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A Short Review on Model Order Reduction Based on Proper
Generalized Decomposition

Francisco Chinesta · Pierre Ladeveze · Elías Cueto

Abstract This paper revisits a new model reduction method-
ology based on the use of separated representations, the
so called Proper Generalized Decomposition—PGD. Space
and time separated representations generalize Proper Or-
thogonal Decompositions—POD—avoiding any a priori
knowledge on the solution in contrast to the vast majority of
POD based model reduction technologies as well as reduced
bases approaches. Moreover, PGD allows to treat efficiently
models defined in degenerated domains as well as the multi-
dimensional models arising from multidimensional physics
(quantum chemistry, kinetic theory descriptions, . . .) or from
the standard ones when some sources of variability are in-
troduced in the model as extra-coordinates.
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1 Introduction

Today many problems in science and engineering remain
intractable, in spite of the impressive progresses attained
in mechanical modeling, numerical analysis, discretization
techniques and computer science during the last decade,
because their numerical complexity, or the restrictions im-
posed by different requirements (real-time, for instance)
make them unaffordable for nowadays technologies.

We can enumerate different challenging scenarios for ef-
ficient numerical simulations:

– The first one concerns models that are defined in high di-
mensional spaces, usually encountered in quantum chem-
istry and kinetic theory descriptions of complex fluids.
Models defined in high dimensional spaces suffer the so-
called curse of dimensionality. If one proceeds to the solu-
tion of a model defined in a space of dimension N by us-
ing a standard mesh based discretization technique, where
M nodes are used for discretizing each space coordinate,
the resulting number of nodes reaches the astronomical
value of MN . With M = 1000 (a very coarse description
in practice) and N = 30 (a very simple model) the numer-
ical complexity results 1090. It is important to recall that
1080 is the presumed number of elementary particles in
the universe!

Quantum mechanics and molecular modeling of com-
plex fluids are not the only branches of science that suffer
from the curse of dimensionality. Consider for example
a chemical process involving so few molecules of the re-
acting species that the use of the continuous concept of
concentration is not valid. This situation is often found in
genetic processes such as expression of genes. The state
of such a discrete system is given by a probability dis-
tribution for the number of individual molecules of each
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one of the coexisting species. The balance equation gov-
erning the evolution of the system, the so-called chemical
master equation, is again defined in a high-dimensional
space that precludes a direct solution by means of stan-
dard mesh-based techniques.

There are of course alternative methods to address
these high-dimensional problems indirectly, stochastic
simulations being one of the foremost approaches. Stochas-
tic techniques have their own challenges, however. While
variance reduction is always an issue, it is quite difficult
within the stochastic framework to implement paramet-
ric or sensitivity studies that go beyond the brute force
approach of computing a large number of expensive, in-
dividual simulations.

– A second category of problems involves multiscale prob-
lems not necessarily defined in high-dimensional spaces,
but whose spectrum of characteristic times or lengths is so
wide that standard incremental discretization techniques
cannot be applied. In such time-multiscale problems, for
instance, the time step is extremely small as a conse-
quence of numerical stability requirements. Thus, simula-
tions over the much larger time interval of interest, which
typically requires the solution of a large linear algebraic
system at each time step, simply become impossible.
Multiscale models involving a wide range of characteris-
tic times abound in many fields. Reaction-diffusion mod-
els of the degradation of plastic materials, for example,
describe chemical reactions occurring within microsec-
onds coupled to diffusion of chemical substances taking
place over years. In processes involving microwaves, ul-
trasounds, etc. or materials exhibiting different relaxation
times, the difficulty related to time integration is crucial.
The same scenario is found in solid mechanics where the
constitutive equations are strongly non linear and cou-
pled, involving many scales and different characteristic
times.

– Other challenging problems are defined in degenerated
geometrical domains. By this we mean that at least one
of the characteristic dimensions of the domain is smaller
by several orders of magnitude than the others. This is the
case of bar, plate or shell-like domains typical of struc-
tures or materials processing applications. In simple sit-
uations, such problems are readily transformed into re-
duced, one or two-dimensional approximate theories (e.g.
the classical elastic plate theory). When geometrical or
material non-linearities are present, however, it is usually
impossible to derive lower-dimensional models of suffi-
cient validity. Standard mesh-based discretization meth-
ods then quickly become impractical, in view of the com-
pulsory discretization of the small length scales that yield
extremely fine meshes.

