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A numerical model is presented to predict vibrations in the free field from excitation due to metro trains in tunnels. The
three-dimensional dynamic tunnel–soil interaction problem is solved with a subdomain formulation, using a finite element

formulation for the tunnel and a boundary element method for the soil. The periodicity of the geometry in the longitudinal
direction of the tunnel is exploited using the Floquet transform, limiting the discretization to a single-bounded reference
cell. The responses of two different types of tunnel due to a harmonic load on the tunnel invert are compared, both in the
frequency–wavenumber and spatial domains. The first tunnel is a shallow cut-and-cover masonry tunnel on the Paris
metro network, embedded in layers of sand, while the second tunnel is a deep bored tunnel of London Underground, with
a cast iron lining and embedded in the London clay.

1. Introduction

Underground trains create vibrations which are transmitted through the soil and interact with the
foundations of adjacent buildings, resulting in disturbance from vibrations (1–80Hz) and re-radiated noise
(1–200Hz).

Numerical models with varying degrees of sophistication are under development to predict vibrations from
trains running in tunnels. This work has benefited to a large extent from recently developed models for
vibrations due to trains running at grade on discretely supported and continuous tracks.

Dynamic axle loads are mainly caused by wheel and rail roughness, impact excitation due to discontinuities
of the wheels and the rails and parametric excitation due to the periodic support of the rails on sleepers. State-
of-the-art modelling of vibrations due to trains in tunnels assumes that the tunnel invert and the surrounding
soil are relatively stiff with respect to the track, resulting in a two-step approach where the dynamic axle forces
on the rails are derived from an uncoupled track model and subsequently applied on a track–tunnel–soil
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model to compute the radiation of waves from the tunnel into the soil. The objective of the present paper is to
focus on the second problem.

Two-dimensional (plane strain) finite element (FE) models have been used to solve the dynamic
(track–)tunnel–soil interaction model, where the infinite extension of the soil domain is represented by local
absorbing boundary conditions [1–3]. Alternatively, two-dimensional coupled finite element–boundary
element (FE–BE) formulations have been used [4,5], where the discretization effort is limited to the
finite element mesh of the tunnel and the boundary element (BE) mesh, which can be restricted to the inter-
face between the tunnel and the soil if the Green’s functions of a layered half-space are used as an alternative
to the full space solutions. However, two-dimensional models necessitate important simplifications to translate
the three-dimensional (moving) load into an equivalent line load and underestimate radiation damping into
the soil.

Three-dimensional FE models with local absorbing boundary conditions become prohibitively large for
applications in the wide frequency range under consideration, as they require an extended finite element mesh
together with a small element size. BE formulations partially solve this problem as they reduce the
discretization effort. Stamos and Beskos [6,7] have used a three-dimensional BE formulation for the seismic
analysis of large underground structures embedded in a homogeneous half-space. For applications to railway-
induced vibrations in tunnels, however, involving the analysis at higher frequencies, three-dimensional
coupled FE–BE formulations would also become very expensive from the computational point of view due to
the large dimension of the fully populated BE matrices resulting from the coupling of all degrees of freedom
on the interface between the tunnel and the soil. This has been the main motivation for many researchers to
exploit the longitudinal invariance or periodicity of the track–tunnel–soil system for trains running in tunnels
or the track–soil system for trains running at grade.

Forrest [8], Hussein and Hunt [9,10] and Hussein [11] have developed a semi-analytical insertion loss model,
that accounts for the essential three-dimensional dynamic interaction between the track, the tunnel and the
soil, as well as for wave propagation in the soil. The tunnel is modelled as a thin cylindrical shell surrounded
by a homogeneous elastic medium. The model allows for the analysis of deep-bored tunnels embedded in a
homogeneous soil. The equilibrium equations are formulated in the wavenumber–frequency domain,
exploiting the invariance of the geometry along the longitudinal axis of the tunnel; models of this type are
therefore referred to as two-and-a-half dimensional (2.5D), although it must be understood that they capture
the three-dimensional behaviour of the invariant tunnel–track–soil system. Hussein [11] has also studied the
vibration isolation efficiency of a floating slab in the tunnel, accounting for three different arrangements of the
slab bearings.

For trains running at the surface, Sheng et al. [12,13], Madshus and Kaynia [14] and Lombaert et al. [15–17]
have developed 2.5D models in the wavenumber–frequency domain that account for the invariance of the
track in the longitudinal direction. These models are used to compute train-induced vibrations due to moving
axle loads; the model of Lombaert et al. also accounts for the interaction between the train and the track.

In the context of the seismic analysis of sheet pile walls of infinite length, considerable progress has been
made regarding the solution of dynamic soil–structure interaction problems defined on periodic domains,
using coupled periodic FE–BE formulations [18–20]. Within the frame of the EC-Growth project CONVURT
[21], this methodology has been used to develop a modular numerical model to predict vibrations from
excitation due to metro trains in tunnels for both newly built and existing situations [22]. It is assumed that the
computation of the dynamic axle loads on the rail can be decoupled from the solution of the dynamic
track–tunnel–soil interaction problem. The present paper concentrates on the three-dimensional dynamic
track–tunnel–soil interaction problem that is solved with a subdomain formulation, using a finite element
formulation for the tunnel and a boundary element method for the soil. The periodicity of the tunnel and the
soil is exploited using the Floquet transform, limiting the discretization to a single bounded reference cell of
the tunnel. It has been demonstrated that the proposed approach can reuse the existing three-dimensional BE
technology for layered media as the periodic Green’s kernels have the same singularities as the three-
dimensional Green’s kernels [20]. This is a major advantage compared to the so-called 2.5D approaches,
where a translation invariant model is assumed and for which the analysis of all singularities has to be
repeated after the Fourier transform along the tunnel axis, except for surface tracks where the singular
stress kernel vanishes [23].
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The model will be validated by means of in situ experiments that have been performed at a site in the Cité
Universitaire on the line Réseau Express Régional (RER B) of Régie Autonome des Transports Parisiens
(RATP) in Paris [24–27] and a site in Regent’s Park on the Bakerloo line of London Underground [28,29]. The
tunnel in Paris is a shallow cut-and-cover masonry tunnel with two tracks, embedded in layers of sand, gravel
and marl, while the tunnel in London is a deep cut-and-cover tunnel with a cast iron lining and a single track,
embedded in a homogeneous layer of London clay.

