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Analytical approximations of BSDEs

with non-smooth driver

Emmanuel Gobet1 , Stefano Pagliarani2

Centre de Mathématiques Appliquées, Ecole Polytechnique and CNRS, Route de Saclay, 91128 Palaiseau

Cedex, France

Abstract

We provide and analyse analytical approximations of BSDEs in the limit of small non-
linearity and short time, in the case of non-smooth drivers. We identify the first and the
second order approximations within this asymptotics and consider two topical financial
applications: the two interest rates problem and the Funding Value Adjustment. In high
dimensional diffusion setting, we show how to compute explicitly the first order formula by
taking advantage of recent proxy techniques. Numerical tests up to dimension 10 illustrate
the efficiency of the numerical schemes.
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1. Introduction

1.1. Model and motivation

During the two last decades, the field of Backward Stochastic Differential Equations
(BSDEs for short) has been very actively developed and widened with many respects, from
theory to numerics through applications. Due to the tremendous amount of literature on
the subject, it is somehow vain to be exhaustive in the references. Therefore, we simply
refer the reader to [EPQ97, EHM08, PR14] for theory and applications to mathematical
finance, stochastic control and semi-linear PDEs, and to the recent works [GT13a, GT13b]
(and references therein) for fully implementable Monte-Carlo schemes.

In this work, we consider the quite standard setting of BSDE with Lipschitz driver in
the natural filtration of the q-dimensional Brownian motion W , by considering (Y ε, Zε) the
solution to
{

−dY ε
t =

(

αt + βtY
ε
t + γt · Zε

t + εg(t, Y ε
t , Z

ε
t )
)

dt− Zε
t dWt, 0 ≤ t < T,

Y ε
T = ξ.

(1.1)

In the above, ξ is a random variable at a fixed terminal time T > 0, γ and Z are processes
taking values in Rq (written as row vectors), g is Lipschitz continuous in (y, z) and α, β, γ
satisfy growth/boundedness conditions, ensuring that the driver

fε(ω, t, y, z) := αt + βty + γt · z + εg(t, y, z) (1.2)
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satisfies the conditions of the usual Lipschitz setting. These assumptions are stated in
greater details later. The parameter ε is small, and for convenience, we assume from now
on that ε ∈ (0, 1].

If ε = 0, the solution to (1.1) boils down to a linear BSDE which Y -component can be
represented explicitly in terms of conditional expectation, see (1.5). Regarding applications,
in mathematical finance (Y 0, Z0) is usually related to the price and hedge of the contingent
claim ξ using a linear pricing rule (see [EPQ97] for details). The additional non-linear
term g is relevant in practice when we want to go beyond the usual linear pricing rules by
taking into account small market imperfections (asymmetric interest rates for lending and
borrowing, funding, credit risk adjustment, etc): for related ideas, see the recent monographs
[Cre13, GH14]. In many of these applications it is realistic to assume the parameter ε
determining the “size” of the non-linearity to be relatively small. For instance, in the case
of the two interest rates, the role of ε is played by the difference between the borrowing
and the lending rates, which can be reasonably supposed to be smaller than 5%. Similarly,
when considering the valuation of a portfolio with Credit and Funding Value Adjustment
(CVA-FVA) (accounting for provision for counterparty risk), the same role is played by
the default intensity parameter, which can be estimated to be, in the most pessimistic
scenarios, within 10%. Our work provides explicit and computable approximations for non-
linear pricing in the limit of small non-linearity, and small time to maturity. The principle
of our analysis is rather classical and relies on the knowledge of the linear solution (Y 0, Z0)
(or an approximation of it). Correction terms are then computed in terms of (Y 0, Z0). The
difficulty handled in our work comes from the low regularity assumptions on g.

1.2. Our contribution and comparison with literature

By taking advantage of the asymptotic property ε→ 0, we aim at deriving an accurate
approximation of the solution, up to some order w.r.t. ε. Actually, in order to go further

in the approximation w.r.t. ε, we need to identify the correction terms (Y
ε−Y 0

ε , Z
ε−Z0

ε ) as
ε → 0. As we will see on examples (Sections 3 and 4), the proposed approximation can
be computed analytically for some multidimensional problems, without any use of Monte-
Carlo methods. This will be achieved by incorporating proxy approximations as in [GM14]
or [LPP13]. The availability of analytical formulas is much interesting for having at hand a
fast emulation of the solution; it could also serve as a control variate or proxy as explained
in [GT13b, Section 2].

The second task arising when dealing with such perturbative schemes, is the necessity
to find error estimates for the approximate solutions at a given order. At the best of our
knowledge, the only results that we register in this direction are those in [TY13], where
the authors considered the case of a smooth (Cn) non-linearity g and proved asymptotic
convergence for the n-th order approximation, with respect to the perturbation parameter
ǫ. These regularity assumptions on the driver are too restrictive for many of the examples
that naturally arise from financial applications, such as the ones considered in Sections 3
and 4. Indeed, in such applications g takes the form

g(t, y, z) := (y − ηt · z)+, (1.3)

i.e. g is only piecewise differentiable. For this reason, here we do not assume that the driver
fε is very smooth. This is a significant difference compared to [TY13].

Had we supposed g were smooth, the existence and characterization of an expansion
of (Y ε, Zε) w.r.t. ε would follow more or less directly from an iterative application of the
standard differentiation result [EPQ97, Proposition 2.4]. This is essentially the way followed
by [TY13]. To account for cases like (1.3), we assume a customized weak differentiability
condition on g and then, we prove a first and a second order expansion w.r.t. ε. Another
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aspect on which our results differ from the existing literature, is that the 1-st order approx-
imate solution is proved here to be asymptotic not only with respect to ǫ but also w.r.t. T ,
resulting in a good accuracy not only when the non-linearity is small, but also in general
for short maturities. We also register additional improvements of the convergence rate for
small maturities T in the cases when g is independent of z, and when g(ω, t, 0, 0) is pointwise
null (like for FVA in Section 4). Furthermore, these 1-st order error estimates do not only
account for the asymptotics w.r.t. ε and T but also for the dependence on other parameters,
which means they keep track of all the other model coefficients (α, g and ξ). Finally, we
also notice that we do not assume any Markovian assumptions (as a difference with [TY13]
where PDE arguments are used).

1.3. Organization of the paper

At the end of this section, we give the notations and state the assumptions used through-
out the paper. In Section 2, we state our main result, by starting with formal expansion and
then concluding with rigorous derivation. Section 3 is devoted to the application to pric-
ing with two interest rates. Section 4 handles the pricing with provision for counterparty
risk. Numerical experiments illustrating the excellent performance of the approximation are
provided for each application above.

1.4. Notations and assumptions

Probability space.. Let T > 0 and (Ω,F,P) be a filtered probability space supporting
a q-dimensional Brownian motion W , equipped with the augmented Brownian filtration
(Ft)0≤t≤T . We denote by PT the σ-algebra of predictable sets of Ω × [0, T ]. Furthermore,
in order to carry out our analysis we need to introduce the following normed spaces: given
an Euclidean space E , we set

• L2
T (E) := {X : Ω → E s.t. X is FT -measurable and E[|X|2] < ∞}, equipped with

|X|2L2
:= E[|X|2] where |.| stands for the Euclidean norm;

• H2
T (E) :=

{

ϕ : Ω × [0, T ] → E s.t. ϕ is PT -measurable (predictable) and

E

[

∫ T

0
|ϕt|2dt

]

<∞
}

, equipped with the norm ‖ϕ‖2 := E

[

∫ T

0
|ϕt|2dt

]

;

• for ϕ ∈ H2
T (E), we set ‖ϕ‖2θ := E

[

∫ T

0
eθt|ϕt|2dt

]

for a scalar θ ∈ R;

• for a bounded process ϕ, we set |ϕ|∞ := sup(ω,t)∈Ω×[0,T ] |ϕt(ω)|.
We have ‖.‖ = ‖.‖0. In our analysis, the Euclidean space E will be R or Rq; since it will be
clear from the context of use, we do not refer to E in the notation of the norm ‖.‖θ. Unless
necessary for the sake of clarity, the q-dimensional Euclidean space will be indifferently
denoted by Rq and (Rq)⊤, whatever vectors are written as columns or rows respectively.

BSDE assumptions. The three following assumptions are considered throughout the paper.

