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An efficient solver of the saturation equation in liquid
composite molding processes

J. A. García & Ll. Gascón & F. Chinesta & E. Ruiz &

F. Trochu

Abstract A major issue in Liquid Composite Molding
Process (LCM) concerns the reduction of voids formed
during the resin filling process. Reducing the void content
increases the quality of the composite and improves its
mechanical properties. Most of modeling efforts on process
simulation of mold filling has been focused on the single
phase Darcy’s law, with resin as the only phase, ignoring
the formation and transport of voids. The resin flow in a
partially saturated region can be characterized as two phase
flow through a porous medium. The mathematical formu-
lation of saturation in LCM takes into account the
interaction between resin and air as it occurs in a two
phase flow. This model leads to the introduction of relative
permeabilities as a function of saturation. The modified
saturation equation is obtained as a result, which is a non-
linear advection-diffusion equation with viscous and capil-
lary phenomena. In this work, a flux limiter technique has
been used to solve a modified saturation equation for the
LCM process. The implemented algorithm allows a
numerical optimization of the injected flow rate which
minimizes the micro/macroscopic void formation during

mold filling. Some preliminary numerical results are
presented here in order to validate the proposed mathemat-
ical model and the numerical scheme. This formulation
opens up new opportunities to improve LCM flow
simulations and optimize injection molds.

Keywords Resin transfer molding . Transport problems .

Saturation . Second order schemes . TVD . Flux limiter

Introduction

Liquid Composites Molding (LCM) processes are based on
the impregnation of the fibrous reinforcement by a liquid
thermoset resin. Modeling and simulation play an important
role in the development and optimization of production
molds and in devising appropriate resin injection strategies.
Minimization of mold filling time while improving quality
of the part is an important issue. Inadequate injection
strategies tend to create macro and microscopic voids in the
part, the formation of which depends on the local resin flow
velocity.

For single phase flow in a homogeneous porous medium,
Darcy’s law is an expression of momentum conservation at
the macroscopic scale. When two or more fluid phases are
present, the permeability in Darcy`s original equation is
replaced by an effective value to accommodate the presence
of other phases. This parameter, called relative permeability
is expressed as a function of the saturation level in the fibrous
reinforcement. On the other hand, if capillary effects are
neglected, the saturation equation reduces to a purely
advection transport equation but, in general the saturation
equation is an advection-diffusion equation which includes
the capillary pressure effect. The equations that describe the
RTM filling process with void formation are based on a two
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phase flowmodel and lead to a coupled system of a nonlinear
advection-diffusion equation for saturation and an elliptic
equation for pressure and velocity. The hyperbolic nature of
the saturation equation and its strong coupling through
relative permeability represent a challenging numerical
issue. In this paper, a quite simple but very accurate
numerical approach is proposed to solve this complex flow
behaviour.

In previous works [1, 2] different experiments were
carried out to investigate the process of void formation.
These experimental works shown that macrovoids tend to
form during injection at low flow rates, due to capillary
dominant effects, whereas high injection rates lead to
microvoids formation. Therefore, an optimal impregnation
velocity exists that minimizes the formation of such macro
and microscopic voids. This is well explained by the two
types of forces that induce the motion of the fluid trough
the dual-scale porous media: the viscous and the capillary
forces. These forces are included in the diffusivity
coefficient in the saturation equation. Based on these
observations, a simplified mathematical model has been
proposed in order to model the RTM filling process with
void formation. In this model, the diffusivity coefficient in
the saturation equation has been replaced by a term which
depends on the velocity.

This paper proposes a numerical solution to optimize the
filling stage in RTM. This scheme enables process engineers
to determine the optimum injection flow rate so that void
formation is minimized, thus resulting in an improved quality
of the part. Essential to this optimum process design is the
numerical simulation of the modified saturation equation.
Many numerical methods to solve this type of equations
suffer from serious nonphysical oscillations, excessive
numerical dispersion or a combination of both. The technique
here used is based on a flux limiter fixed mesh strategy for
solving the transport equation which governs the evolution of
the degree of saturation of porous media [3]. A technique
based on the flux limiter strategy was also used to simulate
the volume fraction evolution in [4].

