of the best
existing bounds of the critical pressures. This is probably related to the fact that the chosen velocity
fields were not perfectly adequate. However, the concept of continuous velocity fields is promising
and deserves more investigation. This is the aim of the M1 and M2 velocity fields developed in this
paper. Only the collapse case of the tunnel face is presented in details; the case of blowout is only
briefly described because it is straightforward. It should be emphasized here that, although the M1
velocity field assumes a maximal velocity at the centre of the tunnel face and not at the invert of
this face (as was observed in the numerical simulations), the M2 velocity field is an extension of
M1, and it aims at removing this shortcoming as it will be seen in the following sections.
3.1. M1 Velocity field

3.1.1. Geometry. As shown in Figure 5, the external envelope of the M1 velocity field is a torus of
centre O. This toric shape was chosen to roughly represent with a simple geometrical object the
envelope of the plastically deformed region of the soil mass as it was observed in numerical
simulations. The section of this torus is a circle of variable radius R(b) whose centre is located at a
distance Rf from the centre of the torus, where Rf =C+D/2. The radius R(b) of the circular section
linearly increases from Ri =D / 2 (at the tunnel face) to Rf (at the ground surface) as follows:
5



Figure 5. Layout of the M1 velocity field: a. Cross section in the plane of symmetry of the tunnel; b. three-
dimensional view.
R bð Þ ¼ Ri þ b Rf � Ri

� �
= p=2ð Þ with 0⩽b⩽p=2 (1)

In the toric system of axis defined by the circle ℭ of centre O and radius Rf, any point of the space
may be expressed in terms of the angle b (angle between the plane Πb and the plane of the tunnel face)
and the polar coordinates (r, θ) in the plane Πb. These coordinates are defined with respect to point Eb

located at the intersection between the plane Πb and the circle ℭ of centre O and radius Rf.

3.1.2. Velocities. As shown in Figure 6, the velocity vector of a given point P whose toric coordinates
are (b, r, θ) may be described by three components: (i) vb is the ‘axial’ component parallel to circle ℭ
and pointing towards the tunnel face; (ii) vr is the radial component located in the plane Πb and
pointing towards Eb; and (iii) vθ is the orthoradial component (i.e. orthogonal to the radial
component and located in the plane Πb).

The present M1 velocity field is based on the two following assumptions:

1. The profile of the axial component vb in any plane Πb is assumed to be symmetrical and to
follow a parabolic distribution (cf. Figure 5). For a given point (b, r, θ), this axial component is
given by
Figure 6. Components of the velocity field in a plane Πb.
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vb b; r; θð Þ ¼ vm bð Þ�f r; bð Þ ¼ vm bð Þ� 1� r2

R bð Þ½ �2
!

(2)

The parabolic profile is imposed through the function f(r,b), and the normalizing function vm bð Þ ¼
R2
i

R bð Þ½ �2
� �

ensures that the velocity flux across any plane Πb is constant whatever is the angle b (for more

details, refer to Appendix A). As can be seen from Equation (2), vb does not depend on θ (i.e. there is a
radial symmetry of vb in any planeΠb), and vb is equal to zero on the lateral envelope of the velocity field.

2. The orthoradial component vθ of the velocity vector is assumed to be equal to zero for all the Πb
planes.

From the two above assumptions on the axial and orthoradial components of the velocity vector, one
can compute the radial component vr in any point of the velocity field using the normality condition for
a non-frictional soil. The normality condition implies that any plastic deformation may occur without
any change of volume. This condition may be enforced by using the following equation:

div _eð Þ ¼ 0 (3)

Because the analytical expression of vb is quite complex, the computation of vr is performed
numerically using an explicit finite difference discretization scheme that was developed in the
commercially available Matlab environment, as is shown in the following section. It should be
remembered herein that only the orthoradial component of the velocity was assumed to be equal to
zero everywhere in any plane Πb. The radial velocity was not assumed to be equal to zero, neither
in the tunnel face nor in any other Πb plane. However, this component (as well as the two others)
should be equal to zero on the external envelope of the velocity field in order to avoid any velocity
jump on this envelope. Moreover, because of the toric geometry of the problem and contrarily to the
axial component of the velocity field, the radial component is not expected to be symmetrical with
respect to the central circle ℭ of the toric system of coordinates.

