Laser Thomson Scattering, Raman Scattering and laser-absorption diagnostics of high pressure microdischarges - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Physics: Conference Series Année : 2010

Laser Thomson Scattering, Raman Scattering and laser-absorption diagnostics of high pressure microdischarges

Vincent M. Donnelly
  • Fonction : Auteur
Sergey G. Belostotskiy
  • Fonction : Auteur
Demetre J. Economou
  • Fonction : Auteur

Résumé

Laser scattering experiments were performed in high pressure (100s of Torr) parallel-plate, slot-type DC microdischarges operating in argon or nitrogen. Laser Thomson Scattering (LTS) and Rotational Raman Scattering were employed in a novel, backscattering, confocal configuration. LTS allows direct and simultaneous measurement of both electron density (ne) and electron temperature (Te). For 50 mA current and over the pressure range of 300 - 700 Torr, LTS yielded Te = 0.9 ± 0.3 eV and ne = (6 ± 3)*1013 cm-3, in reasonable agreement with the predictions of a mathematical model. Rotational Raman spectroscopy (RRS) was employed for absolute calibration of the LTS signal. RRS was also applied to measure the 3D gas temperature (Tg) in nitrogen DC microdischarges. In addition, diode laser absorption spectroscopy was employed to measure the density of argon metastables (1s5 in Paschen notations) in argon microdischarges. The gas temperature, extracted from the width of the absorption profile, was compared with Tg values obtained by optical emission spectroscopy.

Dates et versions

hal-01005976 , version 1 (13-06-2014)

Identifiants

Citer

Vincent M. Donnelly, Sergey G. Belostotskiy, Demetre J. Economou, Nader Sadeghi. Laser Thomson Scattering, Raman Scattering and laser-absorption diagnostics of high pressure microdischarges. Journal of Physics: Conference Series, 2010, 227, pp.2011. ⟨10.1088/1742-6596/227/1/012011⟩. ⟨hal-01005976⟩

Collections

UGA CNRS LIPHY
29 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More