Governing equations

The LCM process has been conventionally treated as a
single-phase flow, with resin as the only phase, and then the
formation and transport of voids cannot be modelled using
this approach. The resin flow in a partially saturated region
can be characterized as two phase flow through a porous
medium. In this case, the permeability experienced by one
phase depends on the degree of saturation of the reinforce-
ment. Thus, the relative permeability depends on the
saturation and describes how one phase flows in the presence
of the second one. So, the saturation equation and the relative
permeability are based on the two phase flow description. In

order to explain the equations proposed in this paper to
simulate mold filling with void formation, a description of
the two phase flow through a porous medium is needed.

In this case, the two phases will be referred as resin and
air and designated by the subscript R and A respectively.
Darcy’s law can then be written for each phase j, as follows

vj ¼ �ljðSÞrpj ð1Þ
where vj is the phase velocity, S is the degree of saturation
of the reinforcement by the liquid resin, pj is the phase
pressure, lj(S)=Krj(S)K/μj is the phase mobility, with Krj(S)
the relative permeability to phase j, μj the viscosity of phase
j and K the permeability tensor, which is here taken to be
diagonal.

The equations that describe mass conservation for the
resin and air phases, are respectively given by

r � vR ¼ �f
@S

@t
and r � vA ¼ �f

@ 1� Sð Þ
@t

ð2Þ

where f denotes the porosity. Then, Eq. 2 leads to
following assumption

r � vR þ vAð Þ¼ 0 being v ¼ vR þ vA ð3Þ
Combining Eqs. 1 and 2, the resulting equation for the
saturation in its most general form gives

f
@S

@t
þr: vFðSÞð Þ ¼ �r: DcFðSÞrSð Þ ð4Þ

where

DcFðSÞ ¼ FðSÞlAðSÞ @Pc

@S

with FðSÞ ¼ lRðSÞ
lRðSÞ þ lAðSÞ

ð5Þ

is the nonlinear diffusivity coefficient due to capillary
pressure Pc, defined as Pc ¼ PA � PR:

For the particular case of F(S)=S, the saturation
equation gives

f
@S

@t
þr: vSð Þ ¼ � r: DcðSÞrSð Þ ð6Þ

where

DcðSÞ ¼ 1� Sð ÞlRðSÞ @Pc

@S
¼ SlAðSÞ @Pc

@S
ð7Þ

Replacing the total velocity v by vR+vA and simplifying,
Eq. 7 can be rewritten as follows:

f
@S

@t
þr: vRSð Þ ¼ r: 1� Sð ÞlRðSÞ @PR

@S
rS

� �
ð8Þ

It can be observed that the diffusivity coefficient
vanishes when S=0 or S=1, but for the unsaturated region
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this term represents a diffusive flux component, which
depends on the velocity and degree of saturation.

Assuming that the diffusivity coefficient depends on the
resin flow velocity leads to the following equation

f
@S

@t
þr: vRSð Þ ¼ r: DVrSð Þ ð9Þ

where the diffusivity coefficient DV includes the velocity
effect

DV ¼ amv
2
R þ

aM

vR

� �
ð10Þ

In this model, αM and αm represent the dispersive
coefficients of the macro and microscopic voids respec-
tively, as identified in experimental observations, so that the
source term describes the hydrodynamic dispersion due to
the presence of pores [1, 5].

Since the main interest is to simulate the flow of the
resin phase, Darcy’s law and conservation mass for the
resin phase have been considered, i.e., Eqs. 1 and 2.
Combining both equations for the resin phase yields

r � KRðSÞrpð Þ ¼ fm
Ksat

� �
@S

@t
ð11Þ

where the relative permeability depends on the saturation
degree. In this study, the permeability model proposed by
Breard et al. [5] has been considered. Permeability as a
function of saturation is calculated as follows:

RS � KRðSÞ � 1

KRðSÞ ¼ 1� R1=b
S

� �
S þ R1=b

S

h ib ð12Þ

where RS is a fitting factor whose usual values range in the
interval [0.4,0.8]. Finally, to obtain a closed description of
the flow, we assume the modified saturation equation which
governs the transport of the variable S:

f
@S

@t
þr � vSð Þ ¼ r � amv

2 þ aM

v

� �
rS

� �
ð13Þ

The saturation S takes a unit value in the saturated domain,
a zero value in the empty region and varies between 0 and 1
in the partially saturated region. Note that Eq. 11 for
pressure is an elliptic equation coupled to the saturation
equation Eq. 13 through the saturation term. On the other
hand, the saturation equation is a nonlinear advection
equation coupled to the pressure equation through Darcy
velocity.

