X. Aubard, Modeling and simulation of damage in elastomer structures at high strains, Comput. Struct, vol.80, pp.2289-2298, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01698052

M. F. Beatty and S. Krishnaswamy, A theory of stresssoftening in incompressible isotropic materials, J. Mech. Phys. Solids, vol.48, pp.1931-1965, 2000.

D. Besdo and J. Ihlemann, The effect of softening phenomena in filled rubber during inhomogeneous loading, Constitutive Models for Rubber II, pp.137-147, 2001.

J. Bikard and T. Desoyer, Finite viscoelasticity, plasticity and damage of a class of filled elastomers: constitutive model, Mech. Res. Comm, vol.28, pp.693-702, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00328573

F. Bueche, Molecular basis for the Mullins effect, J. Appl. Polym. Sci, vol.4, pp.107-114, 1960.

F. Bueche, Mullins effect and rubber-filled interaction, J. Appl. Polym. Sci, vol.5, pp.271-281, 1961.
DOI : 10.5254/1.3539899

. Chagnon, Experimental identification and rheological modeling of the Mullins effect for carbon black-filled rubber, Proc. of the 8 th Seminar on Elastomers, pp.79-82, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01008192

. Chagnon, On the relevance of continuum damage mechanics for the Mullins effect in elastomers, J. Mech. Phys. Solids submitted, 2003.

E. A. De-souza-neto, A phenomenological threedimensional rate-independent continuum damage model for highly filled polymers: formulation and computational aspects, J. Mech. Phys. Solids, vol.42, pp.1533-1550, 1994.

A. Elias-zuniga and M. F. Beatty, A new phenomenological model for stress-softening in elastomers, Z. angew. Math. Phys, vol.53, pp.794-814, 2002.

S. Govindjee and J. C. Simo, A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullins' effect, J. Mech. Phys. Solids, vol.39, pp.87-112, 1991.

S. Govindjee and J. C. Simo, Mullins effect and the strain amplitude dependence of the storage modulus, Int. J. Solids Struct, vol.29, pp.1737-1751, 1992.

M. S. Green and A. V. Tobolsky, A new approach for the theory of relaxing polymeric media, J. Chem. Phys, vol.14, pp.87-112, 1946.

M. E. Gurtin and E. C. Francis, Simple rate-independent model for damage, AIAA J. Spacecraft, vol.18, pp.285-286, 1981.

J. A. Harwood, Stress softening in rubbers-a review, J. of the IRI, vol.1, pp.17-27

G. A. Holzapfel, Aspects of stress softening in filled rubbers incorporating residual strains, Constitutive Models for Rubber, pp.189-193, 1999.

H. E. Huntley, Chemorheological relaxation, residual stress and permanent set arising in radial deformation of an elastomeric hollow sphere, Math. Mech. Solids, vol.1, pp.267-299, 1996.

H. E. Huntley, Stress softening, strain localization and permanent set in the circumferential shear of an incompressible elastomeric cylinder, IMA J. Appl. Math, vol.59, pp.309-338, 1997.

M. A. Johnson and M. F. Beatty, A constitutive equation for the Mullins effect in stress controlled extension experiments, Continuum Mech. Thermodyn, vol.5, pp.301-318, 1993.

M. A. Johnson and M. F. Beatty, The Mullins effect in uniaxial extension and its influence on transverse vibration of rubber string, Continuum Mech. Thermodyn, vol.5, pp.83-115, 1993.

M. A. Johnson and M. F. Beatty, The Mullins effect in equibiaxial extension and its influence on the inflation of a balloon, Int. J. Eng. Sci, vol.33, pp.223-245, 1995.

L. M. Kachanov, Time of rupture process under creep conditions, TVZ Acad. Nauk. SSR Otd Techn. Nauk, vol.8, pp.26-31, 1958.

M. Kaliske and A. Domscheit, Modelling of softening effects in elastomeric material and its application in tire computations, Constitutive Models for Rubber II, pp.303-306, 2001.

M. Kaliske and H. Rothert, Viscoelastic and elastoplastic damage formulations, Constitutive Models for Rubber, pp.159-167, 1999.

L. Laiarinandrasana, Mullins' effect on rubber materials: damage model driving parameters, 2001.

, Constitutive Models for Rubber II, pp.149-158

J. Lemaitre and J. L. Chaboche, Mécanique des matériaux solides, 1985.

G. Marckmann, A theory of network alteration for the Mullins effect, J. Mech. Phys. Solids, vol.50, pp.2011-2028, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01004954

C. Miehe, Discontinuous and continuous damage evolution in Ogden-type large-strain elastic materials, Eur. J. Mech. A/Solids, vol.14, pp.697-720, 1995.

C. Miehe and J. Keck, Superimposed finite elasticviscoelastic-plastoelastic stress response with damage in filled rubbery polymers. experiments, modelling and algorithmic implementation, J. Mech. Phys. Solids, vol.48, pp.323-365, 2000.

A. H. Muhr, Experimental determination of model for liquid silicone rubber: hyperelasticity and Mullin's effect, Constitutive Models for Rubber, pp.181-187, 1999.

L. Mullins, Softening of rubber by deformation, Rubber Chem. Technol, vol.42, pp.339-362, 1969.

L. Mullins and N. R. Tobin, Theoretical model for the elastic behavior of filler-reinforced vulcanized rubbers, Rubber Chem. Technol, vol.30, pp.551-571, 1957.

R. W. Ogden and D. G. Roxburgh, A pseudo-elastic model for the Mullins effect in filled rubber, Proc. R. Soc. Lond. A, vol.455, pp.2861-2877, 1999.

K. R. Rajagopal and A. S. Wineman, A constitutive equation for nonlinear solids which undergo deformation induced by microstructural changes, Int. J. Plast, vol.8, pp.385-395, 1992.
DOI : 10.1016/0749-6419(92)90056-i

J. C. Simo, On a fully three dimensional finite strain viscoelastic damage model: formulation and computational aspects, Comput. Meth. Appl. Mech. Engng, vol.60, pp.153-173, 1987.
DOI : 10.1016/0045-7825(87)90107-1

J. C. Simo and T. J. Hughes, Computational inelasticity, 1998.

O. H. Yeoh, Some forms of the strain energy function for rubber, Rubber Chem. Technol, vol.66, pp.754-771, 1993.