H.1 the terminal value ξ ∈ L2
T (R);

H.2 the constant part of the driver α belongs to H2
T (R); the linear coefficients β ∈ H2

T (R)
and γ ∈ H2

T (R
q) are bounded processes; the non linear part g : Ω× [0, T ]×R×Rq → R

is PT ⊗ B ⊗ Bq-measurable (B and Bq are the Borel sigma-fields on R and Rq) and
g(·, ·, 0, 0) ∈ H2

T (R) ;

H.3 g(ω, t, ·, ·) is globally Lipschitz, uniformly with respect to (ω, t) ∈ Ω× [0, T ], i.e. there
exists Cg > 0 such that, dP⊗ dt -a.s.,

|g(ω, t, y1, z1)− g(ω, t, y2, z2)| ≤ Cg(|y1 − y2|+ |z1 − z2|), y1, y2 ∈ R, z1, z2 ∈ Rq.
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Then under the hypothesis H.1-H.3, the driver fε(ω, t, y, z) (defined in (1.2)) is globally
Lipschitz in (y, z), uniformly with respect to (ω, t) ∈ Ω × [0, T ], with Lipschitz constant
bounded by

Cf := |β|∞ + |γ|∞ + Cg. (1.4)

Thus (see [EPQ97, Theorem 2.1]), the equation (1.1) admits a unique solution (Y ε, Zε) in
H2

T (R)×H2
T (R

q), for any ε. The solution (Y 0, Z0) at ε = 0 plays an important role in our
analysis. In fact, (1.1) is a linear BSDE at ε = 0, leading to the explicit representation of
Y 0 (see [EPQ97, Proposition 2.2]):

Y 0
t = E

[

ξM t
T +

∫ T

t

M t
sαsds

∣

∣

∣

∣

Ft

]

, (1.5)

where the process (M t
s)t≤s≤T is the exponential

M t
s = exp

(∫ s

t

(

βr −
1

2
|γr|2

)

dr +

∫ s

t

γr dWr

)

. (1.6)

Besides, since Z0 is related to the predictable representation of the martingale part of Y 0,
it can be expressed using Malliavin calculus, see for instance [HNS11]; we will not develop
further in this direction. For convenience, we set

g0t := g(t, Y 0
t , Z

0
t ).

The subsequent expansion of (Y ε, Zε) is achieved by assuming an appropriate (weak)
regularity condition on g, namely Gateaux-differentiability, which enables us in Theorem
2.5 to establish an expansion to the second order.

H.4 For any (u, v) ∈ H2
T (R)×H2

T ((R
q)⊤), there exist κ = κ(u, v) ∈ [0, 1) and Dg0(u, v) ∈

H2
T (R) such that

E

∫ T

0

∣

∣

∣

∣

g(t, Y 0
t + εut, Z

0
t + εvt)− g0t − ε Dg0t (u, v)

ε

∣

∣

∣

∣

2

dt = o(ε2κ) (1.7)

as ε→ 0+.

This assumption reads as a Gateaux-differentiability condition in L2(dP⊗ dt). For cases of
the form (1.3), we can verify the assumption H.4. The proof is postponed to Appendix.

Proposition 1.1. If g(t, y, z) := (ηYt y + ηZt · z)+ for two bounded predictable processes
(ηY , ηZ) taking values in R and (Rq)⊤, then H.4 is satisfied with κ = 0 and

Dg0t (u, v) = (ηYt ut + ηZt · vt)1G0
t>0 + (ηYt ut + ηZt · vt)+1G0

t=0, G0
t := ηYt Y

0
t + ηZt · Z0

t ,

for any (u, v) ∈ H2
T (R)×H2

T ((R
q)⊤).

Miscellaneous. For a smooth function ϕ : Rd1 → Rd2 , we denote by ∇ϕ the gradient of g
which is a d2 × d1-matrix. In particular, if ϕ takes scalar values, ∇ϕ is a row vector. To
write the gradient w.r.t. variables y or z, we may write ∇yϕ and ∇zϕ.

Limits w.r.t. ε→ 0 are taken along strictly positive values of ε ∈ (0, 1].
We set

Cf0 := |β|∞ + |γ|∞, (1.8)

which is an upper bound for the Lipschitz constant of f0.
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2. Main results

2.1. Formal expansion

For the sake of clarity, we first give heuristics by carrying out a formal expansion for the
solution (Y ε, Zε) up to some order n ∈ N\{0}, i.e.

(Y ε
t , Z

ε
t ) ≈ (Y 0

t , Z
0
t ) +

n
∑

k=1

εk

k!

(

Y
(k)
t , Z

(k)
t

)

, (Y (k), Z(k)) :=
dk

dεk
(Y ε

t , Z
ε
t )
∣

∣

ε=0
,

omitting the issues about the possible irregularity of g. Namely, if g is smooth enough
w.r.t. (y, z), the solution (Y ε, Zε) is differentiable w.r.t. ε using the differentiability result
of [EPQ97, Proposition 2.4]. The BSDE for the derivative is obtained by differentiating the
initial BSDE and applying the chain rule: for k ≥ 1,

{

−dY
(k)
t =

(

βtY
(k)
t + γt · Z(k)

t + k dk−1

dεk−1 g(t, Y
ε
t , Z

ε
t )
∣

∣

ε=0

)

dt− Z
(k)
t dWt,

Y
(k)
T = 0.

Since the above BSDE is linear, we get Y
(k)
t = k E

[

∫ T

t
M t

s
dk−1

dεk−1 g(s, Y
ε
s , Z

ε
s )
∣

∣

ε=0
ds
∣

∣

∣Ft

]

,

where the process (M t
s)t≤s≤T is the exponential given in (1.6).

The case of non-smooth g. Under our assumptions, it is not possible to derive the a.s. dif-
ferentiation as in [EPQ97, Proposition 2.4]. Instead, we define (Y (1), Z(1)) and (Y (2), Z(2)),

being inspired by what the derivatives of dk−1

dεk−1 g(s, Y
ε
s , Z

ε
s )
∣

∣

ε=0
should be in the smooth case,

and then we directly prove the asymptotic approximation at order n = 1 and n = 2, with
some error estimates of the residual (Theorem 2.5). To this purpose we set, by definition,

{

−dY
(1)
t =

(

βtY
(1)
t + γt · Z(1)

t + g0t

)

dt− Z
(1)
t dWt,

Y
(1)
T = 0,

(2.1)

{

−dY
(2)
t =

(

βtY
(2)
t + γt · Z(2)

t + 2 Dg0t (Y
(1), Z(1))

)

dt− Z
(2)
t dWt,

Y
(2)
T = 0.

(2.2)

We first state that the solutions to the above equations are well-defined in appropriate
L2-spaces.

Proposition 2.2. Under assumptions H.1-H.3 the linear BSDE (2.1) has a unique solution
(Y (1), Z(1)) in H2

T (R)×H2
T (R

q). Furthermore, under the additional hypothesis H.4 the linear
BSDE (2.2) has a unique solution (Y (2), Z(2)) in H2

T (R)×H2
T (R

q).

Proof. By Hypothesis H.3 on g we have |g(t, Y 0
t , Z

0
t ) − g(t, 0, 0)| ≤ Cg(|Y 0

t | + |Z0
t |), dP ⊗

dt-a.s., and since (Y 0, Z0) ∈ H2
T (R) × H2

T (R
q), we have

(

g(t, Y 0
t , Z

0
t ) − g(t, 0, 0)

)

0≤t≤T
∈

H2
T (R). Plus, by HypothesisH.1 (g(t, 0, 0))0≤t≤T ∈ H2

T (R), whence (g
0
t = g(t, Y 0

t , Z
0
t ))0≤t≤T ∈

H2
T (R). In addition the driver (y, z) 7→ βty + γt · z + g0t is globally Lipschitz in (y, z) since

β and γ are bounded. In conclusion [EPQ97, Proposition 2.2], there is a unique solution
(Y (1), Z(1)) in H2

T (R)×H2
T (R

q) as advertised.
The same arguments apply to (Y (2), Z(2)), mainly because (Dg0t (Y

(1), Z(1)))0≤t≤T ∈
H2

T (R), in view of the previous estimates and of Hypothesis H.4.

Last but not least, the Y -components of these linear BSDEs can be represented as
expectations [EPQ97, Proposition 2.2], similarly to (1.5).
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Corollary 2.3. Under assumptions H.1-H.3, we have

Y
(1)
t = E

[

∫ T

t

M t
s g

0
sds

∣

∣

∣

∣

Ft

]

.

Furthermore, under the additional hypothesis H.4, we have

Y
(2)
t = 2 E

[

∫ T

t

M t
s Dg

0
s(Y

(1), Z(1)) ds

∣

∣

∣

∣

Ft

]

.