– Many problems in process control, parametric modeling,
inverse identification, and process or shape optimization,

usually require, when approached with standard tech-
niques, the direct computation of a very large number
of solutions of the concerned model for particular values
of the problem parameters. Consider for example the op-
timization of a process where optimal parameter values
must be determined for process operating conditions (e.g.
speed, position and temperature of heaters) and material
properties (e.g. thermal and rheological properties of the
materials). Clearly, it would be useful to be able to simu-
late this process at once for all values of these parameters
within a prescribed interval, and then perform data min-
ing within this rather general solution to identify optimal
values.

– Traditionally, Simulation-based Engineering Sciences—
SBES—relied on the use of static data inputs to perform
the simulations. These data could be parameters of the
model(s) or boundary conditions. The word static is in-
tended to mean here that these data could not be modi-
fied during the simulation. A new paradigm in the field
of Applied Sciences and Engineering has emerged in the
last decade. Dynamic Data-Driven Application Systems
(DDDAS) constitute nowadays one of the most challeng-
ing applications of simulation-based Engineering Sci-
ences. By DDDAS we mean a set of techniques that allow
the linkage of simulation tools with measurement devices
for real-time control of simulations. DDDAS entails the
ability to dynamically incorporate additional data into an
executing application, and in reverse, the ability of an ap-
plication to dynamically steer the measurement process.

In this context, real time simulators are needed in many
applications. One of the most challenging situations is
that of haptic surgery simulators, where forces acting on
the surgical tool must be translated to the peripheral de-
vice at a rate of 500 Hz. Control, malfunctioning iden-
tification and reconfiguration of malfunctioning systems
also need to run in real time. All these problems can be
seen as typical examples of DDDAS.

– Augmented reality is another area in which efficient (fast
and accurate) simulation is urgently needed. The idea is
supplying in real time appropriate information to the real-
ity perceived by the user. Augmented reality could be an
excellent tool in many branches of science and engineer-
ing.

– Light computing platforms are appealing alternatives to
heavy computing platforms that in general are expen-
sive and whose use requires technical knowledge. One
can imagine that the off-line parametric solution of many
models will make possible the on-line manipulation of
those general solutions by using very light computing
platforms, as for example smartphones or tablets.

While the previous list is by no means exhaustive, it
includes a set of problems with apparent no relationship
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among them that can be, however, treated in an unified man-
ner as will be shown in this paper. Their common ingredient
is our lack of capabilities (or knowledge) to solve them nu-
merically in a direct, traditional way. In order to obtain a
solution, some kind of model order reduction is thus com-
pulsory.

Many years ago, in the 80’s, Pierre Ladeveze proposed a
separated representation of the space and time coordinates

u(x, t) ≈
i=Q∑

i=1

Xi(x) · Ti(t) (1)

for performing efficient solutions of complex non-linear
thermo-mechanical models. The radial approximation (1)
was one of the main blocks of the powerful non-incremental
and non-linear LArge Time INcrement (LATIN) solver. The
corpus of literature devoted to this technique is vast, as
proved in the book by Ladeveze on the topic [67], but
remained in the form of space-time separations for many
years.

A more general separated representation (in this case in
the conformation space of complex fluids descriptions) was
more recently employed by A. Ammar and F. Chinesta [3]
for approximating the solution of multi-dimensional partial
differential equations. A. Nouy considered also such sepa-
rated representations for solving stochastic equations were
the deterministic coordinates and the stochastic ones were
separated, very much like in the radial, space-time approxi-
mation. Proper Generalized Decomposition—PGD—is the
common name recently coined for techniques using such
separated representations. The nature of the problem, the in-
volved coordinates and the constructor of such approxima-
tions can be very different, as will be seen.

The general form of the separated representation involved
in the PGD reads:

u(x1, . . . , xN) ≈
i=Q∑

i=1

F 1
i (x1) · · ·FN

i (xN) (2)

where xi denote a scalar or vector coordinate defined in a
domain Ωi of moderate dimension Ωi ⊂ R

d , with d ≤ 3, in
general.

