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Active and passive earth pressure coefficients by a kinematical
approach

A.-H. Soubra and B. Macuh

A simple method is proposed for calculating the active

and passive earth pressure coefficients in the general

case of an inclined wall and a sloping backfill. The

approach used is based on rotational log-spiral failure

mechanisms in the framework of the upper-bound

theorem of limit analysis. It is shown that the energy

balance equation of a rotational log-spiral mechanism is

equivalent to the moment equilibrium equation about

the centre of the log-spiral. Numerical optimisation of

the active and passive earth pressure coefficients is

performed automatically by a spreadsheet optimisation

tool. The implementation of the proposed method is

illustrated using an example. The predictions by the

present method are compared with those given by other

authors.

NOTATION

c cohesion

dl elementary length along the slip surface BC
_DD rate of energy dissipation

f1, f2, . . . , f8 intermediate non-dimensional functions

Kª, Kq, Kc earth pressure coefficients due to soil weight,

vertical surcharge loading and cohesion

Kaª, Kaq, Kac active earth pressure coefficients

Kpª, Kpq, Kpc passive earth pressure coefficients

Kaq0, Kpq0 active and passive earth pressure coefficients

due to a surcharge loading normal to the

ground surface

l=r0 and L=r0 intermediate non-dimensional functions

l wall length

L length of AB

Pa, Pp active and passive forces respectively

Pad adhesive force

q vertical surcharge loading

q0 surcharge loading normal to the ground

surface

r0, r1 initial and final radius of the log-spiral slip

surface

V velocity at the velocity discontinuity

W weight of the soil mass ABC
_WW rate of work of an external force

Æ inclination of the Rankine earth pressure

� slope of the backfill

ª unit weight of the soil

� friction angle at the soil–structure interface

Ł0, Ł1 angles defining the log-spiral slip surface

º angle between the soil–wall interface and the

vertical direction

� inclination of the Rankine slip surface with

the horizontal direction

� normal stress acting on the slip surface

	 tangential stress acting on the slip surface


 angle of internal friction of the soil

� angular velocity of failure mechanism

1. INTRODUCTION

The problem of active and passive earth pressures acting

against rigid retaining structures has been extensively studied

in the literature since Coulomb.
1

Most of the existing methods

are based on either the limit equilibrium method, the slip line

method or the limit analysis method.

Recently, a variational analysis has been applied to the passive

earth pressure problem by Soubra et al.
2

Their approach is

based on a limit equilibrium method, and the solution provides

a log-spiral failure surface. For their failure wedge, the moment

equilibrium equation can be used for the calculation of the

passive earth pressures without specifying the normal stress

distribution along the log-spiral slip surface. It should be

emphasised that their method, employed in this paper, can be

categorised also as an upper-bound in the framework of limit

analysis where a rotational rigid body movement is considered.

This variational limit equilibrium method may be easily

extended to the active earth pressure problem, and the same

conclusions remain valid in this case:

(a) A log-spiral failure surface may be obtained from a

variational maximisation procedure.

(b) The moment equilibrium equation, which is equivalent to

the energy balance equation in the framework of the

upper-bound method of limit analysis, may be used for

computation of the active earth pressures.

The aim of this paper is to show that the upper-bound method

in limit analysis for a rotational log-spiral failure mechanism

gives rapid and good predictions for both active and passive

earth pressures. It is also demonstrated that the present method

can be easily implemented on a PC by defining spreadsheet



functions and by using a powerful spreadsheet optimisation

tool. The analysis is made in the general case of an inclined

wall and a sloping backfill, and considers a frictional and

cohesive (c, 
) soil. A uniform surcharge is assumed to act

on the ground surface. Active and passive earth pressure

coefficients due to soil weight, cohesion and surcharge loading

are presented for various governing parameters and compared

with those given by other authors.

2. FAILURE MECHANISMS AND GOVERNING

EQUATIONS

The variational analysis details and the equivalence between

the variational limit equilibrium method and the upper-bound

method in limit analysis for a rotational log-spiral failure

mechanism are given elsewhere.
2

However, for clarity, only the

upper-bound technique (that is, the kinematical approach) of

limit analysis is briefly described here.