2.2. Asymptotic convergence

In this section we present a rigorous analysis of the perturbative method introduced in
the previous section. We are now in the position to prove the convergence for our 1-st and
2-nd order approximations of the true solution (Y ε, Zε) of BSDE (1.1), defined respectively
as

(Ȳ ε,1, Z̄ε,1) := (Y 0, Z0) + ε(Y (1), Z(1)), (2.3)

(Ȳ ε,2, Z̄ε,2) := (Y 0, Z0) + ε(Y (1), Z(1)) +
ε2

2
(Y (2), Z(2)). (2.4)

We have the following global error bounds for the 1-st order expansion (Ȳ ε,1, Z̄ε,1).

Theorem 2.4. Under assumptions H.1-H.3 there exists a positive finite function K(.),
increasing in all its variables, such that

sup
0≤t≤T

|Y ε
t − Ȳ ε,1

t |2L2
+
∥

∥Zε − Z̄ε,1
∥

∥

2
(2.5)

≤ K
(

T,Cf0 , Cf , Cg, |ξ|2L2
, ‖α‖ , |g(·, 0, 0)|2L2

)

ε4
(

C̄gT
2 + |g(·, 0, 0)|2L2

T 3 + T 4
)

,

where C̄g is equal to 0 if g does not depend on z, and 1 otherwise.

As usually in this kind of a priori error estimates for BSDEs, we can prove that the same
rates are valid when the sup is inside the expectation (i.e. E(sup0≤t≤T |Y ε

t − Ȳ ε,1
t |2)). We

leave the details to the reader.
These estimates show that we can expect accuracy of our approximation not only as

ε → 0, but also as T is small. This is coherent with our observations in the subsequent
numerical experiments. Even though it is a different phenomenon, the asymptotic behavior
in the T variable for approximate solutions obtained via perturbative schemes, has been
already observed for some classes of analytical expansions for linear problems with variable
coefficients, such as in [PP14, BG12].

Note also that the rate of convergence for small maturities increase from T 2 to T 3 if g
does not depend on z, and it goes up to T 4 if we also have g(·, 0, 0) = 0 dP⊗dt-almost surely.
This is for instance the case of the application presented in Section 4. The improvement in
the case when g is independent of z is not surprising since Z is a gradient (from the PDE
point of view) and its control is more demanding.

Proof. We make use of some well-known a priori estimates recalled in Proposition A.1 in
Appendix A.1: consider (Y 0, Z0) for the first BSDE which driver f0 (see (1.2)) has Lipschitz
constant bounded by Cf0 (defined in (1.8)), and (0, 0) for the second one. Then, the choice
µ = 1, λ2 = Cf0 + 1 and θ = C2

f0 + 3Cf0 + 1 yields

(

sup
0≤t≤T

E|Y 0
t |2
)

∨
(

(1 + Cf0)−1E

∫ T

0

|Z0
t |2dt

)

≤ e
(C2

f0+3C
f0+1)T

(

E|ξ|2 + E

∫ T

0

|αt|2dt
)

.

(2.6)
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Moreover, (Y (1), Z(1)) solves a BSDE (2.1), also with Lipschitz constant bounded by Cf0 .

Proposition A.1, now applied with µ = 1/
√
T , λ2 = Cf0 + 1 and θ = C2

f0 + 3Cf0 + 1/T
gives

(

sup
0≤t≤T

E|Y (1)
t |2

)

∨
(

(1 + Cf0)−1E

∫ T

0

|Z(1)
t |2dt

)

≤ e
(C2

f0+3C
f0 )T+1

T E

∫ T

0

|g0t |2dt

(by assumption H.3, combined with (2.6))

≤ 3e
(C2

f0+3C
f0 )T+1

T

(

E

∫ T

0

|g(t, 0, 0)|2dt

+ C2
g (T + C̄g(1 + Cf0))e

(C2
f0+3C

f0+1)T
(

E|ξ|2 + E

∫ T

0

|αt|2dt
)

)

, (2.7)

where we have set C̄g = 0 if g does not depend on z, and C̄g = 1 otherwise. Now, by
definition (2.3), together with (2.1) and (1.1) with ε = 0, we obtain that (Ȳ ε,1, Z̄ε,1) is the
unique solution in H2

T (R)×H2
T (R

q) of

{

−dȲ ε,1
t =

(

αt + βtȲ
ε,1
t + γt · Z̄ε,1

t + εg0t

)

dt− Z̄ε,1
t dWt,

Ȳ ε,1
T = ξ.

Again, we make use of the a priori estimates of Proposition A.1, by taking (Y ε, Zε) for
the first BSDE (with Lipschitz constant bounded by Cf , see (1.4)) and (Ȳ ε,1, Z̄ε,1) for the

second one, and with the following choice of the parameters: µ = 1/
√
T , λ2 = Cf + 1 and

θ = C2
f + 3Cf + 1/T . We obtain

sup
0≤t≤T

E|Y ε
t − Ȳ ε,1

t |2 + E

∫ T

0

|Zε
t − Z̄ε,1

t |2dt ≤ (2 + Cf )e
(C2

f+3Cf )T+1T E

∫ T

0

|δε,1t |2dt, (2.8)

with
δε,1t = ǫ

(

g(t, Ȳ ε,1
t , Z̄ε,1

t )− g(t, Y 0
t , Z

0
t )
)

.

By the Lipschitzianity of g (Hypothesis H.3) we have

|δε,1t | ≤ ǫCg

(

|Ȳ ε,1
t − Y 0

t |+ C̄g|Z̄ε,1
t − Z0

t |
)

= ǫ2Cg

(

|Y (1)
t |+ C̄g|Z(1)

t |
)

, (2.9)

and thus, by combining (2.8) with (2.9)-(2.7) we get

sup
0≤t≤T

|Y ε
t − Ȳ ε,1

t |2L2
+
∥

∥Zε − Z̄ε,1
∥

∥

2

≤ (2 + Cf )ǫ
4C2

ge
(C2

f+3Cf )T+1TE

∫ T

0

(|Y (1)
t |+ C̄g|Z(1)

t |)2dt

≤ (2 + Cf )ǫ
4C2

ge
(C2

f+3Cf )T+12T
(

T + C̄g(1 + Cf0)
)

3e
(C2

f0+3C
f0 )T+1

T

(

E

∫ T

0

|g(t, 0, 0)|2dt

+ C2
g (T + C̄g(1 + Cf0))e

(C2
f0+3C

f0+1)T
(

E|ξ|2 + E

∫ T

0

|αt|2dt
)

)

,

which concludes the proof.
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We now consider the 2-nd order expansion (Ȳ ε,1, Z̄ε,1). In this case it is possible to prove
asymptotic estimates with respect to the perturbation parameter ǫ, but not with respect
to the time T , due the fact we have no information about the rate of convergence of the
integral (1.7) in Hypothesis H.4 as T goes to 0. We have the following result.

Theorem 2.5. Under assumptions H.1-H.4 we have

sup
0≤t≤T

E|Y ε
t − Ȳ ε,2

t |2 +
∥

∥Zε − Z̄ε,2
∥

∥

2
= o(ε4+2κ) as ε→ 0

where κ is the exponent associated to Hypothesis H.4 with (u, v) = (Y (1), Z(1)).

Proof. By definition (2.4), along with (2.1), (2.2) and (1.1) with ε = 0, we obtain that
(Ȳ ε,2, Z̄ε,2) is the unique solution in H2

T (R)×H2
T (R

q) of
{

−dȲ ε,2
t =

(

αt + βtȲ
ε,2
t + γt · Z̄ε,2

t + εg0t + ε2Dg0t (Y
(1), Z(1))

)

dt− Z̄ε,2
t dWt,

Ȳ ε,2
T = ξ.

Therefore, by Proposition A.1 with the same parameters (µ, λ, θ) as before, we obtain

sup
0≤t≤T

E|Y ε
t − Ȳ ε,2

t |2 ≤
∥

∥δε,2
∥

∥

2

θ
, E

∫ T

0

|Zε
t − Z̄ε,2

t |2dt ≤ (Cf + 1)
∥

∥δε,2
∥

∥

2

θ
,

with
δε,2t = ǫ

(

g(t, Ȳ ε,2
t , Z̄ε,2

t )− g0t − ǫ Dg0t (Y
(1), Z(1))

)

.

