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The optimal energy growth of perturbations sustained by a zero pressure gradient
turbulent boundary is computed using the eddy viscosity associated with the turbulent
mean flow. It is found that even if all the considered turbulent mean profiles
are linearly stable, they support transient energy growths. The most amplified
perturbations are streamwise uniform and correspond to streamwise streaks originated
by streamwise vortices. For sufficiently large Reynolds numbers two distinct peaks of
the optimal growth exist, respectively scaling in inner and outer units. The optimal
structures associated with the peak scaling in inner units correspond well with the
most probable streaks and vortices observed in the buffer layer, and their moderate
energy growth is independent of the Reynolds number. The energy growth associated
with the peak scaling in outer units is larger than that of the inner peak and scales
linearly with an effective turbulent Reynolds number formed with the maximum eddy
viscosity and a modified Rotta–Clauser length based on the momentum thickness.
The corresponding optimal perturbations consist of very large–scale structures with
a spanwise wavelength of the order of 8 δ. The associated optimal streaks scale in
outer variables in the outer region and in wall units in the inner region of the
boundary layer, in which they are proportional to the mean flow velocity. These outer
streaks protrude far into the near wall region, having still 50 % of their maximum
amplitude at y+ = 20. The amplification of very large–scale structures appears to be a
robust feature of the turbulent boundary layer: optimal perturbations with spanwise
wavelengths ranging from 4δ to 15δ can all reach 80 % of the overall optimal peak
growth.

1. Introduction
The presence of persistent streaky structures is a well-established robust feature

of turbulent shear flows (Kline et al. 1967). A large amount of research has been
dedicated to the understanding of the mechanisms by which streaks are generated
and of their relevance to the turbulent dynamics. In the near wall region of the
boundary layer these streaks, with characteristic mean spacing of about 100 wall
units, are thought to play an essential role in a turbulent self-sustained mechanism
(Jiménez & Moin 1991; Hamilton, Kim & Waleffe 1995; Waleffe 1995). The ‘lift-
up’ effect by which low-energy streamwise vortices can induce large-energy streaks
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(Moffatt 1967; Ellingsen & Palm 1975; Landahl 1980) is an important process
embedded in this self-sustained mechanism. The same effect, leading to unstable
large-amplitude streaks, is also thought to play a crucial role in the subcritical
transition to turbulence in linearly stable shear flows (e.g. Kreiss, Lundbladh &
Henningson 1994; Reddy et al. 1998). In the latter context it has been recognized that
the energy amplification of the streaks, which is transient in time and proportional to
the square of the Reynolds number (Gustavsson 1991), is related to the non-normal
nature of the linearized Navier–Stokes operator and can lead to very large energy
growths if optimized (Butler & Farrell 1992; Trefethen et al. 1993; Farrell & Ioannou
1996; Schmid & Henningson 2001). Recent studies have also demonstrated that the
well-controlled optimal transient growth of artificially forced streaks can be efficiently
used to manipulate at leading order laminar shear flows. Such a paradigm has been
successfully applied to stabilize Tollmien–Schlichting waves in a laminar boundary
layer (Cossu & Brandt 2002; Fransson et al. 2005) and effectively delay the transition
to turbulence (Fransson et al. 2006). In these investigations, roughness elements were
used to create nearly optimal vortices in the upstream part of the boundary layer
that induced well-controlled streamwise streaks downstream. A still-not-addressed
extension of such a kind of approach would consist in the manipulation of turbulent
boundary layers with optimal vortices and streaks, the first step in this direction being
to compute the optimal perturbations of the turbulent boundary layer.

If the optimal energy growth and the corresponding optimal perturbations have
been computed for virtually all the canonical wall-bounded laminar shear flows, only
few studies have considered turbulent flows. Linear stability analyses of turbulent
mean basic flows by Malkus (1956), Reynolds & Tiederman (1967) and Reynolds &
Hussain (1972) essentially reveal that these flows are linearly stable. Only recently, the
optimal-perturbation energy growth of turbulent mean flows has been investigated
looking for a relation between turbulent coherent structures and linear optimals
(Butler & Farrell 1993; Farrell & Ioannou 1993, 1998). Butler & Farrell (1993)
considered the optimal perturbations of a turbulent channel flow, using the Reynolds
& Tiederman (1967) turbulent mean profile based on the eddy viscosity model of Cess
(1958), but they used the molecular viscosity in the equations for the perturbations.
They found that perturbations leading to maximum growth are streamwise uniform
and spanwise periodic with wavelength near 3 h, where h is the channel half-width,
which is almost the same value selected in the laminar case. By constraining the
optimization to times of the order of the eddy turnover time they were able to
find optimals with the typical 100 wall units spacing characteristic of the near wall
region streaks. del Álamo & Jiménez (2006) repeated the analysis, using in the linear
operator the eddy viscosity νT (y) associated with the turbulent mean flow in the spirit
of the modal linear investigations of Reynolds & Hussain (1972). Without any further
restriction on the optimization times they found two peaks for the optimal growth.
The main peak scales on external units with an optimal spanwise wavelength λz ∼ 3 h,
while the secondary peak, which scales in inner (wall) units, is found at λ+ =100 and
is associated with typical near wall streaks. To explain the formation of secondary
vortices in a turbulent square duct Bottaro, Souied & Galletti (2006) have computed
the linear optimals, using a mixing length model for the eddy viscosity.