3.1.3. Numerical discretization of the M1 velocity field for the computation of the radial component of
the velocity vector. Although the plastically deformed soil mass involved by the velocity field is
bounded by a torus with a circular cross section of linearly increasing radius (Figure 7a), the mesh
used for the discretization of the velocity field is bigger and involves a quarter of a torus, which has
a constant radius Rf (i.e. a constant circular cross section) as shown in Figure (7b). Figure (7b)
allows one to see not only the mesh but also the position of the plastically deformed soil mass with
Figure 7. a. Volume of the plastically deformed soil mass; b. Mesh used in the analysis.
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respect to this mesh. The size of each zone (or element) of the mesh is defined by three parameters dr,
db and dθ (Figure 7b) expressed by

dr ¼ Rf =Nr

db ¼ p= 2�Nb
� �

dθ ¼ 2p=Nθ

8<
: (4)

where Nr, Nb and Nθ are the numbers of subdivisions in the three directions r, b and θ. A typical zone
with a central point P(b, r, θ) is represented in Figure 8. It is bounded by six curved facets S1, S2, S3,
S’1, S’2 and S’3. If the discretization is fine enough (i.e. if the parameters dr, db and dθ are small
enough), one may consider that these facets are planar. Notice that the mesh provided in Figure 7b
is very coarse (the discretization parameters were Nr=9, Nb=8 and Nθ=16) to make it clearer but that
a much finer mesh was used for the computations (Nr=200, Nb=90 and Nθ=90).

The axial component vb of the velocity vector is first computed for each zone of the discretized
domain using Equation (2). This component is considered equal to zero in all the mesh elements
that are outside the envelope of the velocity field. Then, Equation (3) is used to compute the radial
component of the velocity for the different elements as will be explained below.

Notice that Equation (3) corresponds to a plastic deformation at constant volume. Thus, it may be
rewritten for each mesh element as follows:

X3
i¼1

v
! � ni

! �Si þ
X3
i¼1

v
!
� n 0

i

!
�S 0

i ¼ 0 (5)

In this expression, ni
!

represents the normal vector to facet Si (pointing outwards), and n 0
i

!
represents

the normal vector to facet Si’ (pointing outwards). By considering that the velocities are quasi-uniform
on the discretized facets, Equation (5) may be re-written as follows:

vr P1ð Þ�S1 � vr P 0
1ð Þ�S 0

1 þ vθ P2ð Þ�S2 � vθ P 0
2ð Þ�S 0

2 þ vb P3ð Þ�S3 � vb P 0
3ð Þ�S 0

3 ¼ 0 (6)

Details on the computation of the facets’ surfaces and the coordinates of the different points Pi and
Pi’ are given in Appendix B. It should be remembered here that the orthoradial component of the
Figure 8. Detail of an element of the discretized mesh.
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velocity vθ was assumed to be null, and the axial component vb at points P3 and P3’ may be computed
using Equation (2). Thus, by using Equation B1 of Appendix B, which states that S3=S3’, Equation (6)
may be rewritten as follows:

vr P 0
1ð Þ ¼ vr P1ð Þ�S1 þ vb P3ð Þ � vb P 0

3ð Þ� ��S3
S 0

1

(7)

Equation (7) can be used for the computation of the radial velocity at point P1’ as long as this
velocity is known at point P1. The radial velocity at any point P1 of the mesh can thus be computed
using the boundary condition, which assumes that vr = 0 for r= 0 (i.e. the radial component of the
velocity is null on the circle ℭ). The velocity component vr at any point P (at the centre of a mesh
element) is given by the average between the ones at points P1 and P1’ as follows:

vr Pð Þ ¼ vr P 0
1ð Þ þ vr P1ð Þ

2
(8)

Figure 9 shows the distributions of the axial (vb) and radial (vr) components of the velocity field
computed by the method described above for C =D = 10m. These components are plotted in shades
of grey (the white corresponding to a zero velocity) in several areas of the velocity field (at the
tunnel face, on the outcropping surface, and in the symmetry plane of the tunnel, i.e. where X=0). It
clearly appears that the radial component of the velocity is equal to zero on all the lateral surfaces of
the velocity field. This result is interesting and is in conformity with the assumptions of the velocity
field (i.e. there is no velocity discontinuity on the external envelope of this velocity field).