The simulation of the filling process involves the
following operations at each time step:

1) calculate the saturation dependent permeability and the
source term in Eq. 11;

2) calculate the pressure distribution by applying a
standard finite element discretization of Eq. 11;

3) calculate the velocity field from Darcy’s law for the
resin (1);

4) update the saturation distribution by integrating Eq. 13
using a flux limiter technique.

The boundary conditions are given by:

& The pressure gradient in the normal direction to the
mold walls vanishes.

& The pressure or the flow rate is specified on the inflow
boundary.

& The pressure is zero in the empty part of mold.

Fig. 1 Void content definition

Fig. 2 Void content logarithmic functions versus impregnation
velocity (m/s)

Fig. 3 Saturation curve at different impregnation velocity
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The modified saturation equation

For the sake of simplicity from now on we only consider
one-dimensional models. In the one-dimensional case
Eq. 13 writes:

@S

@t
þ � @

@x

v

f
S

� �
¼ @

@x

1

f
amv

2 þ aM

v

� � @S

@x

� �
ð14Þ

We use a flux-limiter strategy to approximate numeri-
cally the saturation equation. Defining the flux as

F ¼ v

f
S � 1

f
amv

2 þ aM

v

� � @S

@x

� �
ð15Þ

Equation 14 can be integrated by applying a second-
order upwind scheme preserving the TVD property [6]. The
discrete form writes

Snþ1
i ¼ Sni � l bFSW

iþ1=2 � bFSW
i�1=2

� �
ð16Þ

where l ¼ Δt
h and

bFSW
iþ1=2 ¼ bFUP

iþ1=2 þ 1
2 # riþ1=2

� �
sign viþ1=2

� �� Δt
h viþ1=2

� �
Fiþ1 � Fið ÞbFUP

iþ1=2 ¼ 1
2 Fi þ Fiþ1ð Þ � sign viþ1=2

� �
Fiþ1 � Fið Þ� 	

ð17Þ
Here h represents the mesh size, Δt the time step and

χ(r) is the flux limiter function. The superscript UP is

associated with the first-order upwind scheme and the
superscript SW with the second-order scheme using a
modified flux limiter technique (in our case the superbee
flux limiter). It is well known that upwinding is an essential
part of any numerical scheme for hyperbolic equations. In
our construction of numerical fluxes, the upwind direction
is determined by the sign of v in the element. The numerical
scheme respects the balance that occurs between the flux
gradient associated to the advective part and the source
term related to the diffusive part when ∂S/∂t is small. This
choice is consistent with implementations employed to
simulate numerically hyperbolic conservation laws with
source terms, where the upwind contribution of the source
term is necessary to the convergence of schemes.

The superbee flux limiter is defined as follows [6]:

# SBðrÞ ¼ max 0;min 2r; 1f g;min r; 2f gf g ð18Þ
The coefficient ri+1/2 has been defined in Eq. 17 by
comparing consecutive variations of the approximate
numerical solution for the saturation with respect to the
flow direction

riþ1=2 ¼
Si�Si�1
Siþ1�Si

if viþ1=2 � 0
Siþ2�Siþ1

Siþ1�Si
if viþ1=2 � 0

(
ð19Þ

Flux limiters are used in numerical schemes to solve
problems in science and engineering, particularly in fluid
dynamics, described by hyperbolic conservation laws. They
are used in high resolution schemes to avoid the spurious
oscillations that would otherwise occur with high order
spatial discretisation schemes due to shocks, discontinuities
or sharp changes in the solution domain. The use of flux
limiters, together with an appropriate high resolution
scheme, makes the solutions total variation diminishing
(TVD). The limiter function is constrained to be equal to
zero, if r≤0. Therefore, when the limiter is equal to zero
(sharp gradient, opposite slopes or zero gradient), the flux is
represented by a low resolution scheme. Alternatively,
when the limiter is equal to 1 (smooth solution), it is
represented by a high resolution scheme. This prevents the
spurious numerical oscillations associated with the conven-