The optimal perturbation energy growth has not yet been computed for turbulent
boundary layers despite their great practical and theoretical relevance. For such type
of flow some questions arise: Do two different optimal peaks with distinct scalings
also appear in this case as expected? Which is the relevant external boundary layer
length on which the optimal vortices and streaks scale? What are the values of the
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optimal spanwise wavelengths? In the laminar case the optimal energy growth is
proportional to the square of the Reynolds number. In the turbulent channel flow
case the maximum growth of near wall structures does not seem to depend on the
Reynolds number while the maximum growth of the large-scale structures does, but no
characteristic scaling was found in that case. Another question therefore is on which
quantity does the maximum energy growth of the large-scale structures scale? Answers
to these questions, in addition to their relevance for the analysis of natural large-scale
structures in turbulent boundary layers, will probably also be useful in the light of
the many previous studies related to the manipulation of turbulent boundary layers
with streamwise vortices by either riblets or bio-inspired rough walls scaling in inner
units and vortex generators scaling in outer units. In most of these investigations, the
particular choice of the actuator size and spacing have been inspired by bio-mimetic
or semi-empirical considerations and not optimal energy growth considerations.

The scope of the present study is therefore to answer some of the questions
proposed above by computing the optimal energy growth and the associated optimal
perturbations supported by turbulent zero pressure gradient boundary layers. In § 2
we briefly introduce the equations defining the turbulent mean flow, the procedure
by which the associated turbulent shear stress and eddy viscosity are computed
and the linearized equations for the perturbations, and we summarize how optimal
perturbations and growths are computed. The optimal growths and perturbations
computed for the selected mean flow profiles and their dependence on the streamwise
and spanwise wavenumbers as well as on the Reynolds number are presented in § 3.
A summary of our findings and a discussion of their relation with existing studies
and of their implications are provided in § 4.

2. Background
2.1. Mean flow and the associated eddy viscosity

The boundary layer mean flow U (x, y), V (x, y) in the absence of pressure gradient
in the streamwise direction x satisfies the standard mean mass and momentum
conservation equations (see, e.g. Schlichting 1979):

∂U

∂x
+

∂V

∂y
= 0, (2.1)

U
∂U

∂x
+ V

∂U

∂y
=

1

ρ

∂τ

∂y
, (2.2)

where τ/ρ = ν(∂U/∂y) − 〈u′v′〉/ρ is the sum of the molecular and the Reynolds shear
stress. We denote by x, y and z respectively the streamwise, the wall normal and
the spanwise coordinates. At sufficiently large Reynolds numbers, the boundary layer
mean flow data can be conveniently fitted with uniformly valid asymptotic expansions,
even if the validity of such an approach is a recurrent subject of debate. Here, we use
a convenient self-consistent expression, recently proposed by Monkewitz, Chauhan
& Nagib (2007), which very well fits the experimental data of Österlund (1999)
and Nagib, Christophorou & Monkewitz (2004), among others, for a wide range of
Reynolds numbers:

U = uτ

[
U+

i (y+) − U+
log(y

+) + Ue
+(Reδ∗) − U+

w (η)
]
, (2.3)
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where uτ = (νdU/dy|wall)
1/2 is the wall friction velocity; y+ = yuτ/ν is the wall normal

coordinate scaled in inner units; Ue
+ =Ue/uτ is the free-stream velocity Ue scaled

with uτ ; Reδ∗ =Ueδ∗/ν is the Reynolds number scaled on the displacement thickness
δ∗; and η = y/� is the wall normal coordinate scaled with the Rotta–Clauser outer
length scale �= δ∗Ue

+. The inner and the outer coordinates are related by y+ = Reδ∗η.
The explicit expressions for the inner layer velocity function U+

i (y+), the log layer
velocity U+

log(y
+), the wake function U+

w (η) and Ue
+ are given in Appendix A. The

quantitative results presented in the following of course apply only where (2.3) is a
good fit to the data; however the procedure is general and could be applied to other
expressions assumed for U .