After a brief review of the governing system of equations, details on the geometry and construction of both
tunnels are presented in the present paper (the reader is referred to other papers [18,20,22] for a complete
account of the formulation and solution of periodic dynamic soil–structure interaction problems). The
response of both tunnels (and the surrounding soil) due to a harmonic load on the tunnel invert is considered,
allowing to draw conclusions on the dynamic behaviour of both tunnel–soil systems. It is also demonstrated
how the vibration isolation efficiency of a floating slab track can efficiently be computed using a
Craig–Bampton substructuring technique [30]. Validation of the numerical model using the experimental
results will be considered in a sequel publication.

The response for a harmonic load at different positions along the longitudinal axis in the reference cell (or
the transfer functions) is needed to compute the response due to moving loads. This methodology has been
outlined in general terms by Clouteau et al. [31], and has been applied to compute the response of both
invariant [17] and periodic [32] surface tracks. The application of this methodology to the response of periodic
tunnel–soil systems due to moving loads will also be discussed in a future publication.

2. Dynamic tunnel–soil interaction model

2.1. Problem outline

The analysis of the three-dimensional dynamic soil–tunnel interaction problem is restricted to straight
tunnels that are periodic with a period L in the longitudinal direction ey along the tunnel axis and embedded in
a horizontally layered soil medium. The resulting problem is periodic and can be restricted to periodic fields of
the second kind defined on a reference cell ~O (Fig. 1) by application of Floquet’s theorem. The boundary q ~O of
this domain is decomposed into the free surface ~Gs and the boundaries S0 and SL on which periodic
conditions are imposed. The generic cell ~O is decomposed into two subdomains: the soil ~Os and the tunnel ~Ot.
The interface between these subdomains is denoted by ~Sts. The boundary ~Gss is the free surface of the soil,
while a surface force ~ft is applied on ~Gts (Fig. 1).

The position vector x of any point in the problem domain O is decomposed as x ¼ ~xþ nLey, where ~x is the

position vector in the reference cell ~O and n is the cell number. The Floquet transformation ~f ð ~x;kÞ of a non-
periodic function f ðxÞ ¼ f ð ~xþ nLeyÞ defined on a three-dimensional domain O, that is periodic in the direction

ey with period L, transforms the distance nL between the nth cell and the reference cell ~O to the wavenumber
Fig. 1. Problem outline and notations.
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k and is defined as [20]

~f ð ~x;kÞ ¼
Xþ1

n¼�1

f ð ~xþ nLeyÞ expðþinLkÞ. (1)

The complex-valued function ~f ð ~x;kÞ is a periodic function of k with a period 2p=L (or a periodic function of
the first kind with respect to k), as the following periodicity condition holds:

~f ~x;kþ
2p
L

� �
¼ ~f ð ~x; kÞ. (2)

This complex function ~f ð ~x; kÞ is also periodic of the second kind with a period L in the direction ey, since the
following condition holds for all ~x:

~f ð ~xþ Ley;kÞ ¼ expð�ikLÞ ~f ð ~x; kÞ. (3)

The function f ð ~xþ nLeyÞ can be reconstructed for any x ¼ ~xþ nLey using the inverse Floquet transform:

f ð ~xþ nLeyÞ ¼
L

2p

Z þp=L

�p=L

~f ð ~x; kÞ expð�inLkÞdk. (4)

2.2. Navier equations

Using the Floquet transformation, all displacement and traction fields uðx;oÞ and tðx;oÞ defined on the
periodic domain O are transformed to the fields ~uð ~x;k;oÞ and ~tð ~x; k;oÞ defined on the generic cell ~O.
Subscripts s and t will be used in the following to denote displacements, tractions and other field variables
related to the soil and tunnel subdomain, respectively.

The Navier equations in the soil domain ~Os and the boundary conditions on ~Gss are written as follows for
every frequency o 2 R and wavenumber k 2� � p=L;þp=L½:

div ~rsð~usÞ ¼ �rso2 ~us in ~Os, (5)

~tsð~usÞ ¼ 0 on ~Gss, (6)

~usð ~xÞ ¼ expð�ikLÞ~usð ~x� LeyÞ on SL, (7)

where Eq. (5) expresses the conservation of momentum (with rs the density of the soil material) of the soil in
the reference cell, Eq. (6) represents zero stresses on the part ~Gss of the free surface and Eq. (7) imposes the
periodicity condition of the second kind on the soil displacement vector ~usð ~xÞ. This displacement field should
also satisfy Sommerfeld’s radiation conditions.

The following Navier equations and boundary conditions hold in the tunnel domain ~Ot with boundary ~Gts:

div ~rtð~utÞ ¼ �rto2 ~ut in ~Ot, (8)

~ttð~utÞ ¼ ~ft on ~Gts, (9)

~utð ~xÞ ¼ expð�ikLÞ~utð ~x� LeyÞ on SL, (10)

where rt is the density of the tunnel material and ~ft is the force per unit area applied on the boundary ~Gts.
Similar remarks can be made as for the Navier equations and boundary equations for the soil subdomain.

Continuity of displacements and equilibrium of stresses must hold on the tunnel–soil interface ~Sts:

~ut ¼ ~us on ~Sts, (11)

~ttð~utÞ þ ~tsð~usÞ ¼ 0 on ~Sts. (12)
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2.3. Weak variational formulation

The Navier equations (9) on ~Ot and the boundary equations on the boundary ~Gts are multiplied with the
complex conjugate ~vtð ~x;kÞ of any virtual field ~vtð ~x;kÞ and integrated over the problem domain ~Ot and the
boundary ~Gts. Integration by parts on the volume integral containing the divergence of the stress tensor allows
to derive the following weak variational form for the tunnel [18,20,22]:Z

