I. A. Ahmad and Y. Fan, Optimal bandwidths for kernel density estimators of functions of observations, Statistics & Probability Letters, vol.51, issue.3, pp.245-251, 2001.
DOI : 10.1016/S0167-7152(00)00136-X

I. A. Ahmad and A. R. Mugdadi, Analysis of kernel density estimation of functions of random variables, Journal of Nonparametric Statistics, vol.12, issue.4-5, pp.579-605, 2003.
DOI : 10.1080/10485250310001605441

S. Bonhomme and J. Robin, Generalized Non-Parametric Deconvolution with an Application to Earnings Dynamics, Review of Economic Studies, vol.77, issue.2, pp.491-533, 2010.
DOI : 10.1111/j.1467-937X.2009.00577.x

C. Butucea, Deconvolution of supersmooth densities with smooth noise, Canadian Journal of Statistics, vol.330, issue.2, pp.181-192, 2004.
DOI : 10.2307/3315941

URL : https://hal.archives-ouvertes.fr/hal-00103058

C. Butucea and C. Matias, Minimax estimation of the noise level and of the deconvolution density in a semiparametric convolution model, Bernoulli, vol.11, issue.2, pp.309-340, 2005.
DOI : 10.3150/bj/1116340297

URL : https://hal.archives-ouvertes.fr/hal-00101845

C. Butucea and A. B. Tsybakov, Sharp optimality in density deconvolution with dominating bias. II. Theory Probab, Appl, vol.52, pp.237-249, 2008.

R. J. Caroll and P. Hall, Optimal Rates of Convergence for Deconvolving a Density, Journal of the American Statistical Association, vol.74, issue.404, pp.1184-1186, 1988.
DOI : 10.1080/01621459.1988.10478718

U. Cherubini, S. Mulinacci, and S. Romagnoli, On the distribution of the (un)bounded sum of random variables, Insurance: Mathematics and Economics, vol.48, issue.1, pp.56-63, 2011.
DOI : 10.1016/j.insmatheco.2010.09.004

C. Chesneau, F. Comte, and F. Navarro, Fast nonparametric estimation for convolutions of densities, Canadian Journal of Statistics, vol.51, issue.4, pp.617-636, 2013.
DOI : 10.1002/cjs.11191

URL : https://hal.archives-ouvertes.fr/hal-00798766

C. Chesneau and F. Navarro, On a Plug-In Wavelet Estimator for Convolutions of Densities, Journal of Statistical Theory and Practice, vol.3, issue.4, 2014.
DOI : 10.1002/9780470317020

URL : https://hal.archives-ouvertes.fr/hal-00625912

F. Comte, Y. Rozenholc, and M. Taupin, Penalized contrast estimator for adaptive density deconvolution, Canadian Journal of Statistics, vol.18, issue.3, pp.431-452, 2006.
DOI : 10.1002/cjs.5550340305

URL : https://hal.archives-ouvertes.fr/hal-00016489

F. Comte and V. Genon-catalot, Convolution power kernels for density estimation, Journal of Statistical Planning and Inference, vol.142, issue.7, pp.1698-1715, 2012.
DOI : 10.1016/j.jspi.2012.02.038

URL : https://hal.archives-ouvertes.fr/hal-00681309

F. Comte and C. Lacour, Data-driven density estimation in the presence of additive noise with unknown distribution, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.18, issue.4, pp.601-627, 2011.
DOI : 10.1111/j.1467-9868.2011.00775.x

A. Delaigle and I. Gijbels, Estimation of boundary and discontinuity points in deconvolution problems, Statistica Sinica, vol.16, pp.773-788, 2006.

A. Delaigle, P. Hall, and A. Meister, On deconvolution with repeated measurements, The Annals of Statistics, vol.36, issue.2, pp.665-685, 2008.
DOI : 10.1214/009053607000000884

L. Devroye, Consistent deconvolution in density estimation, Canadian Journal of Statistics, vol.23, issue.404, pp.235-239, 1989.
DOI : 10.2307/3314852

J. Du and A. Schick, Root-n consistency and functional central limit theorems for estimators of derivatives of convolutions of densities, Internat. J. Statist. Management Systems, vol.2, pp.67-87, 2007.

J. Fan, On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems, The Annals of Statistics, vol.19, issue.3, pp.1257-1272, 1991.
DOI : 10.1214/aos/1176348248

J. Fan and J. Y. Koo, Wavelet deconvolution, IEEE transactions on information theory, vol.48, pp.734-747, 2002.

E. Frees, Estimating Densities of Functions of Observations, Journal of the American Statistical Association, vol.15, issue.426, pp.17-525, 1994.
DOI : 10.1017/S0305004100061168

E. Giné and D. M. Mason, On local U -statistic processes and the estimation of densities of functions of several sample variables, The Annals of Statistics, vol.35, issue.3, pp.1105-1145, 2007.
DOI : 10.1214/009053607000000154

A. Goldenshluger and O. Lepski, Bandwidth selection in kernel density estimation: Oracle inequalities and adaptive minimax optimality, The Annals of Statistics, vol.39, issue.3, pp.1608-1632, 2011.
DOI : 10.1214/11-AOS883

URL : https://hal.archives-ouvertes.fr/hal-01265258

J. Johannes, Deconvolution with unknown error distribution, The Annals of Statistics, vol.37, issue.5A, pp.2301-2323, 2009.
DOI : 10.1214/08-AOS652

M. C. Jones and H. W. Lotwick, Remark AS R50: A Remark on Algorithm AS 176. Kernal Density Estimation Using the Fast Fourier Transform, Applied Statistics, vol.33, issue.1, pp.120-122, 1984.
DOI : 10.2307/2347674

J. Kappus, Adaptive nonparametric estimation for Lévy processes observed at low frequency . Stochastic Process, Appl, vol.124, pp.730-758, 2014.