3.1.4. Work equation. The determination of the collapse pressure is based on the work equation. The
rate of work of the external forces may be computed using the components of the velocity field in the
different mesh elements. The rate of work of the soil weight for a given mesh element of volume dV is
given by

dWg

�
¼ g! � v! dV ¼ g�vY �dV (9)
Figure 9. Axial and radial components of the M1 velocity field in several areas (tunnel face, ground surface,
plane of symmetry X = 0). The greyscale represents the normalized value of the corresponding component,

from 0 (white) to its maximum value (black).
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In this equation, the vertical component vY of the velocity field in the (X, Y, Z) system of axis can be
computed directly from vb and vr as follows:

vY ¼ �vb� sinb� vr� cosθ� cosb (10)

Thus, the total rate of work of the soil weight is given by

Wg
� ¼ g�

X
Nb;Nr ;Nθ

vY �dVð Þ (11)

For a given mesh element belonging to the tunnel face, the rate of work of the tunnel face pressure is
given by

dWsc

�
¼ sc

! � v! S3 ¼ �sc�vb�S3 (12)

For a constant tunnel pressure as is the case of an air-pressurized tunnel, the total rate of work of the
tunnel face pressure is given by

Wsc
� ¼ �sc�

X
Nr ;Nθ;b¼0

vb�S3
� �

(13)

The total rate of work of a possible uniform surcharge acting on the ground surface is given by

Wss
� ¼ ss�

X
Nr ;Nθ;b¼p=2

vb�S 0
3

� �
(14)

The rate of energy dissipation of a soil element undergoing a general plastic deformation may be
written as follows (cf. [27]):

dD
� ¼ cu� 2�max ei

���� ���� �
�dV

� �
(15)

where max ei
��� ��� �

is the maximal absolute value of the principal strain rate components ei
�
where i=1,2,3.

Appendix C provides the method of computation of the strain rate tensor for a given element of the
mesh. Matlab software was used to transform this tensor into the principal space. Then, Equation
(15) was applied for the computation of the rate of energy dissipation of this soil element. The total
rate of energy dissipation in the M1 velocity field was obtained by summation of the elementary
energy dissipation for all the elements of the mesh as follows:

D
� ¼ cu�

X
Nb;Nr ;Nθ

2�max ei
���� ���� �

�dV
� �

(16)

By equating the total rate of work of the external forces to the total rate of internal energy
dissipation, one obtains

Wg
� þWsc

� þWss
� ¼ D

�
(17)

After some simplifications, Equation (17) leads to the following equation, which gives a rigorous
lower bound of the critical collapse pressure sc:
10



sc ¼ g�D�Ng � cu�Nc þ ss�Ns (18)

This equation shows that (as for the classical problem of bearing capacity of foundations) the collapse
pressure includes three different components related to soil weight, soil cohesion and surcharge loading.
The corresponding Ng, Nc and Ns coefficients are dimensionless parameters. They are given by

Ng ¼

P
Nb;Nr ;Nθ

vY �dVð Þ

D� P
Nr ;Nθ;b¼0

vb�S3
� � (19)

Nc ¼

P
Nb;Nr ;Nθ

2�max ei
��� ��� ��dV� �

P
Nr ;Nθ;b¼0

vb�S3
� � (20)

Ns ¼

P
Nr ;Nθ;b¼p=2

vb�S 0
3

� �
P

Nr ;Nθ;b¼0
vb�S3
� � (21)

It should be remembered here that the velocity field described above allows the computation of the
critical collapse pressure sc. However, in some cases of tunnelling at very shallow depths and in weak
soils, it may be interesting to compute also the critical blowout pressure sb, which corresponds to
the maximal retaining pressure that one can apply to the tunnel face without producing a blowout to
the ground surface. Because the collapse velocity field presented above is kinematically admissible,
the velocity field, which is strictly opposite, is kinematically admissible as well and may be used for
a kinematical analysis of the blowout phenomenon. By adopting the velocity field provided in
Figure 9 for the blowout case, a rigorous upper-bound of the blowout pressure is given by an
equation that is similar to Equation (18) except that the Nc coefficient is now given by

Nc ¼ �

P
Nb;Nr ;Nθ

2�max ei
��� ��� ��dV� �

P
Nr ;Nθ;b¼0

vb�S3
� � (22)

Thus, in the case of blowout, the coefficients Ng and Ns are identical to the ones used in the collapse
case and are given by Equations (19) and (21), respectively. However, the Nc coefficient of sb has an
opposite sign with respect to the one given for sc.