Now, using the definitions (2.3)-(2.4) and the Lipschitzianity of g, we write

|δε,2t | ≤ ε|g(t, Ȳ ε,2
t , Z̄ε,2

t )− g(t, Ȳ ε,1
t , Z̄ε,1

t )|+ ε|g(t, Ȳ ε,1
t , Z̄ε,1

t )− g0t − ε Dg0t (Y
(1), Z(1))|

≤ Cg
ε3

2
(|Y (2)

t |+ |Z(2)
t |)

+ ε2
∣

∣

g(t, Y 0
t + εY

(1)
t , Z0

t + εZ
(1)
t )− g(t, Y 0

t , Z
0
t )

ε
−Dg0t (Y

(1), Z(1))
∣

∣.

In view of |Y (2)| + |Z(2)| ∈ H2
T (R) and of Hypothesis H.4 with (u, v) = (Y (1), Z(1)), we

obtain

‖δ‖θ = O(ε3) + o(ε2+κ),

whence the announced result.

3. Application to pricing and hedging under two interest rates

3.1. Model

We apply our expansion technique to the non-arbitrage valuation of a contingent claim
and its related hedging strategy, in the case when there are two different interest rates for
borrowing and lending money. We assume a complete market model with d risky assets
S1, · · · , Sd, whose dynamics under the real-world probability measure P are given by

dXi
t =

(

µi
t −

1

2
|σi

t|2
)

dt+ σi
t dWt, i = 1, · · · , d, (3.1)

where Xi
t := log(Si

t), W = (W 1, · · · ,W d)⊤ is a d-dimensional Brownian motion, and
(σi

t)0≤t≤T is a Rd-valued stochastic process, square integrable with respect to t. Denot-
ing by σ = (σi,j)1≤i,j≤d the d× d matrix whose i-th row is given by the vector σi, we also
assume that σ has full rank, with σ−1 being a bounded process.
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Moreover, (rt)0≤t≤T is an R+-valued bounded process representing the lending interest
rate, say the log-return of a riskless bank-account from the investor point of view.

Consider now another R+-valued bounded process (Rt)0≤t≤T (typically R ≥ r), repre-
senting the borrowing interest rate, i.e. the cost of the money for an investor who goes short
in its cash position. Consider also a financial claim whose terminal payoff at time T is given
by a random variable ξ ∈ L2

T (R): it can be shown (see [EPQ97]) that the terminal payoff ξ
can be perfectly replicated by a self-financing portfolio. Namely, if Yt and π = (π1, · · · , πd)
represent the portfolio value and the hedging strategy (the vector of amounts in risky assets)
respectively, then (Y, π) solves the non-linear BSDE:

{

−dYt =
(

− rtYt − πt(µt − rt1) + (Rt − rt)(Yt − πt1)−
)

dt− πtσt dWt, 0 ≤ t < T,
YT = ξ,

(3.2)
where 1 is the (column) vector whose all components are 1.

The use of our asymptotic expansion is justified by the fact that the difference between
the two interest rates can be considered relatively small, i.e (Rt − rt) ≤ 5%. Thus we can
assume Rt = rt + ǫDt, with ǫ << 1 and Dt ∼ 1. Therefore, by setting Zt = πtσt, BSDE
(3.2) can be rewritten as

{ −dYt =
(

− rtYt − Ztσ
−1
t (µt − rt1) + ǫDt

(

Yt − Ztσ
−1
t 1

)

−

)

dt− Zt dWt, 0 ≤ t < T,

YT = ξ.
(3.3)

In order to fit our initial framework in (1.1) we set α ≡ 0, βt = −rt, γt = −[σ−1
t (µt− rt1)]⊤

and g(t, y, z) = Dt

(

y − zσ−1
t 1

)

−
= Dt

(

zσ−1
t 1− y

)

+
. Furthermore, this model satisfies

Hypothesis H.1-H.4 (see Proposition 1.1) with

Dg0t (u, v) = Dt

[

(vtσ
−1
t 1− ut)1Y 0

t <Z0
t σ

−1
t 1

+ (vtσ
−1
t 1− ut)+1Y 0

t =Z0
t σ

−1
t 1

]

.

The proxy solution Y 0 of BSDE (3.3) is the usual no-arbitrage value of a contingent claim
in a market without imperfections, with a single interest rate r, i.e.

Y 0
t = EP

[

e−
∫

T

t
rsdsHt

T ξ
∣

∣Ft

]

, (3.4)

with (Ht
s)t≤s≤T being the exponential martingale

Ht
s = exp

(

−1

2

∫ s

t

∣

∣σ−1
τ (µτ − rτ1)

∣

∣

2
dτ −

∫ s

t

(µτ − rτ1)
⊤[σ−1

τ ]⊤dWτ

)

, t ≤ s ≤ T,

whereas, by Proposition 2.2, the first correction is given by

Y
(1)
t = EP

[

∫ T

t

e−
∫

s

t
ruduHt

sDs

(

Y 0
s − Z0

sσ
−1
s 1

)

−
ds|Ft

]

. (3.5)

Note that, the expectations (3.4)-(3.5) can be also expressed in terms of the risk-neutral
measure Q, defined by dQ

dP |FT
:= H0

T , as

Y 0
t = EQ

[

e−
∫

T

t
rsdsξ

∣

∣Ft

]

, Y
(1)
t = EQ

[

∫ T

t

e−
∫

s

t
ruduDs

(

Y 0
s − Z0

sσ
−1
s 1

)

−
ds|Ft

]

,

and the dynamics of X under Q become

dXi
t =

(

rt −
1

2
|σi

t|2
)

dt+ σi
t dWt, i = 1, · · · , d. (3.6)
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In the case of Markovian dynamics, we also obtain a characterization for the terms Z0

and Z1 in the expansion of the hedging strategy Z. Consider σt ≡ σ(t,Xt), rt ≡ r(t,Xt),
Dt ≡ D(t) and ξ ≡ ψ(XT ) in (3.1)-(3.3). Under mild assumptions on the coefficients and
the payoff function we have the following generalized Feynman-Kac representation formula:

(Y 0
t , Z

0
t ) =

(

u0(t,Xt),∇xu0(t,Xt)σ(t,Xt)
)

, (3.7)

(Y
(1)
t , Z

(1)
t ) =

(

u1(t,Xt),∇xu1(t,Xt)σ(t,Xt)
)

, (3.8)

where u0 and u1 are the classical solutions (unique within a certain class of functions) of

{

Lu0(t, x) = 0, 0 ≤ t < T, x ∈ Rd,
u0(T, x) = ψ(x), x ∈ Rd,

and
{

Lu1(t, x) = −D(t) (u0(t, x)−∇xu0(t, x)1)− , 0 ≤ t < T, x ∈ Rd,
u1(T, x) = 0, x ∈ Rd,

(3.9)

respectively, and where L is the parabolic operator

L = ∂t + r(t, x)

(

− 1 +
d
∑

i=1

∂xi

)

+
1

2

d
∑

i,j=1

(

(σσ⊤)i,j(t, x)∂xi,xj
− σ2

i,j(t, x)∂xi

)

. (3.10)

In the next section we test the accuracy of our approximation in a particular case where it
is possible to carry out a semi-explicit representation for the solution of (3.9).

3.2. Example about linear combination of Call and Put options under the Black and Scholes
model: numerical comparisons

Consider the case of a market with only one underlying asset following the classical Black
and Scholes model (d = q = 1). Equation (3.6) then becomes

dXt =

(

r − 1

2
|σ|2

)

dt+ σ dWt,

with σ > 0, r ≥ 0. Assume also the borrowing interest R = r+ ǫ, and consider a Markovian
payoff ξ = ψ(XT ), with ψ being the linear combination of n Call and Put options with
maturity T and log strikes (kj)j , i.e.

ψ(x) =
n
∑

j=1

(

cC,j(e
x − ekj )+ + cP,j(e

kj − ex)+
)

,

with some portfolio weights cC,j , cP,j ∈ R. Note that, in this model the operator L in (3.10)
reduces to the heat-type (Black and Scholes) operator

L = ∂t + r(−1 + ∂x) +
1

2
σ2(∂x,x − ∂x),

whose fundamental solution is e−r(T−t)Γ(t, x;T, y), where

Γ(t, x;T, y) =
1

√

2πσ2(T − t)
e
−

(

x+

(

r−σ2

2

)

(T−t)−y

)2

2σ2(T−t)
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is the Gaussian transition density of the process X. At the leading order, we obtain that
(Y 0, Z0) is given by (3.7) with

u0(t, x) =
n
∑

j=1

(

cC,j BS
C(t, x; kj) + cP,j BS

P (t, x; kj)
)

, 0 ≤ t < T, x ∈ R,

where BSC and BSP stand for the classical Black and Scholes price functions of a Call and
a Put option respectively, i.e. defined as follows

N (x) :=

∫ x

−∞

e−u2/2

√
2π

du,

N+(t, x;T, kj) :=

∫ kj

−∞

Γ(t, x;T, y)dy = N
(kj − r(T − t)− x

σ
√
T − t

+
1

2
σ
√
T − t

)

,

N−(t, x;T, kj) := N
(kj − r(T − t)− x

σ
√
T − t

− 1

2
σ
√
T − t

)

,

BSP (t, x; kj) := ekj−r(T−t)N+(t, x;T, kj)− exN−(t, x;T, kj), (3.11)

BSC(t, x; kj) := ex − ekj−r(T−t) + BSP (t, x; kj). (3.12)

The first order correcting term (Y
(1)
t , Z

(1)
t ) is given by (3.8) with u1(t, x) solving (3.9),

which now reduces to
{

Lu1(t, x) = − (u0(t, x)− ∂xu0(t, x))− , 0 ≤ t < T, x ∈ R,
u1(T, x) = 0, x ∈ R.

