Leipzig Corpus Miner - A Text Mining Infrastructure for Qualitative Data Analysis

Andreas Niekler 1, * Gregor Wiedemann 1, * Gerhard Heyer 2
* Auteur correspondant
1 Abteilung Automatische Sprachverarbeitung, Institut für Informatik, Universtität Leipzig
NLP Group | Department of Computer Science University of Leipzig
2 Abteilung Automatische Sprachverarbeitung, Institut für Informatik, Universität Leipzig
NLP Group | Department of Computer Science University of Leipzig
Abstract : This paper presents the \Leipzig Corpus Miner"|a technical infrastructure for supporting qualitative and quantitative content analysis. The infrastructure aims at the integration of \close reading" procedures on individual documents with procedures of \distant reading", e.g. lexical characteristics of large document collections. Therefore information retrieval systems, lexicometric statistics and machine learning procedures are combined in a coherent framework which enables qualitative data analysts to make use of state-of-the-art Natural Language Processing techniques on very large document collections. Applicability of the framework ranges from social sciences to media studies and market research. As an example we introduce the usage of the framework in a political science study on post-democracy and neoliberalism.
Type de document :
Communication dans un congrès
Terminology and Knowledge Engineering 2014, Jun 2014, Berlin, Germany. 10 p, 2014
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01005878
Contributeur : Hélène Lowinger <>
Soumis le : vendredi 13 juin 2014 - 14:07:26
Dernière modification le : lundi 13 octobre 2014 - 15:43:25
Document(s) archivé(s) le : samedi 13 septembre 2014 - 11:15:12

Fichier

LeipzigCorpusMiner.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01005878, version 1

Collections

Citation

Andreas Niekler, Gregor Wiedemann, Gerhard Heyer. Leipzig Corpus Miner - A Text Mining Infrastructure for Qualitative Data Analysis. Terminology and Knowledge Engineering 2014, Jun 2014, Berlin, Germany. 10 p, 2014. 〈hal-01005878〉

Partager

Métriques

Consultations de la notice

532

Téléchargements de fichiers

1538