3.2. M2 Velocity field

As was mentioned previously, the M2 velocity field is an extension of the M1 velocity field. It aims at
removing the shortcoming related to the maximal velocity at the centre of the tunnel face. This velocity
field is presented in Figure 10. Contrarily to M1, it was assumed that the point of maximum axial
velocity at the tunnel face in case of collapse is not located at the centre but downwards at a
distance L1 below this centre. A new circle ℭ of centre O and new radius Rf was defined. This
radius depends on L1 (cf. Figure 10a) and is given by

Rf ¼ C þ D=2þ L1 (23)

Similarly to the tunnel face, for an arbitrary plane Πb, it was assumed that the axial component of the
velocity vector is maximal at point Eb (belonging to circle ℭ) and decreases in a parabolic way to
11



Figure 10. Layout of the M2 velocity field: a. Cross section in the plane of symmetry of the tunnel; b. three-
dimensional view.

F

vanish when reaching the circular contour of the envelope. Therefore, in a given plane Πb, there is no
more radial symmetry of the axial component of the velocity field as was the case in M1. A toric
system of axis is defined in the same way as for the M1 velocity field except that its radius is
defined by Equation (23). For a given point (b, r, θ), the axial component vb and the orthoradial
component vθ of the velocity vector are defined as follows:

vb b; r; θð Þ ¼ vm bð Þ�f r; b; θð Þ ¼ vm bð Þ� 1� r2

rmax b; θð Þ½ �2
!

vθ b; r; θð Þ ¼ 0

8><
>: (24)

By comparing Equation (24) with Equation (2), one may observe that the term rmax(b, θ) appears
instead of R(b). A graphical representation of this term is given in Figure 11 for both the plane Π0

(i.e. the tunnel face) and an arbitrary plane Πb. In a given plane Πb and for a given angle θ, the
term rmax represents the distance between point Eb (belonging to circle ℭ) and the circular contour
of the envelope in this plane. This term is used to ensure that the axial velocity is equal to zero in
any point of this envelope. However, notice that, because of the fact that rmax depends not only on b
igure 11. Geometrical details of the M2 velocity fie l d i n p l a n e  Π0 (i.e. tunnel face) and plane Πb (arbitrary plane).
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but also on θ as well, the external envelope of the M2 velocity field is not a torus of circular cross
section as was the case in M1. In fact, although the envelope of the M2 velocity field is defined by
a series of circles, these circles do not form a torus of circular cross section because the curve
joining the different centres of these circles is not circular. The computation of rmax(b,θ) is detailed
in Appendix D.

On the other hand, the term vm(b) in Equation (24) is a normalizing term, which depends on the
position of the plane Πb. It is used to ensure that the velocity flux across any plane Πb is constant
for the different values of b. The expression of vm(b) is more complex than the one of the M1
velocity field. Thus, it was not possible to obtain an analytical expression of the axial velocity vb as
was done in the previous velocity field. A numerical method is therefore used to assess vb in any
plane Πb as follows:

A toric discretized mesh is used. It is identical to the one used in M1 (cf. Figure 7), except that the new
circle ℭ with the new radius Rf (Equation 23) is used when performing the discretization. For each
element of an arbitrary plane Πb of the mesh, the following term is first computed:

f r; b; θð Þ ¼ 1� r2

rmax b; θð Þ½ �2 (25)

This term decreases from 1 (at r=0, i.e. on the circleℭ) to 0 (at r = rmax, i.e. on the external envelope of the
velocity field) according to a parabolic distribution. Thus, Equation (25) represents the distribution of the
axial component of the velocity field in the plane Πb as given in Equation (24), except that it is not
‘normalized’ by the term vm(b) because this term is so far unspecified. The axial component vb of the
velocity is then obtained by multiplying f(r,b, θ) by the normalizing term vm(b). This term is obtained
by assuming that the integration of vb over the Πb plane is constant and equal to one as follows:

vm bð Þ ¼ 1

∬
Πb

f r; b; θð Þ�dS (26)

The discretized form of this equation may be written as follows:

vm bð Þ ¼ 1P
Nr

P
Nθ

f r; b; θð Þ�dr�r�dθ (27)

As one may see, the computation of the axial component of the velocity field (through the use of
Equation (24)) is made by first computing a non-normalized function f(r,b, θ) using Equation (25)
and then by multiplying it by vm using Equation (27), i.e. by dividing it by the integral of the non-
normalized function f(r, b, θ) across the plane Πb. This ensures that the integral of the axial velocity
profile across any plane Πb is equal to 1 and, therefore, independent of b.

