R. Ben-david, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira et al., A theory of learning from different domains Analysis of representations for domain adaptation On the hardness of domain adaptation and the utility of unlabeled target samples Domain adaptation problems : A DASVM classification technique and a circular validation strategy, Proceedings of NIPS Proceedings of ALTCat07] O. Catoni. PAC-Bayesian supervised classification : the thermodynamics of statistical learningGGS13] B. Gong, K. Grauman, and F. Sha. Connecting the dots with landmarks : Discriminatively learning domain-invariant features for unsupervised domain adaptation Proceedings of ICML, pp.151-175, 2007.

A. [. Germain, F. Habrard, E. Laviolette, and . Morvant, PAC-Bayesian domain adaptation bound with specialization to linear classifiers, Proceedings of ICML, 2013.

A. [. Germain, F. Lacasse, M. Laviolette, ]. A. Marchandhps13, J. Habrard et al., PAC-Bayesian learning of linear classifiers Harel and S. Mannor. The Perturbed Variation Boosting for unsupervised domain adaptation, Proceedings of ICML Proceedings of NIPS Proceedings of ECML-PKDD, pp.1943-1951, 2009.

]. J. Hsg-+-07, A. J. Huang, A. Smola, K. M. Gretton, B. Borgwardt et al., Correcting sample selection bias by unlabeled data Transductive inference for text classification using support vector machines Tutorial on practical prediction theory for classification, Proceedings of ICML PAC-Bayes bounds for the risk of the majority vote and the variance of the Gibbs classifier Proceedings of NIPS, pp.601-200, 1999.

M. [. Laviolette, J. Marchand, and . Roy, From PAC-Bayes bounds to quadratic programs for majority votes, Proceedings of ICML, 2011.

]. A. Mar11 and . Margolis, A literature review of domain adaptation with unlabeled data, 2011.

]. D. Mca99 and . Mcallester, PAC-bayesian model averaging, Proceedings of COLT, pp.164-170, 1999.

]. D. Mca03 and . Mcallester, Simplified PAC-Bayesian margin bounds, Proceedings of COLT, pp.203-215, 2003.

A. [. Morvant, S. Habrard, and . Ayache, Parsimonious unsupervised and semi-supervised domain adaptation with good similarity functions, Knowledge and Information Systems, vol.50, issue.3, pp.309-349, 2012.
DOI : 10.1007/s10115-012-0516-7

URL : https://hal.archives-ouvertes.fr/hal-00686205

A. [. Morvant, S. Habrard, and . Ayache, Majority Vote of Diverse Classifiers for Late Fusion, S+SSPR, 2014.
DOI : 10.1007/978-3-662-44415-3_16

URL : https://hal.archives-ouvertes.fr/hal-00985839

M. [. Mansour, A. Mohri, and . Rostamizadeh, Domain adaptation with multiple sources, Proceedings of NIPS, pp.1041-1048, 2008.

Q. [. Pan and . Yang, A Survey on Transfer Learning, IEEE Transactions on Knowledge and Data Engineering, vol.22, issue.10, pp.1345-1359, 2010.
DOI : 10.1109/TKDE.2009.191

M. [. Quionero-candela, A. Sugiyama, N. D. Schwaighofer, and . Lawrence, Dataset Shift in Machine Learning, 2009.

]. M. See02 and . Seeger, PAC-Bayesian generalization error bounds for Gaussian process classification, JMLR, vol.3, pp.233-269, 2002.

]. S. Sun13 and . Sun, A survey of multi-view machine learning, Neural Computing and Applications, pp.1-8, 2013.
DOI : 10.1007/s00521-013-1362-6

[. Xu, D. Tao, and C. Xu, A Survey on Multi-view Learning, 2013.

]. E. Zfy-+-10, W. Zhong, Q. Fan, O. Yang, J. Verscheure et al., Cross validation framework to choose amongst models and datasets for transfer learning, Proceedings of ECML-PKDD, pp.547-562, 2010.