Thus the computation of u1 requires the identification of u0(t, x) − ∂xu0(t, x), a function
which is interpreted as the amount invested in cash used to hedge the portfolio of Call and
Put options. In this Black and Scholes framework, from (3.11)-(3.12) we simply deduce

u0(t, x)−∂xu0(t, x) =
n
∑

j=1

ekj−r(T−t)
(

cC,j(N+(t, x;T, kj)−1)+cP,j N+(t, x;T, kj)
)

. (3.13)

To compute u1 we define the sets

Πt := {ζ ∈ R|u0(t, ζ)− ∂ζu0(t, ζ) ≤ 0}, 0 ≤ t ≤ T, (3.14)

and by Duhamel’s principle, it leads to the solution

u1(t, x) =

∫ T

t

∫

R

e−r(s−t)Γ(t, x; s, ζ)(u0(s, ζ)− ∂ζu0(s, ζ))−dζ ds

= −e−r(T−t)
n
∑

j=1

(cC,j + cP,j)e
kj

∫ T

t

∫

Πs

Γ(t, x; s, ζ)N+(s, ζ;T, kj) dζ ds

+ e−r(T−t)
n
∑

j=1

cC,je
kj

∫ T

t

∫

Πs

Γ(t, x; s, ζ) dζ ds. (3.15)

The first order derivative ∂xu1, which determines the first order correction term Z(1) of
the hedging component Z, can then be obtained by a direct differentiation in x, leading
to another space integral involving ∂xΓ(t, x; s, ζ). The latter and the one in (3.15) are
not explicitly solvable. Nevertheless, it is possible to find an arbitrarily accurate explicit
approximation of such an integral, by approximating the analytic function N by means of
its Taylor series.

11



1-st numerical test: comparison with [GLW05] . Next we test the accuracy of our
1-st order expansion Ȳ 1,ǫ

0 = u0(t,X0) + εu1(t,X0) for the true solution Y0, by comparing it
with the approximation proposed in [GLW05], by means of a regression-based Monte Carlo
algorithm (see [BD07, GT13a, GT13b] for more details on these algorithms). Note that
the latter is a quite standard benchmark in literature for this task. According to Gobet et
al., we consider the following payoff made of a linear combination of two call options with
log-strikes k1 and k2, i.e.

ψ(x) = (ex − ek1)+ − 2(ex − ek2)+,

with the parameters

r = 1%, R = 6%, σ = 0.2, t = 0, T = 0.25, X0 = log 100, k1 = log 95, k2 = log 105.

From (3.13)-(3.14), it is easy to check that Πs =
(

− ∞, p(s, T, k1, k2)
]

for a threshold
function p(s, T, k1, k2) which can be numerically computed (and used in (3.15)). We obtain
the results reported in Table 1.

Y G
0 Y 0

0 Ȳ
1,ǫ
0

2.95 2.76 2.96

Table 1: 1-st order approximation accuracy. Y -value at time 0 according to the Monte Carlo simulation by
Gobet et al. (Y G

0 ), and to our 0-th and 1-st order approximations (Y 0
0 and Ȳ

1,ǫ
0

respectively).

2-nd numerical test: comparison with [BD07] . In our second test we test the ac-
curacy of our 1-st order expansion Ȳ 1,ǫ

t , by comparing it with the approximation proposed
in [BD07], where the authors made use of a Picard scheme to simulate the BSDE (3.2).
According to Bender et al., we consider the following payoff given by the sum of two Call
and Put options with same log-strike k, i.e.

ψ(x) = |ex − ek| = (ex − ek)+ + (ek − ex)+.

In this case one has

u0(s, ζ)− ∂ζu0(s, ζ) = ek−r(T−s)(2N+(s, ζ;T, k)− 1) ≤ 0 ⇐⇒ ζ ≥ k−
(

r − σ2

2

)

(T − s),

and thus we get Πs =
[

k−
(

r− σ2

2

)

(T − s),+∞
)

in (3.15). We use the same parameters as
in [BD07]:

r = 1%, R = 6%, σ = 0.2, t = 0, T = 2, X0 = log 100, k = log 100,

and we obtain the results reported in Table 2.

Y B
0 Y 0

0 Ȳ
1,ǫ
0

24.56 22.32 24.51

Table 2: 1-st order approximation accuracy. Y -value at time 0 according to the approximation proposed by
Bender et al. (Y B

0 ), and to our 0-th and 1-st order approximations (Y 0
0 and Ȳ

1,ǫ
0

respectively).

Conclusive remarks. In both tests, our first order approximation is very close to the refer-
ence value obtained by regression Monte-Carlo schemes, with the advantage of being very
quick to compute. Because of the very good accuracy of the 1st order approximation, it
seems to be not necessary to go up to the second order approximation which is more tedious
to numerically compute.
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4. Application to provision for counterparty risk

4.1. Model

We apply our expansion result to compute the Funding Valuation Adjustment (FVA)
with provision for counterparty risk [GH14, Section 5.8]. This is associated to the BSDE

{

−dYt =
(

− λ(1−R)(Yt)+ − rtYt
)

dt− Zt dWt, 0 ≤ t < T,
YT = ξ,

(4.16)

where R is the recovery rate, rt the bounded risk-free interest rate (possibly stochastic),
and λ the default intensity of the counterparty. Moreover, W is a q dimensional Brownian
motion, whose components being the sources of randomness in the market. The model is
directly given under the risk-neutral measure Q. Since assessing the counterparty risk, Y
represents here the no-arbitrage value, from the investor prospective, of a global position
composed of several claims exchanged with a defaultable counterpart. Therefore, we shall
consider that the terminal random variable ξ is a linear combination of several financial
contracts, i.e.

ξ =
∑

j∈J

cjΨ
j , Ψi ∈ L2

T (R), (4.17)

where J is a countable family of indexes, and where cj ∈ R\{0} are some portfolio weights.
In other words, Ψj denotes the terminal value at time T of the j-th financial claim exchanged
between the investor and its counterpart. We can assume without loss of generality that
Ψj ≥ µj > 0, j = 1, · · · , n, unless to consider the decomposition

ξ =
∑

j∈J

cj

(

((Ψj)+ + µj)− ((Ψj)− + µj)
)

, µj > 0.

The need for this condition will appear more clearly in the change of numeraire of Section
4.2.

Example 4.6. In the example of Section 4.4, each random variable Ψj will represent the
terminal payoff of a European type derivative with maturity T , written on an underlying
process St = (S1

t , . . . , S
d
t ), with d ≤ q. However, our setting is more general and allows to

include the case of a pool of derivatives with different maturities Tj 6= T .

Our asymptotic method relies on λ being suitably small; this is related to the credit
spread, whose order in usual cases is few hundreds bps at most, i.e. λ ≤ 1 − 3%. Our
asymptotic setting seems thus to be reasonable. Then, the proxy Y 0 used for pricing is given
by the usual risk-neutral price. To fit our current framework, we set ε = λ, g(t, ω, y, z) =
−(1 − R)y+, αt ≡ 0, βt = −rt and γt ≡ 0. Note also that this example fits assumptions
H.1-H.4 (see Proposition 1.1) with

Dg0t (u, v) = −(1−R)
[

ut1Y 0
t >0 + (ut)+1Y 0

t =0

]

.

The proxy solution Y 0 of BSDE (4.16) is given by

Y 0
t =

∑

j∈J

cjΨ
j
t , Ψj

t = E

[

e−
∫

T

t
rsdsΨj

∣

∣Ft

]

, 0 ≤ t ≤ T. (4.18)

Here Ψj
t represents the usual no-arbitrage value at time t of the contract Ψj (see [MR05]),

computed without taking into account the possibility of default of the counterpart. In
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particular, the process e−
∫

t

0
rsds Ψj

t is a positive (Ψj ≥ µj > 0) martingale whose dynamics
is given by

dΨj
t

Ψj
t

= rtdt+ σj
tdWt,

for some random volatility vector (σj
t )0≤t≤T := (σj,1

t , · · · , σj,q
t )0≤t≤T .