J. Kappus and G. Mabon, Adaptive density estimation in deconvolution problems with unknown error distribution, Electronic Journal of Statistics, vol.8, issue.2, 2013.
DOI : 10.1214/14-EJS976

URL : https://hal.archives-ouvertes.fr/hal-00915982

C. Lacour, Rates of convergence for nonparametric deconvolution, Comptes Rendus Mathematique, vol.342, issue.11, pp.877-882, 2006.
DOI : 10.1016/j.crma.2006.04.006

URL : https://hal.archives-ouvertes.fr/hal-00115610

O. V. Lepski, On a problem of adaptive estimation in gaussian white noise. Theory of Probability and its Applications, pp.454-466, 1990.

J. S. Marron and M. P. Wand, Exact Mean Integrated Squared Error, The Annals of Statistics, vol.20, issue.2, pp.712-736, 1992.
DOI : 10.1214/aos/1176348653

A. Meister, Deconvolution Problems in Nonparametric Statistics. 193. Lecture Notes in Statistics, 2009.

A. R. Mugdadi and I. Ahmad, A bandwidth selection for kernel density estimation of functions of random variables, Computational Statistics & Data Analysis, vol.47, issue.1, pp.49-62, 2004.
DOI : 10.1016/j.csda.2003.10.013

M. H. Neumann, On the effect of estimating the error density in nonparametric deconvolution, Journal of Nonparametric Statistics, vol.46, issue.4, pp.307-330, 1997.
DOI : 10.1214/aos/1176348768

M. Neumann, Deconvolution from panel data with unknown error distribution, Journal of Multivariate Analysis, vol.98, issue.10, pp.1955-1968, 2007.
DOI : 10.1016/j.jmva.2006.09.012

M. Neumann and M. Reiss, Nonparametric estimation for L??vy processes from low-frequency observations, Bernoulli, vol.15, issue.1, pp.223-248, 2009.
DOI : 10.3150/08-BEJ148

R. Nickl, Donsker-type theorems for nonparametric maximum likelihood estimators. Probab. Theory Related Fields, pp.411-449, 2007.

R. Nickl, On Convergence and Convolutions of Random Signed Measures, Journal of Theoretical Probability, vol.137, issue.1, pp.38-56, 2009.
DOI : 10.1007/s10959-008-0177-3

H. H. Panjer and G. E. Willmot, Insurance Risk Models, Society of Actuaries, 1992.

M. Pensky and B. Vidakovic, Adaptive wavelet estimator for nonparametric density deconvolution. The Annals of Statistics, pp.2033-2053, 1999.

P. Rao and B. L. , Moment inequalities for supremum of empirical processes of Ustatistic structure and application to density estimation, J.Iran. Statist. Soc, vol.3, pp.59-68, 2004.

H. P. Rosenthal, On the subspaces ofL p (p>2) spanned by sequences of independent random variables, Israel Journal of Mathematics, vol.8, issue.3, pp.273-303, 1970.
DOI : 10.1007/BF02771562

A. Saavedra and R. Cao, On the estimation of the marginal density of a moving average process, Canadian Journal of Statistics, vol.23, issue.4, pp.799-815, 2000.
DOI : 10.2307/3315917

A. Schick and W. Wefelmeyer, consistent density estimators for sums of independent random variables, Journal of Nonparametric Statistics, vol.32, issue.6, pp.925-935, 2004.
DOI : 10.1111/j.1467-9469.2004.00373.x

A. Schick and W. Wefelmeyer, Root-n consistent density estimators of convolutions in weighted -norms, Journal of Statistical Planning and Inference, vol.137, issue.6, pp.1765-1774, 2007.
DOI : 10.1016/j.jspi.2006.06.041

A. N. Shiryaev, Probability. Translated from the first (1980) Russian edition by R. P. Boas. Second edition, Graduate Texts in Mathematics, vol.95, 1996.
URL : https://hal.archives-ouvertes.fr/hal-01477104

B. W. Silverman, Algorithm AS 176: Kernel Density Estimation Using the Fast Fourier Transform, Applied Statistics, vol.31, issue.1, pp.93-99, 1982.
DOI : 10.2307/2347084

B. W. Silverman, Density estimation: for statistics and data analysis, 1986.
DOI : 10.1007/978-1-4899-3324-9

A. B. Tsybakov, Introduction to nonparametric estimation. Revised and extended from the 2004 French original. Translated by Vladimir Zaiats, 2009.

C. Zhang, Estimation of sums of random variables: Examples and information bounds, The Annals of Statistics, vol.33, issue.5, pp.2022-2041, 2005.
DOI : 10.1214/009053605000000390

Z. T. Zijaeva, The estimation of the density of a sum of random variables, Russian) Izv. Akad. Nauk. USSR Ser. Fiz.-Mat. Nauk, pp.13-15, 1975.