Two rotational log-spiral failure mechanisms are considered in

the present analysis, one for the active state M1 (Fig. 1(a)) and

the other for the passive state M2 (Fig. 1(b)). For both M1 and

M2 mechanisms, the region ABC rotates as a rigid body about

the as yet undefined centre of rotation O relative to the

material below the logarithmic failure surface BC. Thus the

surface BC is a surface of velocity discontinuity. These failure

mechanisms can be specified completely by two variables

Ł0 and Ł1. It should be emphasised that the earth pressure

coefficient due to soil weight, Kª, is calculated with the

assumption of a cohesionless soil with no surcharge loading.

The computation of the coefficients Kq and Kc due to

surcharge loading and cohesion is based on the assumption of

a weightless soil with c ¼ 0 for Kq and q ¼ 0 for Kc. The

formulation for the coefficients of earth pressure due to soil

weight, surcharge and cohesion follows.

2.1. Rate of work of external forces

As shown in Fig. 1, the external forces acting on the soil

mass in motion consist of the self-weight of the soil, W, the

active or passive earth force (Pa or Pp), the adhesive force,

Pad(¼ cl tan �= tan
), and the surcharge, qL, acting on the

ground surface. The rate of work for the different external

forces can be calculated as follows.

2.1.1. Rate of work of the soil weight. A direct integration of

the rate of work of the soil weight in the region ABC is very

complicated. An easier alternative is first to find the rate of

work _WWOBC, _WWOAB and _WWOAC due to soil weight in the regions

OBC, OAB and OAC respectively. The rate of work for the
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Fig. 1. Log-spiral failure mechanisms: (a) M1 for active; (b) M2 for passive earth pressure analyses



region ABC is then found by simple algebraic summation,
_WWOBC � _WWOAB � _WWOAC. The steps of computation of the rate of

work due to self-weight of the soil are essentially the same as

those of an inclined slope considered by Chen.
3

It is found that

the rate of work due to the soil weight in the region ABC is

_WWsoil ¼ ªr3
0�( f1 � f2 � f3)1

where f1, f2 and f3 are non-dimensional functions, which are

given in Appendix 1.

2.1.2. Rate of work of the active or passive force and the

adhesive force. The rate of work of the active or passive force

(Pa or Pp) and the adhesive force, Pad, can be expressed as

follows:

_WW(Pa or P p),Pad
¼ Pa,p r0� f4 þ cr2

0� f52

where f4 and f5 are non-dimensional functions, which are

given in Appendix 1. It should be mentioned that the active or

passive force is assumed to act at the lower third of the wall

length for the calculation of the coefficients Kaª and Kpª.

However, the computation of Kac, Kpc, Kaq and Kpq is based on

the assumption that the point of application of the active or

passive force is applied at the middle of the wall length. These

hypotheses are in conformity with the classical earth pressure

distributions, and allow direct comparison with existing

solutions.

2.1.3. Rate of work of the surcharge loading. The rate of work

of the surcharge loading q can be expressed as follows:

_WWq ¼ qr2
0� f63

where f6 is a non-dimensional function, which is given in

Appendix 1.

The total rate of work of the external forces is the summation

of these three contributions—that is, equations (1), (2) and (3):

X
[ _WW ]ext ¼ _WWsoil þ _WW(Pa or P p),Pad

þ _WWq4

2.2. Rate of energy dissipation

Since no general plastic deformation of the soil is permitted

to occur, the energy is dissipated solely at the velocity

discontinuity surface BC between the material at rest and the

material in motion. The rate of energy dissipation per unit area

of a velocity discontinuity can be expressed as
3
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_DD ¼ cV cos
5

where V is the velocity that makes an angle 
 with the

velocity discontinuity. The total rate of energy dissipation

along BC can be expressed as follows:

_DDBC ¼ cr2
0� f76

where f7 is a non-dimensional function, which is given in

Appendix 1.