~Ot

~eð~vtÞ : ~rð~utÞdV � o2

Z
~Ot

rt ~vt . ~ut dV ¼

Z
q ~Ot

~vt . ~ttð~utÞdS þ

Z
~Gts

~vt . ~ft dS, (13)

where ~eð~vtÞ : ~rð~utÞ denotes the double contraction of the complex conjugate of the virtual strain tensor ~eð~vtÞ

and the stress tensor ~rð~utÞ, which is equivalent to the trace of the tensor product ~eð~vtÞ
T
~rð~utÞ. In Eq. (13), the

boundary q ~Ot consists of the tunnel–soil interface ~Sts and the two boundaries S0 and SL at the two edges
~y ¼ �L=2 of the generic cell. As the actual and the virtual displacement fields are periodic of the second kind,
the contribution of the integral on the sum of the boundaries S0 and SL vanishes [18]. Accounting for the
stress equilibrium (12) along the tunnel–soil interface ~Sts, the weak variational equation becomesZ

~Ot

~eð~vtÞ : ~rð~utÞdV � o2

Z
~Ot

rt ~vt . ~ut dV þ

Z
~Sts

~vt . ~tsð~uscð~utÞÞdS ¼

Z
~Gts

~vt . ~ft dS, (14)

where ~uscð~utÞ denotes the wave field that is scattered by the tunnel into the soil and that obeys the displacement
continuity relation (11) on the tunnel–soil interface ~Sts.

2.4. Coupled periodic FE– BE formulation

As the tunnel is bounded, the displacement field ~utð ~x; k;oÞ can be decomposed as the following linear
combination of functions ~wmð ~x;kÞ that are periodic of the second kind:

~utð ~x;k;oÞ ¼
XM
m¼1

~wmð ~x; kÞamðk;oÞ ¼ ~Wtat, (15)

where the modal coordinates amðk;oÞ are collected in a vector at. The kinematic basis for the tunnel is
determined such that the modes ~wmð ~x;kÞ are periodic of the second kind:

~wmð ~xþ Ley;kÞ ¼ expð�ikLÞ ~wmð ~x;kÞ; 8 ~x 2 ~Otj ~x � ey ¼ �
L

2
. (16)

The modes ~wmð ~x;kÞ are constructed as

~wmð ~x;kÞ ¼ expð�ikey � ~xÞ ~w
0

mð ~xÞ, (17)

where the vectors ~w
0

mð ~xÞ represent the eigenmodes of the reference cell, which are enforced to be periodic of the
first kind (for k ¼ 0):

~w
0

mð ~xþ LeyÞ ¼
~w
0

mð ~xÞ; 8 ~x 2
~Otj ~x � ey ¼ �

L

2
. (18)

The number M of modes ~wmð ~x;kÞ in the expansion (15) of the tunnel displacement vector must be sufficiently
high so as to incorporate the contribution of the relevant lowest modes of the tunnel, which depends on the
frequency content and spatial distribution of the loading on the tunnel invert. This study is the subject of a
convergence analysis.

The soil displacements ~usð ~x;k;oÞ can be written as the superposition of waves that are radiated by the
tunnel into the soil:

~usð ~x;k;oÞ ¼ ~uscð~utÞð ~x; k;oÞ ¼
XM
m¼1

~uscð
~wmÞð ~x;k;oÞamðk;oÞ. (19)

The numerical solution of the dynamic tunnel–soil interaction problem is obtained using the classical domain
decomposition approach based on the finite element method for the structure and the BE method for the soil.
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The displacements in the structure ~utð ~x;k;oÞ are interpolated as

~ut ’ Nt ~ut ¼ Nt
~Wtat, (20)

where Nt is a matrix of global finite element shape functions (of dimension 3�N in a three-dimensional
continuum formulation with N degrees of freedom) and ~ut is the N-dimensional vector with nodal degrees
of freedom. Global shape functions are preferred to local element-based shape functions so as to obtain
a concise mathematical derivation. In practice, however, global finite element matrices are obtained
by the assembly of element matrices, based on locally defined shape functions. Employing the same
interpolation for the virtual displacements ~vtð ~x;k;oÞ, the following system of equations is finally
obtained:

½KtðkÞ � o2MtðkÞ þ Ksðk;oÞ�aðk;oÞ ¼ Ftðk;oÞ, (21)

where KtðkÞ is the projection of the stiffness matrix KFE
t of the tunnel reference cell on the tunnel modes (which

are periodic of the second kind):

KtðkÞ ¼ ~W
T

t K
FE
t
~Wt ¼

~W
T

t

Z
~Ot

ðLNtÞ
TDðLNtÞdV ~Wt. (22)

In a three-dimensional continuum formulation, L is a 3� 6 matrix with differential operators that relates the
strain vector to the displacement vector, while D is a 6� 6 matrix with constitutive coefficients that relates the
stress vector to the strain vector. The finite element matrix KFE

t of the reference cell is an N-dimensional
matrix, whereas the dimension of the stiffness matrix KtðkÞ is equal to the number of modes M in the
decomposition (15).

The matrix MtðkÞ is the projection of the mass matrix MFE
t of the tunnel reference cell on the tunnel modes:

MtðkÞ ¼ ~W
T

t M
FE
t
~Wt ¼

~W
T

t

Z
~Ot

NT
t r

tNt dV ~Wt. (23)

Ftðk;oÞ is the generalized force vector applied on the tunnel invert:

Ftðk;oÞ ¼ ~W
T

t

Z
~Gts

NT
t
~ft dS (24)

and Ksðk;oÞ is the dynamic stiffness matrix of the soil:

Ksðk;oÞ ¼
Z
~Sts

~W
T

t N
T
t
~tsð~uscðNt

~WtÞÞdS. (25)

The stresses ~tsð~uscðNt
~WtÞÞ on the tunnel–soil interface are calculated with a periodic boundary element

formulation with Green–Floquet functions or periodic Green functions defined on the periodic structure with
period L along the tunnel. The reader is referred to complementary literature for more details on the periodic
boundary element formulation [18–20,22].