Fig. 4 Analysis of the satura-
tion calculation and conver-
gence for different mesh grids

Fig. 5 Comparison of the first and second-order schemes used to
solve the saturation problem
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tional second-order methods in the presence of disconti-
nuities and reduces the excessive numerical diffusion
introduced by the first-order upwind schemes. There are
various limiters with different switching characteristics. In
this work, the superbee limiter has been used, which
combines the stability and accuracy corresponding to first
and second order schemes.

Numerical simulations

In order to analyze the accuracy and efficiency of the
proposed numerical scheme, a set of numeral examples
are presented. The numerical simulations were carried
out in the same conditions and with different constant
flow rates. A mold of one-meter length is considered. A
constant injection pressure is prescribed (105Pa), and the
saturated permeability Ksat and resin viscosity are set to
10−8m2 and 0.1 ;Pa.s, respectively. In the numerical
simulation, we consider a time step small enough, and a
constant value RS=0.4. The domain is assumed initially
empty, except the first element that represents the injection
nozzle that is assumed to be fully filled. The dispersive
coefficients of the macro and microscopic voids, αm and
αM are 1 and 10−7, respectively. The impregnation
velocity is usually related to the void content using the
dimensionless capillary number (Ca), that is

Ca ¼ mv
g cos qð Þ ð20Þ

where μ is the viscosity of the fluid, γ the surface tension
at the interface air/resin, v is the fluid velocity and θ is the
contact angle between the resin and the fibers.

The proposed model employs the degree of diffusion in
the saturation as a variable to measure the void content. The
quantitative relationship between these two parameters is
not known. However, the qualitative relationship is clear. In
order to evaluate the void content, we define the Void Index
as follows:

Void Index %ð Þ¼ Unsaturated Void

Saturated Volumeþ Unsaturated Filled Volume
»100

where the Unsaturated Void Volume is the volume occupied
by bubbles in the unsaturated part or the mold, and the
Unsaturated Filled Volume is the volume of resin in the
unsaturated volume, as is shown in Fig. 1.

As illustrated in Fig. 2, due to the impregnation of a
double scale porous medium, an optimum impregnation
resin velocity (or Ca) exists, so that the injection velocity
controls the void content and a proper optimal filling
strategy must be developed. The left side of the curve in
Fig. 2 represents (negative slope) the formation of
macroscopic voids, whereas the right side (positive slope)
represents the microscopic void formation. For this set of
experiments, we can conclude that the optimal velocity is
about 0.005 m/s.

Results in Fig. 2 have been obtained at constant flow
rate in order to demonstrate the influence of the velocity
in the Void Content. The experiments were developed at
constant injection pressure and for 1D case, then the
velocity must be the same in the whole domain in the
case of saturated flow. If micro/macro voids appear
the velocity will increased in the partiality filled region.
The proposed method to optimize the macro/micro
content is controlled by the injection velocity and not
by the flow front velocity. In the case of constant
injection pressure control, the optimized pressure can be
obtained by the Darcy´s law.

Figure 3 represents, at the same flow front position, the
degree of saturation at three different velocities, 0.001,
0.005 and 0.1 m/s using the second order scheme
described by Eq. 17. This theoretical flow front position

Fig. 6 Saturation and pressure
profiles for a 1D RTM filling at
constant flow rate

Fig. 7 Estimation of the void content by Least Square Method for
different impregnation velocities
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is defined by the saturated flow, that is vi*t. We can
observe that a velocity of 0.005 m/s produces the
minimum void content.

To analyze the influence of the mesh size on the simulated
results, two meshes with different nodal distributions are
considered, consisting of 30 and 150 nodes respectively. The
associated numerical solutions are depicted in Fig. 4 (at the
left) for a filling time of 50 s, using the first-order scheme
(Eqs. 16–17 with χ(r)=0) and the using the superbee flux
limiter scheme (Eq. 17 with χ(r) defined by Eq. 18). We
can notice that the convergence is faster when the flux
limiter second-order scheme is considered. The errors
quantified by the L2-norm for different mesh sizes have
been plotted in Fig. 4 (at the right). We can notice that the
order of convergence aproximately twice that of the first-
order upwind scheme [3].