2.3. Energy balance equation

By equating the total rate of work of external forces (equation

(4)) to the total rate of energy dissipation (equation (6)), we

have

ªr3
0( f1 � f2 � f3)þ Pa,p r0 f4 þ cr2

0 f5 þ qr2
0 f6 ¼ cr2

0 f77

The energy balance equation of the rotational log-spiral

mechanism (i.e. equation (7)) is identical to the moment

equilibrium equation about the centre of the log-spiral. It

should be emphasised that the log-spiral function has a

particular property, that the resultant of the forces (� � dl ) and

(tan
 � � � dl ) passes through the pole of the spiral. Hence the

moment equilibrium equation of the soil mass in motion about

the centre of the log-spiral is independent of the normal stress

distribution along the slip surface. Based on equation (7), the

active and passive forces can be expressed respectively as

follows:

Pa ¼ Kaª
ªl2

2
þ Kaqql� Kaccl8

Pp ¼ Kpª
ªl2

2
þ Kpqqlþ Kpccl9

where Kaª, Kpª, Kaq, Kpq, Kac and Kpc are the earth pressure

coefficients. The coefficients Kª, Kq and Kc represent

respectively the effect of soil weight, vertical surcharge loading

and cohesion, and the subscripts a and p represent the active

and passive cases respectively. These coefficients are given as

follows, using the lower sign for the passive case:

�Kaª ¼ K pª ¼
2

l

r0

� �2 �
( f1 � f2 � f3)

f 410

�Kaq ¼ K pq ¼
1
l

r0

� f6

f 411

Kac,pc ¼ �
1
l

r0

f 7 � f 5

f 412

For a surcharge loading q0 normal to the ground surface, the

active and passive earth pressure coefficients, Kaq0 and Kpq0,

are given as follows:

Kaq0,pq0 ¼ �
1
l

r0

� f8

f413

where f8 is a non-dimensional function, which is given in

Appendix 1.

3. NUMERICAL RESULTS

The most critical earth pressure coefficients can be obtained by

numerical maximisation of the coefficients Kaª, Kaq and Kaq0

and minimisation of the coefficients Kac, Kpª, Kpq, Kpq0

and Kpc. These optimisations are made with regard to the

parameters Ł0 and Ł1. The procedure can be performed using

the optimisation tool available in most spreadsheet software

packages. In this paper the Solver optimisation tool of

Microsoft Excel has been used. Two computer programs have

been developed using Visual Basic for Applications (VBA) to

define the active and passive earth pressure coefficients as

functions of the two angular parameters Ł0 and Ł1 defined in

Fig. 1.

In the following sections, the passive and active earth pressure

coefficients obtained from the present analysis are presented

and compared with those given by other authors. Then a

demonstration of the implementation of earth pressure

coefficients as user-defined functions in Microsoft Excel Visual

Basic is presented. An illustrative example shows the easy use

of spreadsheets in optimisation problems. The paper ends with

the presentation of two design tables giving some values of the

active and passive earth pressure coefficients for practical use

in geotechnical engineering.

3.1. Passive earth pressure coefficients

There are a great many solutions for the passive earth pressure

problem in the literature based on

(a) the limit equilibrium method
4–15

(b) the slip line method
16–20

(c) limit analysis theory.
2, 21–28

The tendency today in practice is to use the values given by

Kérisel and Absi.
29

3.1.1. Comparison with Rankine solution. For the general case

of an inclined wall and a sloping backfill (º=
 6¼ 0, �=
 6¼ 0),

the Rankine passive earth pressure is inclined at an angle Æ
with the normal to the wall irrespective of the angle of friction

at the soil–wall interface,
30

where

tanÆ ¼ sin(ø� þ �� 2º)sin


1þ sin
 cos(ø� þ �� 2º)
14



and

sinø� ¼
sin �

sin

15

The inclination of the slip surface with the horizontal direction

is given as follows:

� ¼ ø� þ �

2
þ 


4
� 


2
16

and the coefficient Kpª is given by

Kpª ¼
cos(º� �)sinø�

cosÆ sin(ø� � �)
[1þ sin
 cos(ø� þ �� 2º)]17

In order to validate the results of the present analysis, one

considers a soil–wall friction angle � equal to the Æ value

given by equation (14). The numerical solutions obtained by

the computer program have shown that, in these cases, the

present results are similar to the exact solutions given by

Rankine (that is, equations (16) and (17)); the log-spiral slip

surface degenerates to a planar surface with radii approaching

infinity.