The knowledge of the components vb and vθ in any point of the discretized mesh allows one to
obtain the radial component vr by using Equations (7) and (8) that have been developed for the M1
velocity field. As for M1, a null radial velocity on the circle ℭ is assumed as a boundary condition.
The main difficulty encountered was the existence of an important gradient of the axial component
of the velocity field in the lower part of the tunnel face. This gradient may become infinite for
L1 =D / 2. Notice that the gradient of the axial velocity is directly linked to the fact that the point of
maximal velocity at the tunnel face was moved downwards with respect to the M1 velocity field.
Notice also that the simple method of discretization proposed in this paper is not able to deal with a
velocity discontinuity and may lead to numerical errors if the velocity gradient is too large. A first
solution would be to drastically refine the mesh, especially in the radial direction because this is the
one with the largest gradients. However, this solution has the shortcoming of significantly increasing
13



the computation time. An intermediate solution was chosen: the mesh was moderately refined in the
area of interest with respect to the mesh of M1, and the following condition was arbitrarily adopted:

L1 ¼ 2
5
D (28)

This condition implies that the distance between the tunnel face invert and the point of maximal
velocity is equal to one fifth of the tunnel radius. This induces a reduction of the radial gradient of
the velocity without decreasing the accuracy of the numerical results. The axial and radial
components of the velocity field obtained with this assumption are plotted in Figure 12. As for the
M1 velocity field, the numerical method of determination of the radial component leads to a
kinematically admissible velocity field without velocity discontinuity on the external envelope of the
velocity field where all the velocity components are equal to zero. A rather good match is obtained
when comparing visually this postulated velocity field with the one obtained experimentally by [4]
and shown in Figure 2. Figure 13 presents the velocity profile at the tunnel face as provided by the
M1 and M2 velocity fields and by the numerical model. M2 appears to provide a velocity profile
that is much more consistent with the one obtained numerically. The coefficients Ng, Nc and Ns of
this velocity field can be computed using the same equations used for the M1 velocity field, that is,
Equations (19), (20) and (21), respectively, but by employing the velocities determined from the M2
velocity field. On the other hand, the collapse pressure can be calculated using Equation (18) with
the velocity components determined from the M2 velocity field.

As for M1, the M2 velocity field may also be extended to compute the critical pressure of blowout.
The numerical results by FLAC3D have shown that, in the case of blowout, the point with a maximum
velocity is located in the upper part of the tunnel face. It was assumed that the point of maximum
velocity is located at a distance L1 (defined by Equation (28)) above the centre of the tunnel face.
Moreover, the velocity field in the case of blowout should point upwards in the direction of the
ground surface. With these assumptions, a rigorous upper-bound of the critical blowout pressure is
provided by Equation (18) where the dimensionless coefficients Ng, Ns and Nc are given by
Equations (19), (21) and (22), respectively. It should be emphasized here that contrary to the case of
M1, the values of the coefficients Ng and Nc are different in the cases of collapse and blowout. This
Figure 12. Axial and radial components of the M2 velocity field in several areas (tunnel face, ground
surface, plane of symmetry X = 0). The greyscale represents the normalized value of the corresponding

component, from 0 (white) to its maximum value (black).
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Figure 13. Comparison between the velocity profiles at the tunnel face as provided by the numerical simulation
using FLAC3D and by M1 and M2 velocity fields.
is directly linked to the fact that the velocity fields of these two failure modes are not directly opposite
because of the position of the point of maximum velocity which is either in the upper or lower part of
the tunnel face.
4. NUMERICAL RESULTS

Two computer programs based on the M1 and M2 velocity fields were coded in Matlab to compute the
critical pressures of collapse and blowout. The computation time is approximately equal to 20 seconds,
using the four processors of a 2.4 GHz quad-core CPU computer.

For purely cohesive soils, the traditional method used to check the stability of a tunnel face is based
on the so-called load factor N (cf. [1, 3]). The definition of this factor is given by the following equation
(H=C+D / 2 being the depth of the tunnel axis):

N ¼ ss þ g�H � scð Þ=cu (29)

In the more general case of a frictional and cohesive soil, the critical collapse pressure may be
assessed by using the following equation:

sc ¼ g�D�Ng � c�Nc þ ss�Ns (30)

By using Equations (29) and (30), one may deduce the Ng, Nc and Ns coefficients of a purely
cohesive soil as follows:

Ng ¼ H=D ¼ C=Dþ 0:5 (31)
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Nc ¼ N (32)