A comparison of numerical results for the saturation
obtained using the first and the flux limiter second-order
scheme in the same conditions is illustrated in Fig. 5.
Because the diffusion of saturation has important physical

implications, the control of the numerical diffusion is
critical. Obviously, two factors contribute to smooth the
flow front: one is related to the source term, and the other is
a purely numerical effect introduced by the dicretization
scheme. The classical first order scheme produces spurious
numerical diffusion, and then inaccurate results. It can be
also appreciated that the numerical diffusion is lower, as
expected, when the flux limiter technique is employed.
Then the second order scheme becomes a useful tool to
obtain accurate results.

Figure 6 represents the saturation (left) and pressure
fields (rigth) obtained with the flux limiter technique for
different times for a constant injection rate.

Finally, this strategy was introduced in commercial
software [7] and the Void Index behaviour adjusted by the
least square method as shown in Fig. 7. Numerical results
for the Void Index in Fig. 7 have been obtained using the
technique described in previous Section. The curve with the
negative slope represents the macroscopic void distribution,
and the other one the microscopic void distribution. The

Fig. 8 Geometry of the part

Fig. 9 Optimized injection
velocity
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optimal impregnation velocity is 0.005 m/s that yields a
Void Index of around 20%.

The following values of physical parameters have been
considered:

& Micro Void Index function (Vi_m): Vi_m=2.031v+
0.1958

& Macro Void Index function (Vi_M): Vi_M=−36.65v+
0.3621

& Optimal velocity: 0.005 m/s
& Capillary coefficient: 0.02
& Optimal capillary number: 0.025
& Preform thickness: 0.005 m
& Permeability: 10−8m2

& Viscosity: 0.1 Pa*s
& Porosity: 0.4

A complex part has been simulated as example of void
optimization. This example is part of an ecological vehicle
for the tourism industry (see Fig. 8). The preform and the
resin are, respectively, fibre glass and polyester.

The injection nozzle is a line located along the border of
the part. The first simulation has been carried out at
constant injection pressure of 1 bar; the impregnation
velocity is changing during the mold filling and then the
Void content. For the second simulation, as is represented in
Fig. 9, an optimized injection velocity has been employed
in order to minimize the Void content.

Figure 10 shows the pressure, and void content for a
constant injection pressure (left) and optimized injection
velocity (right). As observed in the bottom right image the

void content in the second simulation has been reduced to a
minimum.

Conclusions

In the present work, a new numerical procedure is
proposed to predict an optimized injection flow rate to
minimize micro/macroscopic voids in RTM filling. The
macro/microscopic void content are given as a function of
the impregnation velocity. The calculated distribution
obtained by this new numerical method reproduces
experimental observations [5]. For this purpose, a modi-
fied advection-diffusion equation describing the evolution
of saturation has been discretized by using a flux limiter
upwind scheme, which has the ability to limit the extra
numerical diffusion introduced by standard first-order
schemes. In the numerical simulation of the modified
saturation equation two terms contribute to smooth the
flow front: one is related to the source term, and the other
purely numerical term is introduced by the dicretization
scheme. The last effect can be reduced by using higher-
order numerical schemes. Numerical results confirm that
first-order schemes exhibit an excessive and no realistic
diffusion due to the numerical approximation of the
advective term, while the flux-limiter scheme shows less
extra-diffusive effects. Thus, the flux limiter proposed
improves significantly the results with respect to the first-
order solutions. This technique is able to predict the
optimum injection flow rate so as to minimize the

Constant injection pressure (1 bar) Optimized injection flow rate 

Filling Time (s)

16.4

13.1

9.8

6.5

3.2

0

Filling Time (s)

194

155

116

77

38

0

Void Percent

5

4

3

2

1

0

Void Percent

0.33

0.27

0.20

0.13

0.06

0

Fig. 10 Filling times and Void
Content for two simulations, one
carried out at injection pressure
(1bar) and one using the opti-
mized injection strategy
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distribution of the micro/macroscopic void content in the
finished part.
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