2.5. Craig– Bampton substructuring method

In order to analyse the performance of different track structures with respect to vibrations generated
in the free field and in adjacent buildings, it is advantageous to differentiate between the degrees of
freedom of the tunnel invert and the track. The motivation for this approach is to avoid the recom-
putation of the soil impedance, which is only governed by the kinematics of the tunnel invert,
when alternative track configurations are considered in the tunnel. Therefore, the displacement
vector ~utð ~x;k;oÞ of the tunnel is discretized as follows, using a Craig–Bampton substructuring method
[30]:

~ut ¼ ½Ntr
Ntt
�
~utr

~utt

( )
¼ ½Ntr

Ntt
�

~Wtr

~W
s

tr

0 ~Wtt

2
4

3
5 atr

att

( )
, (26)
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where the subscripts tr and tt refer to the track and the tunnel invert, respectively. The modes in Eq. (26) are
periodic of the second kind and are constructed as follows from periodic modes of the first kind:

~Wtr

~W
s

tr

0 ~Wtt

2
4

3
5 ¼ Ktrtr

0

0 Ktttt

" # ~W
0

tr

~W
s0

tr

0 ~W
0

tt

2
4

3
5, (27)

where the diagonal matrices Ktrtr
and Ktttt

are constructed according to Eq. (17). The modes ~W
0

tr
are the

eigenmodes of the track clamped at the tunnel invert. The modes ~W
0

tt
are the modes of the free tunnel without

track. The displacements ~W
s0

tr
are the quasi-static transmission of the tunnel modes into the track, computed as

~W
s0

tr
¼ �ðKFE

trtr
Þ
�1KFE

trtt

~W
0

tt
, (28)

where KFE
trtr

and KFE
trtt

are block submatrices of the finite element stiffness matrix KFE of the reference cell of the
tunnel. The Craig–Bampton decomposition is frequently used for the seismic analysis of structures on flexible
foundations [33]. It is equivalent to a classical modal decomposition (based on the modes of the complete
track–tunnel structure) if all modes are included in both formulations. If a reduced modal basis is used, a
convergence analysis is needed to determine the number of tunnel and track modes that need to be included in
the Craig–Bampton decomposition (26), analogously to a convergence analysis for classical modal analysis.

Introducing the decomposition (26) in Eq. (14) results in

~Wtr

~W
s

tr

0 ~Wtt

2
4

3
5
T

KFE
trtr

KFE
trtt

KFE
tttr

KFE
tttt

2
4

3
5� o2

MFE
trtr

MFE
trtt

MFE
tttr

MFE
tttt

2
4

3
5

0
@

1
A ~Wtr

~W
s

tr

0 ~Wtt

2
4

3
5

8><
>:
þ

0 0

0 Ks

2
64

3
75
9>=
>;

atr

att

( )
¼

Ftr

0

( )
. ð29Þ

Ksðk;oÞ is the dynamic stiffness matrix of the soil:

Ksðk;oÞ ¼
Z
~Sts

~W
T

tt
NT

tt
~tsð~uscðNtt

~Wtt
ÞÞdS. (30)

Ftr
ðk;oÞ is the generalized force vector applied on the track:

Ftr
ðk;oÞ ¼ ~W

T

tr

Z
~Gts

NT
tr

~ftr
dS. (31)

The soil impedance in Eq. (30) only depends on the tunnel modes and does not change when a calculation
needs to be made for an alternative track structure in the tunnel, which contributes to the versatility of the
proposed approach.
2.6. Wave propagation in the soil

When the displacements ~utð ~x;k;oÞ and the stresses ~ttð ~x; k;oÞ on the tunnel–soil interface are known, the
incident wave field ~uincð~n; k;oÞ is obtained by application of the dynamic representation theorem in the
unbounded soil domain corresponding to the reference cell:

~uinc
i ð

~n;k;oÞ ¼
Z
~Sts

~uGF
ij ð

~n; ~x;k;oÞ~ttjð ~x;k;oÞ � ~t
GF
ij ð

~n; ~x; k;oÞ ~utjð ~x; k;oÞdS (32)

with ~uGF
ij ð

~n; ~x;k;oÞ and ~t GF
ij ð

~n; ~x; k;oÞ the Green–Floquet or periodic Green tensors [18,20]. The incident wave
field in the soil is obtained by evaluating the inverse Floquet transform (4).
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3. Numerical results for the Bakerloo line tunnel in London

3.1. Site characteristics

The tunnel on the Bakerloo line of London Underground in Regent’s Park is a deep bored tunnel with a cast
iron lining and a single track, embedded in London clay at a depth of about 28m. The tunnel has an internal
radius of 1.83m and a wall thickness of 0.022m. There are six longitudinal stiffeners and one circumferential
stiffener at an interval of 0.508m, resulting in a periodic structure (Fig. 2). The track is a non-ballasted
concrete slab track with Bull head rail supported on hard Jarrah wooden sleepers via cast iron chairs. The
sleeper distance is 0.9m. Both ends of a sleeper are concreted into the invert and the space between the sleepers
is filled with shingle. Resilience is mainly provided by the timber sleepers, as the rails are not supported by
rail pads.

Geological maps show that the thickness of the London clay layer at the site is 40m. GeoDelft has
performed cone penetration tests (CPT) upto a depth of 21m [34]. A shallow top layer with a thickness of
4–6m has inclusions of sand and gravel and varying cone resistance. Bender element tests on undisturbed
samples at several confining pressures result in an average shear wave velocity of 124m/s and a longitudinal
wave velocity of 1604m/s [34]. A material damping ratio of 0.042 in the top layer and 0.039 in the second layer
has been determined with free torsion pendulum tests [34]. A seismic cone penetration test (SCPT) upto a
depth of 21m confirmed the presence of a shallow stiff layer with a thickness of 4–6m and a shear wave
velocity Cs ¼ 325m/s on top of a homogeneous half-space with Cs ¼ 220m/s [34]. Spectral analysis of surface
wave (SASW) tests confirmed the latter and revealed the presence of a homogeneous clay layer with a shear
wave velocity between 200 and 260m/s [35].