2 Review on PGD Foundations and Applications

Proper Generalized Decomposition techniques allow to cir-
cumvent most of the challenges mentioned in the introduc-
tion in a unified way. They also make it possible to solve
models never until now solved, or speeding up the solution
of others up to a limit not yet reached by other techniques.
However, because the technique is still in its infancy, many
applications (possibly the most challenging and impressive

ones) are still in progress, while many and mathematical
foundations remain to be fully understood. See [37] for a
recent review. In what follows we are describing the PGD
state of the art.

2.1 Advanced Non-linear Solvers Making Use of
Space-Time Separated Representations

Even if non-linear models can be solved by using standard
linearization strategies in the context of separated represen-
tations, similarly to [8] or [113], more robust strategies exist
for addressing efficiently history-dependent non-linearities,
making use of the natural separation of the local and non-
linear thermo-mechanical behavior from the global and lin-
ear equilibrium in which a space-time separated representa-
tion constitutes an essential ingredient allowing spectacular
computing time savings.

Thus, space-time separated representations can be viewed
as a part of the LArge Time INcrement method (LATIN)
which has been introduced by P. Ladeveze in 1985 [57, 58]
and was the core of two books [64, 67]. These books re-
late the story of the PGD until their publication. Originally
designed to deal with nonlinearities, such as plasticity or vis-
coplasticity, in time dependent problems [19–21, 27, 40–42,
59–61, 68, 72], during the past three decades, many theo-
retical works have been done to enhance the strategy and to
deal with fundamental problems in computational mechan-
ics. The strategy has been applied in the context of large
displacements in [22, 64]. A domain decomposition tech-
nique has been proposed in [16, 17, 30, 62, 63] and multi-
scale features in space have been introduced in [66, 69, 73].
These features have been extended to time in [74–77, 79, 80,
100] and the scalability of the strategy illustrated in [81, 95,
110]. A multiparametric strategy for taking into account the
variability parameters or to be used in identification tech-
niques has been introduced in [2, 23–25]. The strategy has
been applied to multiphysics problems in [46, 93, 94]. Some
techniques specific to the manipulation of fields approxi-
mated by the PGD have been proposed in [65]. The problem
of the verification of model reduction methods within the
PGD was addressed in [82].

The strategy was also successfully applied to many stud-
ies, strongly related to industrial problems: the prediction of
damage in composites [1, 14, 70, 78, 118], the computation
of assemblies [31], the simulation of dynamic shocks [26,
71, 86], the simulation of porous media [47, 92] and the vir-
tual testing of joints for the prediction of damping in space
launchers [28].

2.2 Multidimensional Models

As discussed in the introduction, some models are inher-
ently defined in a configurational or conformation space
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that is high-dimensional in nature. Its discretization leads to
the well-known curse of dimensionality if traditional, mesh-
based techniques are applied. Separated representations, on
the contrary, provide with an efficient means of dealing with
these requirements. It is thus natural that the origin of PGD
techniques, has one of its two legs in this framework, the
other being the space-time separation of the LATIN method.

Separated representations were applied for solving the
multidimensional Fokker-Planck equation describing com-
plex fluids in the kinetic theory framework. In [3], the au-
thors addressed the solution of the linear Fokker-Planck
equation describing multi-bead-spring molecular models in
the steady state and in homogeneous flows. In that case
the distribution function describing the molecular confor-
mation only depends on the molecule configurational coor-
dinates. The solution procedure was extended to non-linear
kinetic theory descriptions of more complex molecular de-
scriptions in [90]. The transient solution was addressed in
[5] in which the time was added as an extra-coordinate.
Transient solutions making use of reduced bases in the con-
text of an adaptive proper orthogonal decomposition [116]
were considered in the case of low dimensional configura-
tion spaces: the FENE model was addressed in [4] and liquid
crystalline polymers in [6]. In [87], the authors considered
multi-bead-spring models but considered spectral approxi-
mation for representing all the functions involved in the fi-
nite sums decomposition. A deeper analysis of non-linear
and transient models was considered in [8]. Complex fluid
models were coupled with complex flows in [112] and [91]
opening very encouraging perspectives and claiming the ne-
cessity of defining efficient stabilizations. A first tentative
of convective stabilization was proposed in [43]. Finally, in
[33] the PGD was applied for solving the stochastic equa-
tion within the Brownian Configuration Field framework.
The interested reader can refer to [39] and the references
therein for an exhaustive overview of PGD in computational
rheology.