Ns ¼ 1 (33)

Equation (31) states that the coefficient Ng related to the soil weight is equal to the H/D ratio. Thus,
it is independent from the geometrical parameters of the failure mechanism and only depends on the
geometry of the problem (tunnel diameter and depth). On the other hand, Equation (32) expresses
the fact that the load factor used for purely cohesive soils is equal to the coefficient Nc employed in
Equation (30) to characterize the effect of soil cohesion in the collapse pressure. Finally, Equation
(33) may be explained by the fact that the soil plastic deformation occurs at constant volume. It may
be justified mathematically by Equation (21), which shows that Ns is equal to the ratio between the
velocity flux across the ground surface and the one across the tunnel face. Remember here that the
flux of velocity across the tunnel face and the one across the ground surface are equal (see
Appendix A for M1 and equation (26) for M2). Thus, Ns is equal to 1 for purely cohesive soils and
the two pressure values ss (applied at the ground surface) and sc (applied at the tunnel face) may be
directly taken into account by their difference (sc-ss) in the case of a purely cohesive soil as may be
seen from Equation (29).

The numerical results obtained by the M1 velocity field have confirmed the above cited observations
about the Ng, Nc and Ns coefficients and the load factor N. These observations were also obtained with
the rigid block mechanisms by Mollon et al. [22, 24, 25]. Consequently, for these mechanisms, the
knowledge of N is sufficient to obtain the critical pressures of collapse and blowout or to assess the
stability of the tunnel face. The values of N provided by several authors and by the present M1
velocity field are given in Figure 14 for different values of the ratio C/D. Because the kinematical
theorem leads to an upper-bound of N, all the kinematical approaches have provided as expected
higher values than the other approaches. The M1 velocity field is the one which provides the best
(i.e. lowest) upper-bound for C/D values larger than 2, and the failure mechanism by [24] provides
the best upper-bounds for smaller covers. The static approach by [3] provides a lower-bound of N,
which appears quite far from the best upper-bounds. With these bounds, the estimation of the actual
value of N is not very accurate.
Figure 14. Critical load factor N as provided by the M1 velocity field and by other authors.
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For the M2 velocity field, the classical load factor defined in Equation (29) is not able to assess
the face stability because the coefficient Ng related to the soil weight was not found to remain equal
to H/D. This new phenomenon arises from the fact that a non-symmetrical velocity field was used in
the analysis. For all the rigid block failure mechanisms of the literature [3, 16, 22, 24, 25] and for
the M1 velocity field presented in this paper, the velocity field at the tunnel face was symmetrical,
which means that one half of the flux of velocity crosses the tunnel face above its centre, and the
other half crosses the tunnel face below its centre. This condition allows Equation (31) to be valid
and makes the computation of the collapse and blowout pressures much simpler. For the M2
velocity field, the point of maximum velocity at the tunnel face is moved at a distance 0.4D from
the face centre (downwards and upwards for the collapse and blowout, respectively), and the
velocity field is not symmetrical any more. In this case, the limit pressures are not only defined by
N=Nc, but by both Nc and Ng. Moreover, because the position of the point of maximum velocity is
different for collapse and blowout, the parameters Nc and Ng are different for these two cases. For
the two above reasons, the M2 velocity field cannot be compared with the failure mechanisms that
make use of only the load factor N. Figures 15 and 16 therefore present the comparison in terms of
the critical pressures sc and sb, respectively, for a tunnel of diameter D = 10m in a purely cohesive
soil with a unit weight g = 18 kN/m3 and for two values of cu (20 and 30 kPa). The numerical results
obtained with the FLAC3D model are plotted as well. It appears that the M2 velocity field (which
significantly improves the best existing upper-bound solutions for collapse pressures) is the one,
which compares the best with the numerical model. The values of sc provided by M2 are very
satisfying for C / D< 1.5 and are a bit less good for higher values of C/D. For the blowout case, the
M1 and M2 velocity fields provide similar values of sb, and these values compare reasonably well
with the numerical results.