In view of Proposition 2.2, the first correction term Y (1) in the first order expansion

Ȳ λ,1
t = Y 0

t + λY
(1)
t is given by

Y
(1)
t = −E

[

∫ T

t

e−
∫

s

t
rudu(1−R)(Y 0

s )+ds|Ft

]

. (4.19)

Remark 4.7. Note that, in the cases ξ ≤ 0 and ξ ≥ 0, we have Yt = Y 0
t and Yt =

e−λ(1−R)(T−t)Y 0
t respectively (this results from an application of the comparison for BSDEs

[EPQ97, Theorem 2.2]). On the other hand, by (4.19), our 1-st order approximation reads as

Ȳ λ,1
t = Y 0

t and Ȳ λ,1
t = (1−λ(1−R)(T − t))Y 0

t respectively. Therefore, in terms of accuracy,
the best setting for our 1-st order approx. is when the investor’s position is almost surely
negative (ξ ≤ 0), i.e. the true value Y coincides with the proxy value Y 0. On the contrary,
the worst setting seems to be when the investor’s position is almost surely positive (ξ ≥ 0).
In particular, in the latter case we have

ErrRel
t :=

|Yt − Ȳ λ,1
t |

|Yt|
=
Yt − Ȳ λ,1

t

Yt
=
e−λ(1−R)(T−t) − 1 + λ(1−R)(T − t)

e−λ(1−R)(T−t)
. (4.20)

This suggests that the first order expansion Ȳ λ,1 represents a good approximation for
this task in terms of accuracy, which is fully coherent with Theorem 2.4; see also Figure 1
where the relative error (4.20), in the limiting case ξ ≥ 0, is plotted as a function of the
default intensity λ.

1% 2% 3% 4% 5%

Λ

0.02%

0.04%

0.06%

0.08%

0.10%

0.12%

Err
Rel

Figure 1: Relative error, as a function of the default intensity λ, of the 1-st order approximation Ȳ
λ,1
0

in
the limiting case ξ ≥ 0. Here R = 0, t = 0 and T = 1.

In order to compute the correcting term Y (1) in (4.19), one option is to perform a
Monte Carlo simulation of the proxy process Y 0 in (4.18), but this is not in the spirit of
this paper. Alternatively, in the next subsection, we handle the analytical evaluation of the
above conditional expectation (4.19), which is the corner stone to have a fully implementable
numerical procedure.
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4.2. Linearization and change of numeraire to compute Ȳ λ,1

We use two rather standard techniques consisting in linearizing the positive part and
applying suitable changes of numeraire. It gives

Y
(1)
t = −(1−R)

∑

j∈J

cj

∫ T

t

Y
(1),j
t,s ds, Y

(1),j
t,s = E

[

e−
∫

s

t
ruduΨj

s1Y 0
s ≥0|Ft

]

.

Owing to the Q-martingale and positive properties of e−
∫

t

0
rsdsΨj

t (since Ψj ≥ µj > 0), it
can be used as a numeraire to define a new probability measure (see [MR05]); namely, set

dQj

dQ
|Ft

= Lj
t :=

e−
∫

t

0
rsdsΨj

t

Ψj
0

.

Now, by applying the Bayes rule for change of numeraire we obtain

Y
(1),j
t,s = EQj

[

e−
∫

s

t
ruduΨj

s1Y 0
s ≥0

Lj
t

Lj
s

|Ft

]

= Ψj
tQ

j
(

Y 0
s ≥ 0|Ft

)

.

It remains to compute the above conditional probabilities. We first observe that the pro-
cesses W j

t = Wt −
∫ t

0
(σj

s)
⊤ds is a q-dimensional Brownian motion under the new measure

Qj . The key point is to consider all prices in the new numeraire e−
∫

.

0
rsdsΨj

. ; indeed, the

properties of change of numeraire ensure that (
Ψi

s

Ψj
s

)s≥0 are exponential Qj-martingales with

volatility vector σi
s − σj

s. Therefore we have

{Y 0
s ≥ 0} =

{ n
∑

i∈J

ci
Ψi

s

Ψj
s

≥ 0

}

=
{

N j,+
s ≥ N j,−

s

}

,

with

N j,+
s =

∑

i∈J

(ci)+
Ψi

s

Ψj
s

, N j,−
s =

∑

i∈J

(ci)−
Ψi

s

Ψj
s

being positive martingales under Qj . To compute the conditional Qj-probability of the
event

{

N j,+
s ≥ N j,−

s

}

, we then follow the methodology inspired by [GM14] using two ap-
proximations:

• the arithmetic means N j,+
s and N j,−

s are replaced by the geometric means, whose drift
is modified to maintain the centering property.

• the volatility (σi
s)s≥t is approximated by a proxy (σ̄i

t,s)s≥t which is a square-integrable
function w.r.t. s and Ft-measurable. The choice of the proxy depends on the context
(local volatility or stochastic volatility model), see the discussion in Section 4.4.

We define M j,+
s =

Nj,+
s

Nj,+
t

and M j,−
s =

Nj,−
s

Nj,−
t

. The process (M j,+
s )s≥t is a positive martingale

starting from 1, whose dynamics is

dM j,+
s =

∑

i∈J (ci)+d
Ψi

s

Ψj
s

N j,+
t

=

∑

i∈J (ci)+
Ψi

s

Ψj
s

(σi
s − σj

s)dW
j
s

N j,+
t

.

Now, when s is close to t and/or volatilities are small, we have M j,+
s ≈ 1 and

Ψi
s

Ψj
s

≈ Ψi
t

Ψj
t

, and

thus

dM j,+
s ≈M j,+

s

∑

i∈J (ci)+
Ψi

t

Ψj
t

(σi
s − σj

s)dW
j
s

N j,+
t

15



≈M j,+
s

∑

i∈J (ci)+
Ψi

t

Ψj
t

(σ̄i
t,s − σ̄j

t,s)dW
j
s

N j,+
t

(by replacing σi
s − σj

s with σ̄i
t,s − σ̄j

t,s).

We proceed analogously with M j,− and we obtain

{Y 0
s ≥ 0} = {N j,+

t M j,+
s ≥ N j,−

t M j,−
s } ≈

{

N j,+
t exp

(∫ s

t

σj,+
t,r dW j

r − 1

2

∫ s

t

|σj,+
t,r |2dr

)

≥ N j,−
t exp

(∫ s

t

σj,−
t,r dW j

r − 1

2

∫ s

t

|σj,−
t,r |2dr

)}

,

where σj,+
t,s :=

∑

i∈J (ci)+
Ψi

t

Ψj
t

(σ̄i
t,s − σ̄j

t,s)

N j,+
t

, σj,−
t,s :=

∑

i∈J (ci)−
Ψi

t

Ψj
t

(σ̄i
t,s − σ̄j

t,s)

N j,−
t

. Finally, since

the proxy volatilities (σ̄i
t,s)s≥t are Ft-measurable, the Qj-conditional probabilities can be

computed via Gaussian computations, i.e.

Qj
(

Y 0
s ≥ 0|Ft

)

≈ N





log(N j,+
t /N j,−

t )− 1
2

∫ s

t
(|σj,+

t,r |2 − |σj,−
t,r |2)dr

√

∫ s

t
|σj,+

t,r − σj,−
t,r |2dr



 .

It is justified in [GM14], that the above approximation on Y 0
s is accurate in Lp as

the volatility and/or the time s − t are small. In the same reference, additional explicit
corrections are provided to the computation of the expectation, but we argue that this is

unnecessary for the first-order expansion of this BSDE, because the approximation on Y
(1)
t

will be multiplied by the smaller factor λ = ε. Thus the neglected correction terms have no
contributions at the first-order expansion. As explained in [Avi09], Lp-approximations of
Y 0
s also provide approximations of its distribution function: we do not elaborate further in

this direction since the computations are tedious and the result quite clear.
To sum up, our first order expansion for the solution of (4.16) is

Yt ≈ Ȳ 1 = Y 0
t + λY

(1)
t , (4.21)

where the first order correcting term Y (1) is then approximated as

Y
(1)
t ≈ Ỹ

(1)
t := −(1−R)

∑

j∈J

cjΨ
j
t

∫ T

t

N
(

log(N j,+
t /N j,−

t ) + 1
2

∫ s

t
(|σj,−

t,r |2 − |σj,+
t,r |2)dr

√

∫ s

t
|σj,−

t,r − σj,+
t,r |2dr

)

ds.