Multidimensional models encountered in the finer de-
scriptions of matter (ranging from quantum chemistry to sta-
tistical mechanics descriptions) were revisited in [35]. The
multidimensional chemical master equation was efficiently
solved in [38]. The Langer’s equation governing phase tran-
sitions was considered in [85]. Finally, models coming from
financial mathematics were addressed in [48].

2.3 Separating the Physical Space

Other models are not inherently defined in a high-dimen-
sional space, but can nevertheless be treated efficiently in a
separated manner. Models defined in cubic (or hypercubic,

but moderate-dimensional) domains suggest the following
separated representation

u(x, y, z) ≈
i=Q∑

i=1

Xi(x) · Yi(y) · Zi(z) (3)

Thus, the 3D solution results in a sequence of 1D so-
lutions for computing functions Xi(x), Yi(y) and Zi(z).
This kind of domains are very frequent when addressing
homogenization problems in which the elementary volume
element is a cube. The interested reader can refer to [34].
A full decomposition was also efficiently applied for solv-
ing the Navier-Stokes equations in a cube in [45]. Fully sep-
arated representations in complex, non-hypercubic domains
can be equally performed by using an appropriate X-FEM
like strategy [54]. In that work the enforcement of non-
homogeneous Dirichlet boundary conditions was also anal-
ysed, giving rise to a generalized form of the PGD approach.

In the case of plates, shells or extruded geometries, one
could consider the separated approximation [18] also advan-
tageously:

u(x, y, z) ≈
i=Q∑

i=1

Xi(x, y) · Zi(z) (4)

In the case of models defined in plate geometries (x, y)

represent the in-plane coordinates and z the thickness direc-
tion. In the case of extruded profiles (x, y) represents the
surface extruded in the z direction. This kind of representa-
tion makes possible fully 3D solutions with numerical com-
plexities (and therefore computation times) characteristic of
2D solutions, without any simplifying kinematic assump-
tion.

2.4 Parametric Models: A Route to Efficient Optimization,
Inverse Identification and Real Time Simulation

Previous multidimensional models may seem too far from
the usual computational mechanics practice. However, usual
computational mechanics models could be enriched by a
PGD treatment. Thus, adding some new coordinates to mod-
els initially non high-dimensional, could lead to new, never
explored insights in the physics. Imagine for instance solv-
ing the heat (Fourier) equation and assume unknown the ma-
terial thermal conductivity. This could happen because it has
a stochastic nature, for instance, or simply because prior to
solve the thermal model it should be measured. You have
three possibilities: (i) wait for the conductivity to be mea-
sured (a conservative solution, but impractical in many en-
gineering situations); (ii) solve the equation for many values
of the conductivity (a sort of brute force approach) to get an
overall idea of the behavior of the solution; or (iii) solve the
heat equation only once for any value of the conductivity.
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Obviously the third alternative is the most exciting one,
but up to our knowledge, no result has been presented in
the literature so far that could eventually allow to do so. To
compute this general solution, however, it suffices to intro-
duce the conductivity k as an extra-coordinate, playing the
same role as the standard space and time coordinates, even if
there are not derivatives concerning this extra-coordinate in
the heat equation. A possible separated approximation could
be:

u(x, t, k) ≈
i=Q∑

i=1

Xi(x) · Ti(i) · Ki(k) (5)

This procedure works very well in practice, and can be
extended to introduce many other extra-coordinates: source
term, boundary conditions, initial condition, etc. The price
to pay is the increase of the dimensionality of the resulting
model that now contains the standard physical coordinates
(space and time) plus all the other extra-coordinates that we
decided to introduce. However, the separated representation
of the PGD allows to treat these models advantageously.

This kind of parametric modeling was addressed in [11,
18, 114] where material parameters were introduced as
extra-coordinates. In [83] and [84] thermal conductivities,
macroscopic temperature and its time evolution were intro-
duced as extra-coordinates for computing linear and non-
linear homogenization. In [18] the anisotropy direction of
plies involved in a composite laminate were considered as
extra-coordinates. By assuming a certain uncertainty in the
real orientation of such plies, authors evaluate the envelope
of the resulting distorted structures due to the thermome-
chanical coupling.