Using the results provided by the M2 velocity field, a design chart is provided in Figure 17 for
practical use in geotechnical engineering. This chart gives the values of the dimensionless
coefficients Ng and Nc versus C/D for both cases of collapse and blowout. The critical
pressures of collapse and blowout can then be easily deduced using Equation (18). To
minimize the error that may result from the reading of the values of the coefficients Ng and Nc

from Figure 17, the values of these coefficients are provided in Table I to be easily used by
practitioners. Notice finally that the application of Equation (18) leads to values of the collapse
and blowout pressures that are not affected by the error induced by the classical superposition
method because the method does not involve any optimization of the velocity field with respect
to its geometrical parameters.
Figure 15. Critical collapse pressures as provided by the existing kinematical approaches, by the present
velocity fields M1 and M2, and by numerical simulations using FLAC3D.
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Figure 16. Critical blowout pressures as provided by the existing kinematical approaches, by the present
velocity fields M1 and M2, and by numerical simulations using FLAC3D.

Figure 17. Design chart for the computation of the critical collapse and blowout pressures of a tunnel face in
purely cohesive soil.

Table I. Dimensionless parameters Ng and Nc for practical design of face pressure.

C/D Ng (Collapse) Nc (Collapse) Ng (Blowout) Nc (Blowout)

0.6 1.19 6.45 0.98 �7.02
0.8 1.39 7.19 1.22 �8.47
1.0 1.59 7.87 1.42 �9.43
1.3 1.90 8.81 1.71 �10.44
1.6 2.20 9.64 2.01 �11.40
2.0 2.61 10.64 2.40 �12.53
2.5 3.12 11.73 2.90 �13.75
3.0 3.62 12.68 3.39 �14.80
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5. CONCLUSION

To assess the range of the acceptable face pressure, which has to be applied to a tunnel face in a purely
cohesive soil to ensure its stability, two new velocity fields were developed in the framework of the
kinematical theorem of limit analysis. Both velocity fields are able to deal with the soil collapse and
blowout. They are kinematically admissible and do not include velocity discontinuities. This choice
was made after the observation of the failures that were obtained numerically and experimentally in
purely cohesive soils. In fact, these failures were not consistent with the existing analytical failure
mechanisms based on the motion of rigid blocks with velocity discontinuity surfaces. The first
velocity field used in this paper assumes a toric envelope and a symmetrical parabolic profile of the
axial velocity at the tunnel face whose maximum value is located at the tunnel centre. In a second
step, this velocity field was improved by moving the point of maximal velocity downwards and
upwards for the soil collapse and blowout, respectively. The computation of all the components of
these velocity fields was performed numerically by implementing a finite difference scheme in a
toric mesh because of the complexity of the mathematical expressions involved in these
computations. The numerical results have shown that this second velocity field provides critical
collapse and blowout pressures that compare reasonably well with the ones obtained by means of
numerical simulations using FLAC3D but for a much smaller computational cost. Furthermore, this
velocity field significantly improves the best existing upper-bound solutions of the collapse pressure.
A design chart based on this velocity field is provided for a quick estimate of the critical collapse
and blowout pressures in practice.
APPENDIX A: VELOCITY FLUX THROUGH A PLANE Πb OF THE M1 VELOCITY FIELD

This appendix aims at demonstrating that the velocity flux of the M1 velocity field through a plane Πb,
which may be obtained by integration of the velocity profile over this plane, is constant and independent
from the angle b of this plane. The velocity vector has three components in the toric system of axis. The
component vb is normal to the plane Πb, and the two other components vr and vθ belong to this plane. The
integration of the velocity throughΠb is therefore equal to the one of the vb component. This component is
expressed by

vb b; r; θð Þ ¼ vm bð Þ�f r; bð Þ ¼ vm bð Þ� 1� r2

R bð Þ½ �2
!

(A1)

with:

vm bð Þ ¼ R2
i

R bð Þ½ �2
 !

(A2)

The flux of the velocity through the plane Πb is therefore equal to

Fb ¼ ∬
Πb

vb b; r; θð ÞdS (A3)

In this expression, dS is a small surface element belonging to Πb. Because the velocity components
are null outside the envelope of the velocity field, one may write

Fb ¼
ZR bð Þ

0

Z2p
0

vb b; r; θð Þ�r�dθ�dr (A4)
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Fb ¼
ZR bð Þ

0

Z2p
0

R2
i

R bð Þ½ �2
 !

� 1� r2

R bð Þ½ �2
!
�r�dθ�dr (A5)

Fb ¼ 2p� R2
i

R bð Þ½ �2
! ZR bð Þ

0

1� r2

R bð Þ½ �2
!
�r�dr (A6)

Fb ¼ 2p� R2
i

R bð Þ½ �2
 !