In the numerical calculations, the tunnel is assumed to be embedded in a layered soil consisting of a single
shallow layer with a thickness of 5m on top of a homogeneous half-space consisting of clay. The top layer has
rp 1.88m

ri 1.829m

re 1.953 m

ts 0.022m

hb 0.102m

Fig. 2. Cross-section of the metro tunnel on the Bakerloo line at Regent’s Park.
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a shear wave velocity Cs ¼ 275m/s, a longitudinal wave velocity Cp ¼ 1964m/s, a density rs ¼ 1980 kg/m3

and a material damping ratio bs
¼ 0:042. The underlying half-space has a shear wave velocity Cs ¼ 220m/s, a

longitudinal wave velocity Cp ¼ 1571m/s, a density rs ¼ 1980 kg/m3 and a material damping ratio bs
¼ 0:039.
3.2. Kinematics of the tunnel

The tunnel in London is periodic, as its lining is made of cast iron segments with circumferential stiffeners.
The length L of the cell is equal to the segment length of 0.508m. The sleeper distance is equal to 0.9m and
introduces a second periodicity, which is not accounted for as the track is not included in the model.

A FE model of the reference cell is made using the structural dynamics toolbox (Sdt) in Matlab. The
exterior shell is modelled with four-node quadrilateral shell elements based on a Q4WT formulation for the
membrane behaviour and the MITC4 formulation to represent the plate bending behaviour. In the latter, a
mixed interpolation of the transverse displacement, section rotations and transverse shear strains is used to
avoid shear locking when applied to thin shells [36]. The longitudinal and circumferential stiffeners are
modelled with standard two-node Euler–Bernoulli beam elements, that are rigidly connected to the exterior
shell using stiff eccentric connections. Eight-node brick elements are used to model the concrete on the tunnel
invert.

The kinematic basis for the tunnel consists of the modes ~wmð ~x;kÞ that are derived from the eigenmodes
w0

mð ~xÞ of the tunnel cell with free boundary conditions on ~Sts and periodicity conditions at both ends S0 and
SL. Due to these constraints and the symmetry of the cell, displacements in the y-direction are decoupled from
displacements in the x- and z-direction and only four rigid body modes are found. Fig. 3 shows the first two in-
plane and the first out-of-plane flexible modes w0

mð ~xÞ of the reference cell.
(a) (b)

(c)

Fig. 3. The first (a,b) in-plane and (c) out-of-plane modes of the reference cell of the Bakerloo line tunnel. (a) Mode 5 at 20.94Hz,

(b) mode 6 at 24.32Hz and (c) mode 11 at 153.53Hz.
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Fig. 4. Modulus of the element Ztð6; 6Þ of the tunnel impedance matrix of the Bakerloo line tunnel (a) as a function of o and p and (b) as a

function of o for constant p ¼ 0 s/m (solid line), p ¼ 0:3� 10�3 s/m (dashed line) and p ¼ 0:6� 10�3 s/m (dotted line). Both figures are on

a logarithmic scale.
In the following, the response of the tunnel–soil system due to an eccentric harmonic vertical load on the
tunnel invert is computed in the frequency range upto 80Hz. Convergence analysis has shown that minimum
20 tunnel modes of the reference cell need to be included in the analysis.

3.3. Impedance of the tunnel

Fig. 4a shows the modulus of the sixth diagonal element Ztð6; 6Þ of the tunnel impedance matrix Ztðk;oÞ ¼
KtðkÞ � o2MtðkÞ as a function of the frequency o and the slowness p ¼ k=o, which is defined as the ratio of
the wavenumber k to the circular frequency o. The element Ztð6; 6Þ corresponds to the sixth mode of the
reference cell (Fig. 3b) involving in-plane deformation of the reference cell, equivalent to a mode of azimuthal
order m ¼ 2 in an isotropic shell (i.e. with 2 wavelengths along the circumferential direction). Fig. 4a clearly
illustrates that the sixth eigenfrequency of the tunnel reference cell corresponds to the cut-on frequency of a
dispersive mode that propagates in the longitudinal direction of the tunnel. Fig. 4b shows the variation of the
element Ztð6; 6Þ of the tunnel impedance matrix with the frequency o for a zero value of the slowness
p ¼ 0 s/m, corresponding to the two-dimensional plane strain case. At o ¼ 0 rad/s, the tunnel impedance is
equal to the square of the sixth eigenfrequency of the reference cell. Due to the inertial term, it decreases with
the square of the frequency o and becomes zero at the sixth resonance frequency of the reference cell, which
corresponds to the cut-on frequency of a dispersive mode for which the phase velocity is infinite at zero
slowness or wavenumber in the undamped case. For non-zero values of p, the tunnel impedance increases with
the square of the slowness p. Fig. 4b also shows the variation of the element Ztð6; 6Þ of the tunnel impedance
matrix with the frequency o for two non-zero values of the slowness p ¼ 0:3� 10�3 and 0:6� 10�3 s/m.

The response of the tunnel is determined by the contribution of different tunnel modes. Fig. 5 shows, on a
logarithmic scale, the modulus of the vertical displacement of the tunnel invert under the load as a function of
the circular frequency o and the slowness p for the free tunnel that is not supported by the soil. In all, 20
modes of the reference cell are included in the analysis. The response is governed by dispersive tunnel modes,
that start at the eigenfrequencies of the tunnel reference cell; the contribution of the modes 5 till 8 with a cut-
on frequency at 20.94, 24.32, 62.74 and 68.04Hz can clearly be observed.

3.4. Impedance of the soil

Fig. 6 shows the real and imaginary parts of the element Ksð6; 6Þ of the impedance matrix Ksðk;oÞ of the
soil, corresponding to the sixth mode of the Bakerloo line tunnel, as a function of the frequency o and the
slowness p. Note that the range of the slowness p extends to larger values than was the case in Fig. 4a. The real
10
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Fig. 5. Modulus of the vertical displacement (dB ref. 10�6 m) of the invert of the Bakerloo line tunnel as a function of o and p, accounting
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Fig. 6. (a) Real and (b) imaginary parts of the element Ksð6; 6Þ of the soil impedance matrix of the Bakerloo line tunnel as a function of o
and p.
part increases for increasing values of p. Due to the sign convention used in the kernels of the Fourier and
Floquet transformations, the imaginary part is negative. High (negative) values of the imaginary part reflect
dissipation of energy due to radiation damping in the soil. The low imaginary part of the soil impedance for
high values of the slowness p (or decreasing phase velocity along the longitudinal tunnel axis) reflects the
absence of radiation damping in the soil.