The futurist concept of “virtual chart for dimensioning”
consists of a PGD-reduced model describing the physics for
a family of structures. It allows engineers to proceed to com-
plex designs in some seconds. This concept, fully compati-
ble with the most recent design procedures, is being actively
developed by the Ladeveze’s group.

2.5 Real-Time Simulation, DDDAS and More

It is easy to understand that after performing this type of
calculations, in which parameters are considered advanta-
geously as new coordinates of the model, a posteriori in-
verse identification or optimization can be easily handled.
This new PGD framework allows to perform this type of
calculations very efficiently, because in fact all the result
have been previously computed in the form of a separated,
high-dimensional solution so that they constitute a simple
post-processing of this general solution. Process optimiza-
tion was considered in [52], for instance. Shape optimiza-
tion was performed by considering all the geometrical pa-
rameters as extra-coordinates, leading to the model solution

in any of the geometries generated by the parameters con-
sidered as extra-coordinates [88]. This strategy could be an
alternative to the POD-based shape optimization considered
in [117]. Inverse methods in the context of real-time simu-
lations were addressed in [55] and were coupled with con-
trol strategies in [53] as a first step towards DDDAS (dy-
namic data-driven application systems). Moreover, because
the general parametric solution was precomputed off-line,
it can be used on-line under real time constraints and using
light computing platforms like smartphones [18, 53], that
constitutes a first step towards the use of this kind of infor-
mation in augmented reality platforms.

As mentioned before, surgical simulators must operate at
frequencies higher than 500 Hz. The use of model reduc-
tion seems to be an appealing alternative for reaching such
performances. However, techniques based on the use of the
POD, PODI, even combined with an asymptotic numerical
methods to avoid the computation of the tangent matrix, ex-
hibit serious difficulties to fulfil such requirements as dis-
cussed in [96–99]. The use of parametric solutions in which
the applied load and its point of application are considered
as extra-coordinates open an unimaginable field of applica-
tions.

2.6 Uncertainty Quantification and Stochastic Parametric
Analyses

The PGD method was introduced in [101] in the context of
uncertainty quantification. In this context, the method was
initially called Generalized Spectral Decomposition (GSD)
and was considered to be a generalization of Karhunen-
Loève decomposition for the a priori construction of sep-
arated representations of the solution of stochastic partial
differential equations (SPDE).

The problem that defines the reduced bases of functions
in the decomposition of the solution has been interpreted as
a pseudo eigenproblem. This interpretation has led to the
development of dedicated algorithms inspired from solution
techniques for classical eigenproblems [103]. In this context
of stochastic problems, a major interest of PGD algorithms
is that they decouple the solution of deterministic problems
and algebraic stochastic equations, thus making the PGD a
promising alternative to traditional methods for uncertainty
propagation [105]. PGD has also been extended to stochastic
nonlinear problems with two alternative strategies: the use of
nonlinear iterative solvers with the PGD method as a solver
for the succession of linearized stochastic problems [102],
or the direct construction of a separated representation of
the solution of nonlinear problems [104]. More recently, the
PGD has been successfully applied to the solution of high
dimensional stochastic parametric problems, with the intro-
duction of suitable hierarchical tensor representations and
associated algorithms [106].
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PGD has also been exploited for the construction of ro-
bust reduced order models in structural solid mechanics
[32], thus providing an alternative to traditional modal su-
perposition approaches. In [109], PGD method was coupled
with fictitious domain methods in order to handle the solu-
tion of PDEs with geometrical uncertainties.

2.7 Numerical Analysis

From the point of view of the numerical analysis of sepa-
rated representation and its associated constructors we can
cite some recent works. There exist several approaches to
the numerical analysis of PGD. They combine the existence
of a best approximation and a greedy algorithm. The idea
of using greedy algorithms to construct successive approx-
imations was considered in [3] in the context of the nu-
merical solution of multidimensional PDEs. One can note,
however, that the strategy considered in [3] can be inter-
preted as a greedy algorithm for the error minimization only
for elliptic symmetric problems since they can be rewrit-
ten in terms of minimization of an energy functional. In [9]
the analysis of the convergence of the greedy rank-one up-
date algorithm for solving full-rank linear systems was ad-
dressed.