� R bð Þ½ �2
2

� R bð Þ½ �4
4 R bð Þ½ �2

!
(A7)

And finally:

Fb ¼ R2
i �
p
2

(A8)

The flux of velocity of theM1 velocity field through the planeΠb is therefore constant and independent
from the angle b.
APPENDIX B: GEOMETRY OF A MESH ELEMENT

The surfaces of the six facets of an elementary zone of the mesh (Figure 8) are given by

S1 � r � dr=2ð Þ�dθ � Rf � r � dr=2ð Þ� cosθ� ��db
S 0
1 � r þ dr=2ð Þ�dθ � Rf � r þ dr=2ð Þ� cosθ� ��db

S2 ¼ S 0
2 � dr � Rf � r� cosθ� ��db

S3 ¼ S 0
3 � dr � r�dθ

8>><
>>: (B1)

The average dimensions of this element of the mesh are

er ¼ dr
eθ ¼ r�dθ
eb ¼ Rf � r� cosθ� ��db (B2)

Its volume may be approximated by

dV ¼ er � eθ � eb (B3)

Points Pi and Pi’ are the centres of the facets Si and Si’, respectively, and their coordinates are
expressed by

P1

b
r � dr=2
θ

; P 0
1

b
r þ dr=2
θ

8<
:

8<
: (B4)
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P2

b
r
θ� dθ=2

; P 0
2

b
r
θþ dθ=2

8<
:

8<
: (B5)

P3

b� db=2
r
θ

; P 0
3

bþ db=2
r
θ

8<
:

8<
: (B6)

APPENDIX C: RATE OF ENERGY DISSIPATION

The tensor of strain rate is given by

e� ¼

@vb
@eb

1
2

@vb
@er

þ @vr
@eb

	 

1
2

@vb
@eθ

þ @vθ
@eb

	 

1
2

@vb
@er

þ @vr
@eb

	 

@vr
@er

1
2

@vr
@eθ

þ @vθ
@er

	 

1
2

@vb
@eθ

þ @vθ
@eb

	 

1
2

@vr
@eθ

þ @vθ
@er

	 

@vθ
@eθ

2
6666664

3
7777775

(C1)

By using the assumptions made on the axial and orthoradial components of the velocity vector,
Equation (C1) may be re-written as follows:

e� ¼

@vb
@eb

1
2

@vb
@er

þ @vr
@eb

	 

0

1
2

@vb
@er

þ @vr
@eb

	 

@vr
@er

1
2
@vr
@eθ

0
1
2
@vr
@eθ

0

2
6666664

3
7777775

(C2)

The terms of this tensor can be easily computed numerically using a finite difference explicit
scheme as follows:

@vb
@eb

¼ vb P3ð Þ � vb P 0
3ð Þ

eb
(C3)

@vb
@er

¼ vb P 0
1ð Þ � vb P1ð Þ
er

(C4)

@vr
@er

¼ vr P 0
1ð Þ � vr P1ð Þ
er

(C5)

@vr
@eb

¼ vr P3ð Þ � vr P 0
3ð Þ

eb
(C6)
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@vr
@eθ

¼ vr P2ð Þ � vr P 0
2ð Þ

eθ
(C7)
APPENDIX D: COMPUTATION OF THE PARAMETER rmax

For a given value of the angular parameter θ in a Πb plane, the parameter rmax(b,θ) is the distance
between the point Eb (belonging to the circle ℭ) and the external surface of the M2 velocity field. This
parameter is chosen to be

rmax b; θð Þ ¼ rmax 0; θð Þ�Rb

Ri
(D1)

With
Ri ¼ D=2þ L1 (D2)

Rb ¼ Ri þ Rf � Ri

� � b
p=2

(D3)

Thus, for any value of the angle θ, the distance rmax linearly increases with b, starting with a value
rmax(0,θ) at the tunnel face. This increase is linked with the one of Rb which linearly increases from Ri

to Rf. The value of rmax in the plane Π0 of the tunnel face is obtained by the following expression:

rmax 0; θð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zi þ L1ð Þ2 þ x2i

q
(D4)

The distances xi and zi are represented in Figure 11, and their expressions are

xi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�z2i þ D2=4

q
(D5)

zi ¼ �B	 ffiffiffiffi
Δ

p

2A
(D6)

with the intermediate variables:

Δ ¼ B2 � 4A�C (D7)

A ¼ 1þ tan2 p=2� θð Þ (D8)

B ¼ 2�L1 (D9)

C ¼ L21 �
D2� tan2 p=2� θð Þ

4
(D10)
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