Boström and Burden [37] have demonstrated that the response of an infinite elastic medium with a
cylindrical cavity is governed by dispersive surface waves modes, corresponding to integer values of the
azimuthal wavenumber m; these modes are confined to the vicinity of the cavity and have a cut-on frequency
depending on the azimuthal wavenumber m, the characteristics of the soil domain and the radius of the tunnel.
They propagate with a phase velocity that varies between the shear wave velocity (at the cut-on frequency) and
the Rayleigh wave velocity (at limiting high frequency). As the Bakerloo line tunnel is embedded in a deep
homogeneous layer of clay, the behaviour of an element of the soil impedance matrix is very similar to the
response of a cylindrical cavity in an elastic medium, when a particular mode of this cavity is considered.
The difference, however, is that the kinematics along the tunnel–soil interface are governed by the modes of
the (orthotropic) reference cell of the tunnel that do not perfectly match the azimuthal modes of a cylindrical
cavity or an isotropic shell. Based on the analytical solution of Boström and Burden, the cut-on frequency of
11



the mode corresponding to the azimuthal mode number m ¼ 2 of a cylindrical cavity with a radius of 1.953m,
embedded in a homogeneous and undamped medium with the characteristics of the London clay, is equal to
65Hz.

3.5. Response due to harmonic loading

The response of the Bakerloo line tunnel is considered for a harmonic loading on the tunnel invert in the
frequency range between 1 and 80Hz.

Fig. 7a shows the modulus of the vertical displacement of the tunnel invert as a function of the circular
frequency o and the slowness p for the case of a free tunnel that is not supported by the soil. These results
correspond to those presented in Fig. 5, but now a wider range of the slowness p is considered to enable the
comparison with results that follow in this subsection. The response is governed by the dispersive character of
the tunnel modes at low values of the slowness, as explained before.

Fig. 7b considers the response of the layered soil medium with a cylindrical cavity, only accounting for the
impedance of the soil and neglecting the dynamic impedance of the tunnel. The kinematics of the free surface
along the cavity (i.e. the interface between the soil and the tunnel in the dynamic soil-tunnel interaction
problem) is described by 20 modes of the tunnel’s reference cell. The response is dominated by dispersive
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Fig. 7. Modulus of the vertical displacement (dB ref. 10�6 m) of the invert of the Bakerloo line tunnel as a function of o and p, accounting

for 20 tunnel modes. Results are shown for the case of (a) the free tunnel, (b) the layered soil with a cylindrical cavity, and (c) the coupled

soil–tunnel problem.
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Fig. 8. Modulus of the vertical displacement (dB ref. 10�6 m) of the invert of the Bakerloo line tunnel as a function of p at (a) 21Hz, (b)

41Hz, (c) 61Hz, and (d) 81Hz, accounting for 20 tunnel modes. Results are shown for the case of the free tunnel (dashed line), the layered

soil with a cylindrical cavity (dash–dotted line), and the coupled soil–tunnel problem (solid line).
modes that propagate with a phase velocity that varies between the shear wave velocity Cs ¼ 220m/s of the
soil around the tunnel (at the cut-on frequency of each mode) and the Rayleigh wave velocity Cr ¼ 209:75m/s
at limiting high frequency. The corresponding values of the slowness vary between 1=Cs ¼ 4:545� 10�3 s/m
and 1=Cr ¼ 4:768� 10�3 s/m.

Fig. 7c finally shows the response of the coupled soil–tunnel system in the frequency-slowness domain.
Furthermore, Fig. 8 shows sections of the vertical response of the tunnel invert as a function of the slowness p

for four values of the frequency (21, 41, 61 and 81Hz). Results are shown for the three cases considered earlier:
the free tunnel (Fig. 7a), the soil medium with a cylindrical cavity (Fig. 7b) and the coupled soil–tunnel system
(Fig. 7c). Fig. 8b, for example, clearly illustrates that the response of the free tunnel at 41Hz is dominated by
two dispersive bending modes of the tunnel, while the response of the soil medium with a cylindrical cavity is
maximum for values of the slowness between the reciprocals of the shear wave velocity and Rayleigh wave
velocity of the soil around the tunnel. For low values of the slowness, the dynamic stiffness of the soil is larger
than the dynamic stiffness of the tunnel, and the peaks in the response of the free tunnel are no longer
apparent in the response of the coupled tunnel–soil system. At high values of the slowness, the dynamic
stiffness of the tunnel is very high compared to the soil’s stiffness, and the response of the coupled soil–tunnel
system converges to the response of the free tunnel, while the effect of dispersive modes along the tunnel–soil
interface is no longer observable.

The response in the spatial domain is obtained after evaluation of the inverse Floquet transformation.
Figs. 9 and 10 show the response of the Bakerloo line tunnel for a harmonic excitation on the tunnel invert
at 10 and 40Hz, respectively. The tunnel’s cross section is relatively stiff but the tunnel diameter is
small, contributing to the flexibility of the tunnel in the longitudinal direction. As the Bakerloo line tunnel
is embedded at a depth of 28m in a homogeneous layer of London clay, the response is not affected
by resonance in the soil. The wave pattern is similar to that caused by a point load in the soil. The propagation
of waves into the soil is spherical but not symmetric, due to the eccentricity of the load on the tunnel invert
with respect to the centre of the tunnel.
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Fig. 9. Displacements of the Bakerloo line tunnel and the soil due to a harmonic excitation on the tunnel invert at 10Hz for (a) t ¼ 0 and

(b) t ¼ 2T=8.

Fig. 10. Displacements of the Bakerloo line tunnel and the soil due to a harmonic excitation on the tunnel invert at 40Hz for (a) t ¼ 0 and

(b) t ¼ 2T=8.
3.6. Floating slab track

Next, the vibration isolation efficiency of a floating slab track with a resonance frequency of 11.68Hz
installed in the Bakerloo line tunnel is considered, using the Craig–Bampton substructuring technique. This
example should be regarded as illustrative rather than practical, as the small diameter of the tunnel does not
allow to install a floating slab track.

Figs. 11 and 12 show the displacements of the tunnel and the soil for a harmonic excitation at 10 and 40Hz
after installation of a floating slab in the tunnel. It should be noted that the grey scales are different from that
in Figs. 9 and 10, as the displacements are generally lower. The floating slab track distributes vibrations along
the tunnel that are radiated into the soil in directions parallel to the tunnel. Fig. 13 compares the displacements
at the tunnel apex and in the free field above the tunnel for the cases without and with floating slab track; the
isolation effect above 20Hz can clearly be observed.