The shear stress associated with the mean flow U can be retrieved by integrating
(2.2) in the wall normal direction:

τ (y)

ρ
= u2

τ +

∫ y

0

(
U

∂U

∂x
+ V

∂U

∂y

)
dy, (2.4)

where the normal velocity component V can be computed with an integration of the
continuity equation V = −

∫ y

0
(∂U/∂x) dy. An explicit expression for ∂U/∂x can be

obtained deriving (2.3) with respect to x which, using the chain rule and (A 3) and
after some manipulation, gives

1

uτ

∂U

∂x
=

1

uτ

duτ

dx

[
U

uτ

+ y+ ∂U+
i

∂y+

]
+

1

�

d�

dx

[
η
∂U+

w

∂η
+

1

κ

]
, (2.5)

where κ is the von Kármán ‘coefficient’. Deriving with respect to x the explicit
expression of Ue

+ (A 3), and recalling that in the zero pressure gradient boundary
layer dUe/dx =0, it is found that

1

�

d�

dx
= − D

1

uτ

duτ

dx
(2.6)

with D =1 + κ Ue
+. Replacing in the integral von Kármán momentum equation

dθ/dx = (Ue
+)−2 the definition of the momentum thickness θ and then using (2.5) and

(2.6) it is found

1

uτ

duτ

dx
=

{∫ ∞

0

[
U

uτ

+ y+ ∂U+
i

∂y+
− D

(
η
∂U+

w

∂η
+

1

κ

)][
Ue

+ − 2
U

uτ

]
dy

}−1

(2.7)

which finally allows the explicit determination of ∂U/∂x, V and τ . The total shear
stress is then modelled by τ/ρ = νT (y)∂U/∂y, where the total viscosity νT is the sum
of the molecular and turbulent eddy viscosities; νT and its derivatives are explicitly
computed inside the boundary layer, but in the potential region, say for η > η∗, where
they respectively tend to ν and zero and are numerically undefined, since both τ and
∂U/∂y tend to zero, they are extrapolated. We have used η∗ = 0.25, but the results
of the extrapolation are not affected if η∗ is changed, provided that it remains in the
range ≈0.15–0.27.

2.2. Linear perturbations and optimal growth

Following the rationale of previous investigations of Reynolds & Tiederman (1967),
Reynolds & Hussain (1972) and del Álamo & Jiménez (2006) we consider the linear
temporal growth of perturbations u =(u, v, w), p to the turbulent mean flow, assumed
parallel, U = (U (y), 0, 0) with eddy viscosity νT (y). These perturbations satisfy the
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continuity equation ∇ · u =0 and the linearized momentum equation

∂u
∂t

+ U
∂u
∂x

+
(
v U ′, 0, 0

)
= − 1

ρ
∇p + ∇ · [νT (y)(∇u + ∇uT )], (2.8)

where (′) stands for ∂/∂y. Under the parallel flow assumption, perturbations of the
form û(α, y, β, t) ei(αx+βz) can be separately considered, where α and β are respectively
the streamwise and spanwise wavenumbers. Standard manipulations (see, e.g. Schmid
& Henningson 2001), generalized to include a variable viscosity (e.g. White 2006),
allow to recast the linearized system into the generalized Orr–Sommerfeld and Squire
equations for respectively the normal velocity v̂(y) and vorticity ω̂y(y):[

D2 − k2 0

0 1

]
∂

∂t

{
v̂

ω̂y

}
=

[
LOS 0

−iβU ′ LSQ

] {
v̂

ω̂y

}
(2.9)

with

LOS = −iα[U (D2 − k2) − U ′′]

+ [νT (D2 − k2)2 + 2ν ′
T (D3 − k2D) + ν ′′

T (D2 + k2)], (2.10)

LSQ = −iαU + [νT (D2 − k2) + ν ′
T D], (2.11)

where D, like (′), stands for ∂/∂y and k2 =α2 + β2. The perturbation velocity is zero
at the wall, resulting in the usual boundary conditions v̂ =Dv̂ = ω̂y = 0 at y = 0.