(4.22)

Remark 4.8. From practical point of view, the representation (4.22) for Ỹ (1) can be con-
sidered semi-explicit. As such, given the explicit knowledge of the solution Y 0 of the linear
problem (4.18), and of the proxy volatilities (σ̄j

t,s)s≥t, the above computation only requires a
numerical integration with respect to the time-variables r and s. It is important to observe
that the dimension of the problem has no impact on the dimension of the numerical integral.
Indeed, all the correlation between the prices is contained within the q-dimensional vectors
σj,+ and σj,−, whereas the integrands in (4.22) are all 1-dimensional. In particular, a direct
computation shows the following useful representation:

|σj,+
t,s |2 =

∑

i,k∈J (ci)+(ck)+Ψ
i
tΨ

k
t

(

Σj,j
t,s +Σi,k

t,s − Σj,i
t,s − Σj,k

t,s

)

(

Ψj
tN

j,+
t

)2 , (4.23)

|σj,−
t,s |2 =

∑

i,k∈J (ci)−(ck)−Ψ
i
tΨ

k
t

(

Σj,j
t,s +Σi,k

t,s − Σj,i
t,s − Σj,k

t,s

)

(

Ψj
tN

j,−
t

)2 ,
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|σj,+
t,s − σj,−

t,s |2 =

∑

i,k∈J

(

(ci)+
Nj,+

t

− (ci)−

Nj,−
t

)(

(ck)+

Nj,+
t

− (ck)−

Nj,−
t

)

Ψi
tΨ

k
t

(

Σj,j
t,s +Σi,k

t,s − Σj,i
t,s − Σj,k

t,s

)

(

Ψj
t

)2 ,

where Σ = (Σi,j
t,s)i,j∈J , with Σi,j

t,s = σ̄i
t,s · σ̄j

t,s.

In the next subsection we present a possible choice for the proxy volatilities (σ̄j
t,s)s≥t in

the Markovian case.

4.3. Log-normal volatility proxy σ̄j

Let us consider a Markovian model driven by d factors X1, · · · , Xd of uncertainty (e.g.
asset prices, indexes, volatilities etc) following the dynamics:

dXt = α(t,Xt)dt+ β(t,Xt) dWt,

with β : [0, T ] × Rd → Rd×q and α : [0, T ] × Rd → Rd. Assume also a Markovian interest
rate r : [0, T ] × Rd → R, and Markovian terminal payoffs Ψj = ψj(XT ), j ∈ J . Then, Y 0

t

is given by (4.18) with

Ψj
t = uj(t,Xt), uj(t, x) = E

[

e−
∫

T

t
r(s,Xs)dsψj(XT )

∣

∣Xt = x
]

, j ∈ J .

Now, by applying the Itô rule to uj(t,Xt) we get

σj
s =

∇xu
j(s,Xs)β(s,Xs)

uj(s,Xs)
, j ∈ J .

For any t ≥ 0, we then define the Ft-measurable approximations (σ̄j
t,s)s≥t as

σ̄j
t,s =

∇xu
j(s,Xt)β(s,Xt)

uj(s,Xt)
, j ∈ J .

This approximation can be viewed as a log-normal approximation in the spirit of the short-
time asymptotic expansion proposed by [LPP13, BG12]. Further correcting terms could be
computed and added to this approximation for σj

s, but we claim that this is not relevant in
terms of accuracy due to the λ term in (4.21), which is supposed to be relatively small.

4.4. Example: Portfolio of Call and Put options

4.4.1. Notation

As a particular example, we study the case where the global exposition of the investor
with respect to his counterpart is given by a linear combination of call and put options
written on d underlying assets S1, · · · , Sd, whose dynamics are given by

dXi
t =

(

rt −
1

2
|σi

t|2
)

dt+ σi
t dWt, i = 1, · · · , d, (4.24)

where Xi
t := log(Si

t), W is a q-dimensional Brownian motion with q ≥ d, and (σi
t)0≤t≤T are

(Rq)⊤-valued stochastic processes, square integrable with respect to t. This model allows for
stochastic volatility and for stochastic interest rate r; therefore, X may be non Markovian.
Even though the analysis of the previous section applies to the case of a pool of derivatives
with different maturities, we consider here for simplicity a portfolio of call and put options
with the same maturity T , i.e. ξ = ψ(XT ) with

ψ(x) =

d
∑

i=1

ni
∑

l=1

[

cC,i,l(e
xi − eki,l)+ + cP,i,l(e

ki,l − exi)+
]
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=

d
∑

i=1

ni
∑

l=1

[

cC,i,l(e
xi ∨ eki,l) + cP,i,l(e

ki,l ∨ (2eki,l − exi))
]

−
d
∑

i=1

ni
∑

l=1

(cC,i,l + cP,i,l)e
ki,l ,

with some portfolio weights cC,i,l, cP,i,l ∈ R. To fit our previous notation (4.17) one can set

J :=
{

(α, i, l)
∣

∣α ∈ {C,P}, 1 ≤ i ≤ d, 1 ≤ l ≤ ni

}

∪∆,

and

Ψ(C,i,l) = eki,j ∨ eXi
T , Ψ(P,i,l) = eki,l ∨ (2eki,l − eX

i
T ), 1 ≤ i ≤ d, 1 ≤ l ≤ ni,

together with

Ψ∆ = 1, c∆ = −
d
∑

i=1

ni
∑

l=1

(cC,i,l + cP,i,l)e
ki,l .

4.4.2. Numerical tests under a multidimensional constant volatility model

We consider the particular case of constant parameters dynamics for the underlying
assets, i.e. (4.24) reduces to σi · σj = |σi| |σj | ρi,j where ρi,j stands for the correlation
between the i-th and j-th assets.

To the best of our knowledge there are no benchmarks in literature for the valuation of
the FVA with provision of counterparty risk in such a multidimensional framework. The
implementation of a Monte Carlo simulation for the evaluation of Yt would be quite chal-
lenging and goes far beyond the purpose of this paper. Therefore, we rely on the error
estimate (2.5), and on Remark 4.7, to claim that the first order expansion Ȳ 1,λ represents
an accurate approximation for λ reasonably small, say λ < 5%.

In the following numerical tests we consider the approximated first order expansion
˜̄Y 1,λ
t = Y 0

t + λỸ
(1)
t , where Ỹ 1 is then given by (4.22)-(4.21)-(4.23), with

Ψ∆
t = e−r(T−t), Σ∆,ζ

t,s = Σζ,∆
t,s = 0, ζ ∈ J ,

and with

Ψη
t = Ψ

(α,i,j)
t = BSα,i,j(t,Xi

t) + eki,j−r(T−t),

Ση,ζ
t,s = σ̄η

t,s · σ̄ζ
t,s = σ̄

(α,i,j)
t,s · σ̄(β,k,l)

t,s

= |σi||σk|ρi,k
∂xi

BSα,i,j(s,Xi
t)∂xk

BSβ,k,l(s,Xk
t )

(

BSα,i,j(s,Xi
t) + eki,j−r(T−s)

)(

BSβ,k,l(s,Xk
t ) + ekk,l−r(T−s)

) , (4.25)

for any η = (α, i, j), ζ = (β, k, l), with α, β ∈ {C,P}, 1 ≤ i, k ≤ d, 1 ≤ j ≤ ni, 1 ≤ l ≤ nk,
and where BSC,i,j(t,Xi

t) and BSP,i,j(t,Xi
t) are the usual prices at time t of a Call and Put

options respectively, with log-strike ki,j , under the Black-Scholes model with volatility σi
and interest rate r. Note that, to compute (4.25) we used the time-dependent approximation
discussed at the end of the previous section, which now reads as

σ̄η
t,s = σ̄α,i,j

t,s =
∂xiBS(α,i,j)(s,Xi

t)σi

BSα,i,j(s,Xi
t) + eki,j−r(T−s)

.

1-st numerical test: 5 underlying assets. We consider a portfolio with 5 options (Put
or Call), each of these being written on a different underlying asset, and we compare the

the semi-explicit 1-st order approximation ˜̄Y 1,λ with the former first order approximation
Ȳ 1,λ, computed by means of Monte Carlo simulation. The correlation is set to ρi,j = 0
(i 6= j), the interest rate is r = 5% and the default intensity is λ = 4%. The remaining
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parameters are chosen according to two different scenarios summarized in Tables 3 and 4,
and their corresponding results are reported in Tables 5 and 6 respectively. In particular,
the first two columns represent the value of the portfolio at time 0 with terminal payoff ξ−

and ξ+ respectively, the third column represents the 0-th order approximation Y 0
0 of Y0.