4. Numerical results for the RER B tunnel in Paris

4.1. Site characteristics

The metro tunnel on the line RER B of RATP at Cité Universitaire in Paris is a masonry cut-and-cover
tunnel with two tracks at a shallow depth of about 9.3m below the surface and a width of 11.9m (Fig. 14). The
14



Fig. 12. Displacements of the Bakerloo line tunnel with floating slab track and the soil due to a harmonic excitation on the tunnel invert at

40Hz for (a) t ¼ 0 and (b) t ¼ 2T=8.
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Fig. 13. Displacements (a) at the tunnel apex and (b) at the free field above the tunnel for the Bakerloo line tunnel without (solid line) and

with (dashed line) floating slab track.

Fig. 11. Displacements of the Bakerloo line tunnel with floating slab track and the soil due to a harmonic excitation on the tunnel invert at

10Hz for (a) t ¼ 0 and (b) t ¼ 2T=8.
slab thickness is 0.6m at the top and 0.4m at the bottom, while the wall thickness is 1.5m. The masonry is
assumed to have a Young’s modulus Et ¼ 14; 000MPa, a Poisson’s ratio nt ¼ 0:15, a density rt ¼ 2400 kg/m3

and a hysteresis material damping ratio bt
¼ 0:02. The track is a classical ballasted track with UIC 60 rails

supported every 0.60m by grooved rubber pads on monobloc concrete sleepers.
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Fig. 14. Cross-section of the metro tunnel on the line RER B of RATP at Cité Universitaire.
The tunnel is embedded in a shallow layer of fill material (thickness d ¼ 1:6m), a layer of Beauchamp sand
(d ¼ 3:2m) and a stiffer layer with marl and gravel (d ¼ 7:8m) on top of chalk. A SASW test revealed a
shallow layer with d ¼ 1:4m and a shear wave velocity Cs ¼ 115m/s on top of a layer with d ¼ 2:8m and
Cs ¼ 220m/s on a half-space with Cs ¼ 315m/s [38]. A Poisson’s ratio ns ¼ 0:4, a density rs ¼ 1700 kg/m3 and
a material damping ratio bs

¼ 0:05 is assumed in all layers. More recent down-hole measurements have
confirmed the variation of the shear wave velocity with depth [39], and have demonstrated that the
longitudinal wave velocity increases from 700m/s at a depth of 3m to 900m/s at a depth of 10m, resulting in a
value of Poisson’s ratio that decreases from 0.43 to 0.33 (and showing no evidence of the presence of ground
water). A higher average density of 1902 kg/m3 was determined from soil samples, but has not been used in the
calculations.

4.2. Kinematics of the tunnel

The cut-and-cover masonry tunnel is invariant in the y-direction. The periodicity introduced by the discrete
support of the rails is neglected, since the track is not included in the model. The tunnel is invariant in the y-
direction, so that the period L can arbitrarily be chosen as 0.3m; the influence of the assumed period L of the
tunnel is presently investigated by a comparison with the results of a 2.5D calculation based on the semi-
analytical insertion loss model [9–11]. The FE model of the tunnel consists of eight-node isoparametric brick
elements. As no incompatible modes are included in the formulation of these elements, three elements are used
over the height of the walls and ceilings, and two elements for the bottom slab, in order to represent the
bending behaviour. The size of the finite elements is governed by the boundary element mesh along the
tunnel–soil interface, so that minimum eight elements are used per wavelength at a maximum frequency of
80Hz; the shear wave velocity Cs ¼ 220m/s in the soil layer around the apex of the tunnel has been used to
compute this wavelength.

Fig. 15 shows the first two in-plane and the first out-of-plane flexible modes w0
mð ~xÞ of the reference cell. The

response of the tunnel–soil system due to a harmonic load on the tunnel invert (in the centre of the left track in
Fig. 14) will be computed in the frequency range upto 80Hz. Convergence analysis has shown that 30 tunnel
modes need to be included in the analysis [22].

4.3. Impedance of the tunnel

Fig. 16a shows the modulus of the sixth diagonal element Ztð6; 6Þ of the tunnel impedance matrix Ztðk;oÞ ¼
KtðkÞ � o2MtðkÞ as a function of the frequency and the slowness p. The element Ztð6; 6Þ corresponds to the
16
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Fig. 15. The first (a,b) in-plane and (c) out-of-plane modes of the reference cell of the RER B tunnel. (a) Mode 5 at 9.90Hz, (b) mode 6 at

13.96Hz and (c) mode 9 at 41.95Hz.
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Fig. 16. Modulus of the element Ztð6; 6Þ of the tunnel impedance matrix of the RER B tunnel (a) as a function of o and p and (b) as a

function of o for p ¼ 0 s/m (solid line), p ¼ 0:4� 10�3 s/m (dashed line) and p ¼ 0:7� 10�3 s/m (dotted line). Both figures are on a

logarithmic scale.
sixth mode of the reference cell (Fig. 15b) involving in-plane bending of the slab of the tunnel. Fig. 16a clearly
illustrates that the sixth eigenfrequency of the tunnel reference cell corresponds to the cut-on frequency of a
dispersive mode that propagates in the longitudinal direction of the tunnel. The phase velocity is infinite at the
cut-on frequency and tends to a constant value of 1=Cs ¼ 0:628� 10�3 s/m for limiting high values of the
frequency, where Cs is the shear wave velocity in the masonry. Fig. 16b shows the variation of the element
Ztð6; 6Þ of the tunnel impedance matrix with the frequency o for three values of the slowness p. Similar figures
can be made for other modes of the tunnel’s reference cell, but are not shown here.

Fig. 17 shows, on a logarithmic scale, the modulus of the vertical displacement of the apex of the
tunnel as a function of o and p for the free tunnel that is not supported by the soil, including the
17
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Fig. 17. Modulus of the vertical displacement of the apex of the RER B tunnel as a function of o and p, accounting for 30 tunnel modes.
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Fig. 18. (a) Real and (b) imaginary parts of the element Ksð6; 6Þ of the soil impedance matrix of the RER B tunnel as a function

of o and p.
contribution of 30 modes of the tunnel reference cell. The response is governed by dispersive tunnel modes, of
which the slowness tends to a value 1=Cs ¼ 0:628� 10�3 s/m for the in-plane modes and 1=Cp ¼ 0:403�
10�3 s/m for the out-of-plane modes, with Cs and Cp the shear and longitudinal wave velocities in the
masonry.