It should be emphasised that the results obtained from the

computer program indicate that the coefficient Kpc is related to

the coefficient Kpq0 by the following relationship (cf. Caquot’s

theorem of corresponding states
31

):

Kpc ¼
Kpq0 �

1

cos�
tan


18

Also, it should be mentioned that the critical angular

parameters Ł0 and Ł1 obtained from the minimisation of both

Kpq0 and Kpc give exactly the same critical geometry.

3.1.2. Comparison with Kérisel and Absi. Figures 2 and 3

show the comparison of the present solutions of Kpª and Kpq

with those of Kérisel and Absi
29

for the case of a vertical wall

and an inclined backfill, and for the case of an inclined wall

and a horizontal backfill respectively, when 
 ¼ 408.

For the Kpª coefficient, the present results are greater than

those of Kérisel and Absi. However, the maximum difference

does not exceed 13%. For the Kpq coefficient, the present

solutions continue to be greater than those of Kérisel and Absi;

a maximum difference of 22% is obtained for the extreme case

when 
 ¼ 408, �=
 ¼ 1, �=
 ¼ 0 and º ¼ �308.

To conclude, the present solutions of Kpª and Kpq are greater

than the ones given by Kérisel and Absi. However, for practical

configurations (
 < 408, 1=3 < �=
 < 2=3, �=
 < 1=3 and

º ¼ 08), the maximum difference does not exceed 5% for Kpª

and 7% for Kpq.

3.1.3. Comparison with the existing upper-bound

solutions. Rigorous upper-bound solutions of the passive earth

pressure problem are proposed in the literature by Chen and

Rosenfarb
23

and Soubra.
27

Chen and Rosenfarb considered six

translational failure mechanisms and showed that the log-

sandwich mechanism gives the least (that is, the best) upper-

bound solutions. Recently, Soubra
27

considered a translational

multiblock failure mechanism and improved significantly the

existing upper-bound solutions given by the log-sandwich

mechanism for the Kpª coefficient, since he obtained smaller

upper bounds. The improvement (that is, the reduction relative

to Chen and Rosenfarb’s upper-bound solution) attains 21%

when 
 ¼ 458, �=
 ¼ 1, �=
 ¼ 1 and º ¼ �158.

The results of Kpª and Kpq given by the present rotational

failure mechanism and those given by Soubra
27

using a

translational failure mechanism are presented in Fig. 4 for the

general case of an inclined wall and a sloping backfill when


 ¼ 458 and �=
 ¼ 1.

For the Kpª coefficient, the present upper-bound solutions

are smaller (that is, better) than those of Soubra.
27

The

improvement (that is, the reduction relative to Soubra’s upper-

bound solution) is 27% when 
 ¼ 458, �=
 ¼ 1, �=
 ¼ 1 and

º ¼ �158. For the Kpq coefficient, it should be mentioned that

the values obtained by Soubra
27

are identical to those given by

Kérisel and Absi
29

and correspond to the exact solutions for a
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weightless soil. The present upper-bound solutions of the Kpq

coefficient are greater than those of Soubra
27

and thus

overestimate the exact solutions. However, for practical

configurations (
 < 408, 1=3 < �=
 < 2=3, �=
 < 1=3 and

º ¼ 08) the maximum difference does not exceed 7·5%.

3.2. Active earth pressure coefficients

As in the case of passive earth pressures, the numerical solutions

obtained by the computer program have shown that the present

model gives the exact solutions proposed by Rankine (when

they exist). In these cases, the log-spiral slip surface degenerates

to a planar surface with radii approaching infinity. Also, it

should be mentioned that the following relationship between

Kac and Kaq0 is valid in the present analysis:

Kac ¼
1

cos �
� Kaq0

tan

19

and that the calculation of Kaq0 and Kac gives exactly the same

critical geometry.