Note that Y 0 is the solution of the linear BSDE (4.16) with λ = 0, and thus Y 0 = Y +−Y −.

The fourth column contains the semi-closed 1-st order approx. ˜̄Y 1,λ
0 , whereas the fifth one

contains the extreme values of the 95% confidence interval of the Monte Carlo simulations
for the 1-st order approx. Ȳ 1,λ

0 . We observe that the proxy approximation of volatilities

do not deteriorate significantly the results (see the difference between ˜̄Y 1,λ
0 and Ȳ 1,λ

0 ). The
amplitude of the correction terms seemingly increases as T increases, which is somehow
coherent with estimates w.r.t. T in Theorem 2.4.

2-nd numerical test: 10 underlying assets. In our second numerical test we consider
a portfolio composed by 10 Call and Put options, each of them being written on a different
underlying asset. The main purpose of this experiment is to show the flexibility of our
methods. In particular, to show how this easily adapts to the dimensional increment, and
then it could be thought as a viable avenue to the purpose of computing the FVA for a multi-
asset portfolio. On the contrary, the regression Monte-Carlo scheme [GT13b] can handle
more general BSDEs but it suffers from the curse of dimensionality; indeed, the theoretical
order of convergence w.r.t. the computational effort is (8+d/k)−1 where d is the dimension
and k the regularity of the value fonction to compute.

We assume once again no correlation between assets, we set the interest rate to r = 5%
and the default intensity to λ = 3%. The choice of the remaining parameters is summarized
in Table 7. In Figures 2, 3 and 4 we show, for T = 0.2, T = 1 and T = 2 respectively, how the
portfolio value (with and without FVA) changes, as the volatilities (σi)0≤i≤10 are multiplied
by a factor υ. In particular the solid blue and the dashed red lines represent, respectively,
the proxy value Y 0

0 , i.e. the portfolio value without FVA, and the first order approximation
˜̄Y 1,λ
0 of Y0, i.e. the approximate portfolio value with provision for counterparty risk, both

plotted as a function of υ ∈ [0.5, 2].

Underlying asset 1 2 3 4 5
σ 0.2 0.3 0.1 0.3 0.2
k -0.1 -0.2 0 -0.1 0.1

Call options 1 0 -1 0 1
Put options 0 -1 0 1 0

Table 3: Parameters in the Scenario 1.A

Underlying asset 1 2 3 4 5
σ 0.2 0.2 0.3 0.1 0.2
k 0.3 0 -0.1 -0.3 0.2

Call options 0 1 1 -1 0
Put options -1 0 0 0 1

Table 4: Parameters in the Scenario 1.B
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0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Υ

0.290

0.295

Portfolio value

Figure 2: T = 0.2. Portfolio value with (solid line) and without (dashed line) FVA, as a function of υ.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Υ

0.32

0.34

0.36

0.38

0.40

Portfolio value

Figure 3: T = 1. Portfolio value with (solid line) and without (dashed line) FVA, as a function of υ.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Υ

0.38

0.40

0.42

0.44

0.46

0.48

Portfolio value

Figure 4: T = 2. Portfolio value with (solid line) and without (dashed line) FVA, as a function of υ.
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T Y −

0
Y +
0

Y 0
0 = Y +

0
− Y −

0
˜̄Y 1,λ
0

Ȳ
1,λ
0

(MC 95% C.I.)

0.1 0.1285 0.0000 0.0932 0.0930 0.0930 – 0.0930
0.5 0.1958 0.0080 0.1370 0.1353 0.1353 – 0.1353
1 0.2498 0.0320 0.1790 0.1745 0.1745 – 0.1745
1.5 0.2912 0.0611 0.2133 0.2053 0.2052 – 0.2052
2 0.3259 0.0913 0.2431 0.2308 0.2306 – 0.2307

Table 5: Comparison in the Scenario 1.A.

T Y −

0
Y +
0

Y 0
0 = Y +

0
− Y −

0
˜̄Y 1,λ
0

Ȳ
1,λ
0

(MC 95% C.I.)

0.1 0.6060 0.3487 -0.2572 -0.2572 -0.2572 – -0.2572
0.5 0.5956 0.4195 -0.1759 -0.1761 -0.1761 – -0.1761
1 0.5908 0.4863 -0.1022 -0.1036 -0.1037 – -0.1036
1.5 0.5915 0.5419 -0.0444 -0.0478 -0.0479 – -0.0479
2 0.5950 0.5905 0.0042 -0.0021 -0.0023 – -0.0022

Table 6: Comparison in the Scenario 1.B

A. Appendix

A.1. A priori estimates of the solutions of BSDE’s

For the convenience of the reader, we recall the following standard stability result.

Proposition A.1. [EPQ97, Proposition 2.1 and second line p.20] Let (Ỹ i, Z̃i) (i = 1, 2) be
the solutions of the BSDEs respectively associated to the terminal conditions ξ̃i ∈ L2

T (R) and

to the drivers f̃ i, which are uniformly Lipschitz in (y, z) and such that f̃ i(., 0, 0) ∈ H2
T (R).

Set δt := f̃1(t, Ỹ 2
t , Z̃

2
t )− f̃2(t, Ỹ 2

t , Z̃
2
t ) and denote by C̃1 the Lipschitz constant for f̃1. Then,

for any (λ, µ, θ) such that µ > 0, λ2 > C̃1 and θ ≥ C̃1(2 + λ2) + µ2, we have

sup
0≤t≤T

eθt|Ỹ 1
t − Ỹ 2

t |2L2
≤ eθT |ξ̃1 − ξ̃2|2L2

+
1

µ2
‖δ‖2θ ,

∥

∥

∥Z̃1 − Z̃2
∥

∥

∥

2

θ
≤ λ2

λ2 − C̃1

[

eθT |ξ̃1 − ξ̃2|2L2
+

1

µ2
‖δ‖2θ

]

.

A.2. Proof of Proposition 1.1

We set G0
t := ηYt Y

0
t + ηZt · Z0

t and Gt := ηYt ut + ηZt · vt: we aim at proving

I(ε) := E

∫ T

0

∣

∣

∣

∣

∣

(G0
t + εGt)+ − (G0

t )+ − ε
[

Gt1G0
t>0 + (Gt)+1G0

t=0

]

ε

∣

∣

∣

∣

∣

2

dt→ 0

as ε→ 0+. Use (a+ b)+ − a+ = b
∫ 1

0
1a+λb>0dλ (for any a, b ∈ R) and write

I(ε) = E

∫ T

0

∣

∣

∣

∣

Gt

∫ 1

0

1G0
t+λεGt>0dλ−

[

Gt1G0
t>0 + (Gt)+1G0

t=0

]

∣

∣

∣

∣

2

dt

:= I<(ε) + I>(ε) + I=(ε)

where I>,<,=(ε) denote the above expectation-integral respectively on the sets {G0
t < 0},

{G0
t > 0}, {G0

t = 0}. We have

I<(ε) = E

∫ T

0

1G0
t<0

∣

∣

∣

∣

Gt

∫ 1

0

1G0
t+λεGt>0dλ

∣

∣

∣

∣

2

dt

= E

∫ T

0

∫ 1

0

∫ 1

0

1G0
t<0G

2
t1G0

t+λ2εGt>01G0
t+λ1εGt>0dλ1dλ2dt.
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Underlying asset 1 2 3 4 5 6 7 8 9 10
σ 0.2 0.3 0.1 0.3 0.2 0.2 0.3 0.1 0.3 0.2
k -0.1 -0.2 0 -0.1 0.1 -0.1 -0.2 0 -0.1 0.1

Call options 1 0 -1 0 1 1 0 -1 0 1
Put options 0 -1 0 1 0 0 -1 0 1 0

Table 7: Parameters in the Scenario 2

The integrand is bounded by G2 which is dP× dλ1 × dλ2 × dt-integrable; furthermore, the
integrand converges dP × dλ1 × dλ2 × dt-a.e. to 0 as ε → 0. Thus, by the dominated
convergence theorem, we have I<(ε) → 0. Similarly, I>(ε) → 0. Last, observe that I=(ε) =
E
∫ T

0
1G0

t=0

∣

∣

∣Gt

∫ 1

0
1λεGt>0dλ− (Gt)+

∣

∣

∣

2

dt = 0 since ε > 0. This concludes the proof.
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