4.4. Impedance of the soil

Fig. 18 shows the real and imaginary parts of the element Ksð6; 6Þ of the impedance matrix Ksðk;oÞ
of the soil, corresponding to the sixth mode of the RER B tunnel. The real part increases for increas-
ing values of p. High negative values of the imaginary part reflect dissipation of energy due to radi-
ation damping or wave propagation in the soil, while the low imaginary part for high values of the
slowness p (or low values of the phase velocity along the tunnel axis) represents the absence of this
radiation damping. As the RER B tunnel is shallow and embedded in a layered soil medium, the beha-
viour of the soil impedance as a function of o and p is more complicated than for the Bakerloo
line tunnel, which was a deep tunnel embedded in a homogeneous soil layer. The soil impedance is
now not only affected by the heterogeneous soil around the tunnel, but also by the proximity of the
free surface.
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Fig. 20. Transfer functions at the points ð�2:50;�0:15;�8:25Þ on the tunnel invert (bulleted line), ð0;�0:15;�2:30Þ on the tunnel apex

(dashed line) and ð0; 0; 0Þ on the free surface (solid line).
4.5. Response due to harmonic loading

Fig. 19 shows the transfer functions (vertical displacements) at some points along the free surface in the
cross-section where the load is applied, while Fig. 20 shows the transfer functions at points on the tunnel
invert, the tunnel apex and the free surface. The peak at 14Hz is due to resonance of the soil above the tunnel;
Fig. 20 confirms that the displacements of the tunnel apex and the soil above the tunnel are equal. Fig. 21
shows the displacements of the tunnel and the soil due to a harmonic loading on the tunnel invert at 14Hz.
The soil above the tunnel can be considered as a mass, which is moving in phase with the tunnel, that behaves
as a spring. The peak at 14Hz corresponds to the eigenfrequency of this equivalent single degree of freedom
system (SDOF) system, while damping is due to the radiation of waves away from the tunnel.

Fig. 22 shows similar results at a frequency of 80Hz. On the free surface above the tunnel, higher phase
velocities (about 1920m/s) are observed along the tunnel axis than in the direction perpendicular to the tunnel
(about 650m/s), due to the bending stiffness of the tunnel, resulting in an elliptical wave front. At a frequency
of 80Hz, the displacement of the ground surface and the tunnel apex are almost in phase, as this frequency
19



Fig. 21. Displacements of the RER B tunnel and the soil due to a harmonic excitation on the tunnel invert at 14Hz for (a) t ¼ 0 and (b)

t ¼ 2T=8.

Fig. 22. Displacements of the RER B tunnel and the soil due to a harmonic excitation on the tunnel invert at 80Hz for (a) t ¼ 0 and (b)

t ¼ 2T=8.
almost corresponds to the third vertical mode of the soil above the tunnel, as has been demonstrated by
analysis of the dispersive characteristics of the waves in the soil above the tunnel [40].

5. Conclusion

A periodic coupled finite element–boundary element formulation is used to study the dynamic interaction
between a tunnel and a layered soil due to a harmonic excitation on the tunnel invert. Two cases have been
considered: a deep-bored tunnel on the Bakerloo line of London Underground and a shallow cut-and-cover
masonry tunnel on the RER B line of RATP in Paris.

The Bakerloo line tunnel has a complex structure as the cast iron lining is stiffened with longitudinal and
circumferential beams, resulting in a periodic structure. The periodic finite element formulation offers full
modelling flexibility on a reference cell of the tunnel, which is an important advantage with respect to full
three-dimensional or invariant tunnel models, which can be considered as the two extremes of modelling
complexity. The soil impedance is formulated with a boundary element formulation on the soil–tunnel
interface in the reference cell, allowing to model the soil as a horizontally layered half-space. This is still quite
demanding from the computational point of view, however, depending on the size of the boundary element
mesh and the evaluation of the Green–Floquet functions. As the Bakerloo line tunnel is an embedded tunnel,
the interpretation of the soil’s impedance benefits from the analytical study of the response of a homogeneous
elastic medium with a cylindrical cavity. Analysis in the frequency–slowness domain demonstrates that, for the
case under consideration, the soil dominates the response at low values of the slowness, while the tunnel
dominates the response at high values of the slowness. The resulting response of the coupled soil–tunnel
system is not dominated by dispersive modes in the tunnel and the soil. This affects the results in the
frequency-spatial domain, showing spherical wave patterns in the soil, as would also result from a point load
applied to the soil. These preliminary conclusions depend of course on the relative stiffness of the tunnel and
the soil, as well as other factors such as the amount of material and radiation damping in the soil. The general
20



expectation is that, at low frequencies, the influence of in-plane deformations of the tunnel is low, whereas
more complicated mode shapes are excited at higher frequencies, affecting the wave field radiated into the soil.
However, this could not be clearly observed on the results for the Bakerloo line tunnel.

The case of the RER B tunnel in Paris is more complicated, as a shallow cut-and-cover tunnel with a non-
circular cross-section is embedded in a heterogeneous layered soil. The only simplification here is that the
tunnel is invariant in the longitudinal direction, allowing more freedom in the choice of a (shorter) period
(which has not been studied in this paper and constitutes a subject of further research). It has been
demonstrated that the response of this shallow tunnel is importantly influenced by the proximity of the free
surface, giving rise to resonance phenomena, as well as to elliptical wave fronts radiated from the tunnel that
originate from different phase velocities in the longitudinal and perpendicular direction.

It has also been demonstrated with an example how the Craig–Bampton substructuring technique allows to
efficiently incorporate a track in the tunnel and to analyse the vibration isolation efficiency of a floating slab
track in the tunnel, without the need to recompute the impedance of the soil. This will substantially facilitate
future parametric studies on the efficiency of vibration isolation measures in the tunnel.
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