3.2.1. Comparison with Kérisel and Absi. Figures 5 and 6

show the comparison of the present solutions of Kaª and Kaq

with those of Kérisel and Absi
29

in the case of a vertical wall

and an inclined backfill, and in the case of an inclined wall

and a horizontal backfill respectively, when 
 ¼ 458 and

�=
 ¼ 1.
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The present results are smaller than those of Kérisel and Absi.

For the Kaª coefficient, the maximum difference does not

exceed 3% when º < 158; however, for º ¼ 208 a significant

difference is observed. After careful examination of the values

proposed by Kérisel and Absi for similar configurations (see for

instance their values for �=
 ¼ 0:66 or 0), it seems that their

Kaª value for 
 ¼ 458, �=
 ¼ 1, � ¼ 08 and º ¼ 208 is not

correct. For the Kaq coefficient the underestimation does not

exceed 8%.

The preceding comparisons allow one to conclude that, for

practical configurations (
 < 408, �=
 < 1, �=
 > �1=3 and

º ¼ 08), there is good agreement with the currently used results

of Kérisel and Absi for both Kaª and Kaq. The maximum

difference does not exceed 3%.

4. IMPLEMENTATION

OF USER-DEFINED

FUNCTIONS IN VISUAL

BASIC FOR

APPLICATIONS, AND

THE USE OF SOLVER

To implement the functions

defining the passive earth

pressure coefficients and to

run the Solver optimisation

tool of Microsoft Excel, one

has to follow the following

steps (for the active case, use

the appropriate equations

given in Appendix 1):

(a) Create the user-defined

functions shown in

Appendix 2. This is done

in Microsoft Excel 97 by

first clicking Tools/

Macro/Visual Basic Editor

and then clicking Insert/

Module and, in the module sheet, typing ‘Option explicit

. . .’, etc. The functions are simple and self-explanatory.

(b) As shown in Fig. 7, cells C5, C6, C7 and C8 are input data

that define the mechanical and geometrical parameters 
,

�, º and �. Cells C12 and C13 contain values of angular

parameters of the log-spiral slip surface Ł0 and Ł1. Finally,

cell C19 contains the formula to compute the passive earth

pressure coefficient Kpª. Arbitrary values were initially

entered in cells C12 and C13 for Ł0 and Ł1, say 0·5 for Ł0

and 1·5 for Ł1.

(c) Invoke the Solver tool by clicking Tools/Solver. Fig. 8

shows the Solver dialog box. To calculate the Kpª

coefficient, set the C19 cell ‘equal to’ minimum, ‘by

changing’ cells C12 and C13, namely Ł0 and Ł1, ‘subject to’

the constraints that C13 > C12þ 0:0001 (Ł1 . Ł0),

C12 < 3:14 (Ł0 < 
), C13 < 3:14 (Ł1 < 
),

C13 > 0 (Ł1 > 0) and C19 > 0 (Kpª > 0).

If Solver reports a converged solution, one should accept the

solution and re-invoke Solver, until it reports it has ‘found

a solution’. It should be mentioned that the initial values of Ł0

and Ł1 may influence the ability of the Solver to find a

solution. This need for judicious choice of starting values of Ł0

and Ł1 is not a major inconvenience because different starting

values can be tried with ease using the proposed spreadsheet

approach. The appealing feature of the spreadsheet approach is

that once the spreadsheet is set up as shown in Fig. 7, running

other problems with different geometry and soil properties

merely requires changing the input data (that is, 
, �, � and º).

