Acetylcholinesterase activity in Clytia hemisphaerica (Cnidaria)
Elsa Denker, Arnaud Chatonnet, Nicolas Rabet

To cite this version:

HAL Id: hal-01004092
https://hal.archives-ouvertes.fr/hal-01004092
Submitted on 31 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Acetylcholinesterase activity in *Clytia hemisphaerica* (Cnidaria)

Elsa Denker\(^a\), Arnaud Chatonnet\(^b\), Nicolas Rabet\(^a,\)*

\(^{a}\) Équipe Evolution et Développement, UMR 7138, Université Pierre et Marie Curie, Paris, France

\(^{b}\) INRA, UMR 866 INRA, Université Montpellier 1 & 2, France

A R T I C L E I N F O

Article history:
Available online 21 March 2008

Keywords:
Cnidarian
Clytia hemisphaerica
Acetylcholine
Acetylcholinesterase
Neuroligin

A B S T R A C T

Cholinesterase activity is known in representatives of all living organisms phyla but the origin of the cholinergic system as known in bilaterian animals is still undeciphered. In particular the implication of cholinesterases in the nervous system of non-bilaterian Metazoa is not well known. We thus chose to investigate this activity in the *Clytia hemisphaerica* (Cnidaria) medusa. *In toto* histochemical staining revealed an acetylcholinesterase activity in the tentacle bulbs but not in the nervous system. Sequences homologous to acetylcholinesterase were searched within *Clytia* ESTs and compared to other sequences found in public databases.

© 2008 Elsevier Ireland Ltd. All rights reserved.

1. **Introduction**

Acetylcholine (ACh) is well known as an important neurotransmitter in the nervous systems of several groups of bilaterians (bilaterally symmetrical organisms, corresponding to all animals except sponges, cnidarians and ctenophores) and is especially studied in insects and in vertebrates [1]. ACh and the cholinergic pathway have also been detected in various life forms, such as bacteria, plants, fungi and various other metazoans [1,2]. These findings suggest that ACh has been used by organisms well before the appearance of the first nervous systems. Moreover, ACh has been detected in several types of non-neuronal cells in mammalian species [4–6] perhaps representing a part of a legacy from an ancestor without a nervous system. More generally, the integration of the cholinergic pathway in the nervous system is a very relevant topic in order to decipher how the nervous system appeared. From this point of view, cnidarians and ctenophores are very important because they are the only non-bilaterian animals with a nervous system. In cnidarians (jellyfishes, corals, anemones, hydras, etc.) acetylcholinesterase activity was only localized in *Hydra* in the cell bodies and neurites of putative ganglion cells, nematocytes and also in epitheliomuscular and digestive cells [7]. Despite the histochemical evidence for this activity in *Hydra* and more generally in cnidarians the implication of ACh as a neurotransmitter remains equivocal [8–10]. We chose to investigate the cholinesterase activity in medusae of *Clytia hemisphaerica* (Cnidaria, Hydrozoa) and to look for potential candidate genes by sequence comparison.

2. **Materials and methods**

For all experiments we used *C. hemisphaerica* medusae cultured in Paris as described in [11], except that artificial seawater was used (36 g/l Reef Crystals\(^b\), Aquarium Systems).

Whole-mount histochemical staining was obtained on medusae and gonozoids, fixed in 4% paraformaldehyde at 24 °C for 30 min. The staining was obtained by the Karnovsky and Roots [12] method, using acetylthiocholine iodide as substrate. Specific inhibition of AChE was obtained with eserine (10\(^{-4}\) M).

Enzyme activity was measured according to the method of Ellman et al. [13] (0.1 M potassium phosphate buffer pH 7.0, 0.5 mM DTNB 1 mM acetylthiocholine) on homogenates of 20 medusae extracted in 10 volumes of
ice cold extraction buffer (50 mM potassium phosphate, pH 7.5) in glass–glass potter. Samples were incubated in dilutions of 1 nM to 1 mM eserine (Sigma). The remaining activity was expressed relative to the initial activity.

The Clytia genes were retrieved by BLAST searches (expect value: 0.0001) with known bilaterian AChE on an unpublished EST collection sequenced by the Genoscope (Evry, France) from a Clytia normalized cDNA.

The Clytia genes were retrieved by BLAST searches (expect value: 0.0001) with known bilaterian AChE on an unpublished EST collection sequenced by the Genoscope (Evry, France) from a Clytia normalized cDNA.

Fig. 1. (A–B) Whole-mount histochemical staining of AChE activity. Asterisk (*) indicates specific staining; TB: tentacle bulb; Ect: bulb ectoderm; End: bulb endoderm; Go: Gonad; Ma: manubrium; Te: tentacle. (A) Whole medusa without eserine; (B) detail of bulb without eserine; (C) whole medusa with eserine; (D) extent of inhibition of acetylthiocholine hydrolysis by increasing concentration of eserine (remaining activity is expressed relative to the initial activity without eserine). (E) Alignment of partial sequences of Clytia genes candidates for cholinesterase activity (Che-Cx1, -2, and -3: Clytia hemisphaerica putative carboxylesterases 1, -2, and -3). Informative positions are indicated. (a) Peripheral anionic site; (b) choline binding site; (c–e) aromatic residues in catalytic gorge; (f) active site serine. Human-AChE: human acetylcholinesterase (AAH94752); Human-BuChe: human butyrylcholinesterase (EAW78592); Chick-AChE: chicken acetylcholinesterase (P36196); Chick-BuChe: chicken butyrylcholinesterase (NP_989997); Lolop-AChE1: opal squid acetylcholinesterase (AAD15886); Brafl-AChE1 and -2: florida lancelet acetylcholinesterase 1 (AAD05173) and -2 (AAD05174); Anoga-AChE1 and -2: Anopheles gambiae mosquito acetylcholinesterase 1 (XP.321792) and -2 (XP.310628); Human-neuro: human neuroligin 1 (NP.055747). Asterisk (*) indicates conserved position. Disulfide bonds are indicated by a line. Numbers in parenthesis indicate the amino acid position starting from the beginning of sequences.
We thank Alexandre Alié for critical reading of the manuscript. This work was supported by grants from the French Ministry of Research (ACI jeunes chercheurs), and a grant from the GIS “Institut de la Génomique Marine”—ANR blanche NT_NV_52. We thank the Consortium National de Recherche en Génomique and the Genoscope (Evry, France) for sequencing ESTs from C. hemisphaerica.

References

