Statistical Region-Based Active Contour Using Optimization of Alpha-Divergence Family For Image Segmentation

Leila Meziou 1 Aymeric Histace 2, * Frédéric Precioso 3
* Auteur correspondant
1 ICI
ETIS - Equipes Traitement de l'Information et Systèmes
2 ICI, ASTRE
ETIS - Equipes Traitement de l'Information et Systèmes
3 Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Projet MinD
SPARKS - Scalable and Pervasive softwARe and Knowledge Systems
Abstract : This article deals with statistical region-based active contour segmentation using the alpha-divergence family as similarity measure between the density probability functions of the background and the object regions of interest. Following previous publications on that topic, main originality of this contribution is in the proposed joint optimization of the energy steering the evolution of the active curve and the parameter alpha related to the metric of the divergence and closely related to the statistical luminance distribution of the data. Experiments are shown on both synthetic noisy and textured data as well as on real images (natural and medical ones). We show that the joint optimization process leads to satisfying results for every targeted tasks: above all, it is shown that the proposed approach overcome classic statistical-based region active contour approach using Kullback-Leibler divergence as similarity measure, that can stuck in local extrema during the usual optimization process.
Type de document :
Communication dans un congrès
21 st International Conference on Image Processing, Oct 2014, Paris, France. pp.6066- 6070, 2014, <10.1109/ICIP.2014.7026224 >


https://hal.archives-ouvertes.fr/hal-01005522
Contributeur : Aymeric Histace <>
Soumis le : jeudi 12 juin 2014 - 17:38:40
Dernière modification le : mercredi 4 février 2015 - 07:54:15

Identifiants

Collections

Citation

Leila Meziou, Aymeric Histace, Frédéric Precioso. Statistical Region-Based Active Contour Using Optimization of Alpha-Divergence Family For Image Segmentation. 21 st International Conference on Image Processing, Oct 2014, Paris, France. pp.6066- 6070, 2014, <10.1109/ICIP.2014.7026224 >. <hal-01005522>

Partager

Métriques

Consultations de la notice

352