4.1. Illustrative example

Consider the following characteristics: 
 ¼ 408, �=
 ¼ 2=3,

�=
 ¼ 0 and º ¼ 08. Initial values of Ł0 and Ł1 are arbitrarily

chosen, say 0·5 for Ł0 and 1·5 for Ł1. Fig. 7 shows the critical

coefficient Kpª ¼ 12:59 and the corresponding critical slip

surface.
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5. DESIGN TABLES

Tables 1 and 2 present the coefficients Kpª, Kpq, Kpc, Kaª, Kaq

and Kac obtained from the computer programs for practical use

in geotechnical engineering. These values are given for 

ranging from 208 to 408, for five values of �=
, for º ¼ 08 and

for four values of �=
. For practical configurations, the passive

(or active) earth pressure coefficients are given for negative (or

positive) � values.

6. CONCLUSIONS

A simple method using spreadsheet software has been proposed

for computing the active and passive earth pressure

coefficients. The method is based on the upper-bound theorem

of limit analysis. The failure mechanism is of the rotational

type. It is bounded by a log-spiral slip surface. The energy

balance equation is shown to be equivalent to the moment

equilibrium equation about the centre of the log-spiral. The

present approach gives rigorous solutions for the active and

passive earth pressures in the framework of the kinematical

approach of limit analysis.

Numerical optimisation is performed automatically by a

spreadsheet optimisation tool. The implementation of the

proposed method has been illustrated using an example. Once

the spreadsheet has been set up, the same template can be used

for analysing other problems merely by changing the input

data. The advantage of this method is its simplicity in use.

Comparison with the currently used solutions of Kérisel and

Absi
29

leads to the following conclusions:

(a) For the passive case, the present solutions of Kpª and Kpq

are greater than those given by Kérisel and Absi.
29

However, for practical configurations (
 < 408, 1=3 < �=

< 2=3, �=
 < 1=3 and º ¼ 08), the maximum difference

does not exceed 5% for Kpª and 7% for Kpq.

(b) For the active case, the present solutions of Kaª and Kaq

allow one to conclude that for practical configurations

(
 < 408, �=
 < 1, �=
 > �1=3 and º ¼ 08), there is good

agreement with the currently used results of Kérisel and

Absi. The maximum difference does not exceed 3%.

On the other hand, the present analysis improves the best

upper-bound solutions given in the literature by Soubra
27

for

the Kpª coefficient. The improvement (that is, the reduction

relative to Soubra’s upper-bound solution) is 27% when


 ¼ 458, �=
 ¼ 1, �=
 ¼ 1 and º ¼ �158. For the Kpq

coefficient, the present analysis overestimates the upper-bound

solutions given by Soubra. However, for practical

configurations (
 < 408, 1=3 < �=
 < 2=3, �=
 < 1=3 and

º ¼ 08) the maximum difference does not exceed 7·5%.

Numerical results of the active and passive earth pressure

coefficients are given in a tabular form for practical use. The

proposed method, being simple and rigorous, may be an

attractive alternative to other existing solutions, and can be

easily extended to other stability problems in geotechnical

engineering.

APPENDIX 1

The non-dimensional functions f1, f2, . . . , f8 are given as

follows, using the lower sign for the passive case:

f1 ¼ �

�e �3(Ł1�Ł0)tan 
(3 tan
 � sin Ł1 � cos Ł1)
� 3 tan
 � sin Ł0 þ cosŁ0

3(9 tan 2
þ 1)

2
64

3
7520

f2 ¼ �
1

6

L

r0
2 sin Ł0 � 2

l

r0
sin ºþ L

r0
cos �

� �

� cos (Ł1 � �) � e�(Ł1�Ł0) tan 


21

f3 ¼ �
1

6

l

r0
sin Ł0 � ºð Þ � 2 sin Ł0 �

l

r0
sin º

� �
22

f4 ¼

cos(�� º) cos Ł0 �
1

3

l

r0
cos º

� �

� sin (�� º) sin Ł0 �
1

3

l

r0
sin º

� �

for Kº

cos(�� º) cos Ł0 �
1

2

l

r0
cos º

� �

�sin(�� º) sin Ł0 �
1

2

l

r0
sin º

� �

for Kq, Kq0 and Kc

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

23

f5 ¼
l

r0

tan�

tan

� sin(º� Ł0)24

f6 ¼ �
L

r0
�sin Ł0 þ

l

r0
sin º� 1

2

L

r0
cos �

� �
25

f7 ¼ �
1

2 tan

(e�2(Ł1�Ł0)tan 
 � 1)26

Fig. 8. Solver dialog box
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f8 ¼
L
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sin(�� Ł0)þ