A more complete theoretical study was addressed in
[89] for symmetric elliptic problems by exploiting its con-
nection to greedy algorithms from nonlinear approxima-
tion theory explored, for example, in [44]. Hence, the
variational version of the algorithm, based on the mini-
mization of a sequence of Dirichlet energies, was shown
to converge. In [51] the authors extend the convergence
analysis of the pure greedy and orthogonal greedy algo-
rithms considered in [89] to the technically more com-
plicated case where the Laplace operator is replaced by
a high-dimensional Ornstein-Uhlenbeck operator with un-
bounded drift. This case bears many similarities with that
appearing in Fokker-Planck equations arising in bead-spring
chain type kinetic polymer models with finitely exten-
sible non-linear elastic potentials. These are frequently
posed on a high-dimensional Cartesian product configura-
tion space D = D1 × · · · × DN contained in R

Nd , where
each set Di , i = 1, . . . ,N , is a bounded open ball in R

d ,
d = 2,3.

General elliptic problems were considered in [49]. The
extension of these results to non-linear symmetric coercive
problems is the subject of the paper [29] that also con-
tains specific results when the algorithm is applied to finite-
dimensional problems. Current research tracks include for
example the extension of the convergence analysis to non-
symmetric problems and the analysis of the rate of conver-
gence for non-linear equations. In [50], it is provided a math-
ematical analysis of a family of progressive and updated
PGDs for a particular class of convex optimization problems

in reflexive tensor Banach spaces. The above results have led
to a generalization of the concept of Singular Value Decom-
position (SVD). In particular, a constrained version of the
SVD has been proposed in [108].

2.8 Miscellaneous

There is a variety of open questions when applying the PGD
based discretization techniques. We discussed previously the
question related to the convective stabilization [43]. The is-
sue related to the stabilization of mixed formulation has not
been addressed until now.

Other important question lies in the error estimation.
A first attempt was considered in [10]. Coupling standard
mesh based discretization techniques with reduced bases
(POD and PGD) is an issue of major interest in order to
represent localized behaviors (e.g. discontinuities, singular-
ities, boundary layers, . . .). Some coupling strategies were
proposed in [7] and [12].

Multi-scale and multi-physics non-linear coupled mod-
els involving different characteristic times were efficiently
coupled in [36] where a globalization of local problems to
speed-up the simulation in a separated representation frame-
work has been proposed. Later, in [13] the time axis was
transformed in a two-dimensional domain to account for
two very different time scales. The coupling of other multi-
physic models in the context of composites manufacturing
processes was performed in [113]. A monolithic approach of
coupled thermo-mechanical models was employed in [15].
In [111] the solution of the electromagnetic equations was
considered.

In [56] the PGD was introduced in the boundary ele-
ment method framework for solving transient models where
few works concerning the use of reduced bases exist [115].
Because the use of a space-time separated representation
the time-dependent kernel is no more needed, and only
the steady state kernel functions are needed. The space-
time separation implies significant computational time sav-
ings.

In [107], alternative definitions of PGD and dedicated
algorithms are provided in the context of time-dependent
PDEs. In particular, a new definition of PGD called Mini-
max PGD is introduced for handling non symmetric varia-
tional problems.

3 Discussion

As can be noticed from the pages before, the Proper Gen-
eralized Decomposition technique has been advantageously
applied to a plethora of different problems and in different
ways. Ranging from the original space-time separated rep-
resentations to more recent applications in which models are
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efficiently cast into a high-dimensional framework to over-
come real-time requirements by just making real-time post-
processing, the potential field of applications seems not to
have been completely explored.

In fact, some crucial aspects at the very root of the
method continue to be not fully understood. For instance,
the relationship among POD/SVD and PGD techniques, has
not been analysed to the whole extent. Optimality conditions
of the separated representation, for instance, are intimately
related to this question and have not been completely solved
so far.

We believe, therefore, that there is a lot of room in the
PGD field to perform research, both at the theoretical level
and from the point of view of applications, whose range
seems to be unlimited.
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