l
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where

L

r0
¼

e �3(Ł1�Ł0)tan 
(sinŁ1 � cosŁ1 � tan º)
� sin Ł0 þ cos Ł0 � tan º

sin � � tan ºþ cos �
28

l

r0
¼ �e�(Ł1�Ł0)tan 
 � cos(Ł1 � �)þ cos(Ł0 � �)

cos(�� º)
29

APPENDIX 2

The user-defined functions for passive earth pressure

coefficients coded in Microsoft Excel Visual Basic are as

follows:

' Program for evaluation of Kpgama, Kpc and Kpq for rotational
' mechanism using log-spiral slip surface
Option Explicit  ' All variables must be declared
' Definition of the global constants
Public Const Pi = 3.141592654
' Variables
Public Phi As Double ' internal friction angle of the soil
Public Delta As Double ' angle of friction between soil and wall
Public Lambda As Double ' inclination of the wall
Public Beta As Double ' inclination of the backfill
Public Sl_r0 As Double ' l/r0
Public CL_r0 As Double ' L/r0
' Unknown variables
Public Theta0 As Double ' first unknown angle (in radians)
Public Theta1 As Double ' second unknown angle (in radians)
' Defining the initial values
Sub Define()
Phi = Cells(5, 3).Value * Pi / 180# ' Values from the cells
Delta = Cells(6, 3).Value * Pi / 180#
Lambda = Cells(7, 3).Value * Pi / 180#
Beta = Cells(8, 3).Value * Pi / 180#
Theta0 = Cells(12, 3).Value
Theta1 = Cells(13, 3).Value
Sl_r0 = (-Exp((Theta1 - Theta0) * Tan(Phi)) * Cos(Theta1 - Beta) _
+ Cos(Theta0 - Beta)) / Cos(Beta - Lambda)
CL_r0 = (Exp((Theta1 - Theta0) * Tan(Phi)) _
* (Sin(Theta1) - Cos(Theta1) * Tan(Lambda)) - _
Sin(Theta0) + Cos(Theta0) * Tan(Lambda)) / _
(Sin(Beta) * Tan(Lambda) + Cos(Beta))
End Sub
'***********************************************
Function f_1() As Double
Dim C1#, C2#
C1 = Exp(3# * (Theta1 - Theta0) * Tan(Phi))
C2 = 3# * (9# * (Tan(Phi)) ^ 2 + 1)
f_1 = -(C1 * (3# * Tan(Phi) * Sin(Theta1) - Cos(Theta1)) - _
3# * Tan(Phi) * Sin(Theta0) + Cos(Theta0)) / C2
End Function
'***********************************************
Function f_2() As Double
Dim C1#, C2#
C1 = 2# * Sin(Theta0) - 2# * Sl_r0 * Sin(Lambda) + CL_r0 * Cos(Beta)
C2 = CL_r0 * Cos(Theta1 - Beta) * Exp((Theta1 - Theta0) * Tan(Phi))
f_2 = -(1# / 6#) * C1 * C2
End Function
'***********************************************
Function f_3() As Double
f_3 = -(1# / 6#) * Sl_r0 * Sin(Theta0 - Lambda) * _
(2# * Sin(Theta0) - Sl_r0 * Sin(Lambda))
End Function
'***********************************************
Function f_4_Kpg() As Double
Dim C1#, C2#
C1 = Cos(Delta - Lambda) * (Cos(Theta0) - Sl_r0 / 3# * Cos(Lambda))
C2 = Sin(Delta - Lambda) * (Sin(Theta0) - Sl_r0 / 3# * Sin(Lambda))
f_4_Kpg = C1 - C2
End Function
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et minimis à quelques problèmes de statique relatifs à
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