The optimal (temporal) energy growth G is defined in the usual way as the
ratio of the kinetic energy associated with û at time t to the kinetic energy
of the initial condition û0 optimized over all allowed û0: G(α, β, t) = supû0

‖û‖2/

‖û0‖2 with ‖û‖ = [
∫

V |û|2, dV]1/2. The maximum optimal growth, defined as
Gmax (α, β) = supt G(α, β, t), is attained at the time tmax . The standard methods used
to compute the maximum growth of laminar basic flows and described by, e.g. Schmid
& Henningson (2001) are easily extended to the case of the variable viscosity νT (y).
The numerical code is based on a spectral discretization of the operators LOS and
LSQ obtained by using differentiation matrices (Weideman & Reddy 2000) based
on Chebyshev polynomials on a grid of Ny + 1 collocation points in the interval
y ∈ [0, ymax ]. The perturbation velocity is required to vanish at the upper boundary
ymax , but this artificial boundary condition does not affect the results provided that
ymax is large enough. The code has been carefully validated in previous studies (e.g.
Lauga & Cossu 2005), and its results have been carefully tested on a turbulent
channel flow and the laminar boundary layer. The results discussed below have
been obtained using 257 to 513 collocation points and ymax ranging from 0.4 �

(almost twice the boundary layer thickness) for small wavelengths to 40 δ∗ for the
largest wavelengths. The convergence of the results has been checked by doubling the
number of collocation points and/or the maximum domain extension to 80 δ∗.

3. Results
3.1. Basic flow

The mean velocity profile given in (2.3) and the corresponding shear stress τ have
been computed for a set of Reynolds number Reδ∗ and are reported in figure 1. For
the considered profiles the boundary layer thickness, defined as the position at which
U = 0.99 Ue, is approximatively given by δ = 0.223 � for Reδ∗ � 104. Monkewitz et al.
(2007) have carefully validated with experimental data the mean profiles given by (2.3)
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Figure 1. Turbulent mean flow profiles given by (2.3) plotted in (a) outer and (b) inner
units. (c) Inner scaled Reynolds shear stress −〈u′v′〉/u2

τ = (τ/ρ − νU ′)/u2
τ plotted in inner scale

y+. The selected Reynolds numbers are Reδ∗ = 104, 1.73 × 104, 2 × 104, 4 × 104, 6 × 104, and
experimental data from de Graaff & Eaton (2000) at Reδ∗ =1.73 × 104 are also reported for
comparison as squares.
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Figure 2. Dependence of the maximum growth Gmax on the spanwise wavenumber β�
obtained at Reδ∗ = 17 300 for selected streamwise wavenumbers (α�= 0, 0.1, 1, . . .).

but not the corresponding shear stress that was not explicitly computed. We therefore
compare the Reynolds shear stress, computed following the procedure described in
§ 2.1, to the experimental data obtained by De Graaff & Eaton (2000) at Reδ∗ =17 300
(corresponding to Reθ =13 000). As can be seen from figure 1(c), the theoretical and
the experimental data agree reasonably well for both the velocity profiles and the
Reynolds shear stress.

3.2. Optimal perturbations and growth at fixed Reynolds number

3.2.1. Dependence of the optimal growth on the streamwise and spanwise wavenumbers

We have initially computed the optimal perturbations and growth Gmax of the mean
flow obtained for Reδ∗ = 17 300 for a range of streamwise and spanwise wavenumbers
extending from zero to 104/�. The results are reported in figure 2. As in the case of
the canonical laminar shear flows and the turbulent channel flow, the largest growths
are obtained for structures uniform in the streamwise direction (α = 0), and significant
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Figure 3. Cross-stream view of the v–w components of the optimal initial vortices (arrows)
and the u component of the corresponding maximally amplified streak (contour lines) for
Reδ∗ = 17 300, α =0. (a) The secondary peak optimal (β�= 1300) is plotted in internal units,
while (b) the primary peak optimal (β�=3.65) is plotted in external units. Black contours
represent positive u, while grey contours represent negative u.

growths are observed only when α � β , i.e. for structures elongated in the streamwise
direction (λx � λz) . For streamwise uniform structures (α = 0) the largest growth
is attained by very large structures with β�= 3.7, corresponding to λz =7.6 δ. The
optimal spanwise wavelength is strongly reduced when the perturbations have long
but finite streamwise wavelengths λx . For instance an optimal λz = 4.2 δ is found when
λx = 28 δ (corresponding to α�= 1).

A clearly distinct secondary peak can be identified at large spanwise wavenumbers
(β� ∼ 1300 in external units) corresponding to structures with λ+

z ∼ 80. The secondary
peak becomes the only and the dominant one for perturbations of large streamwise
wavenumber. The double peak structure, corresponding to two distinct outer and
inner scalings, is very much like what is observed in the turbulent channel flow case
by del Álamo & Jiménez (2006).

3.2.2. Streamwise uniform optimal perturbations

The α = 0 optimals corresponding to the two peaks reported in figure 2 are displayed
in figure 3. The optimal initial conditions consist of streamwise vortices (large v and
w and very small u components) that induce, at the time of maximum growth,
streamwise streaks (large u and small v and w components). The optimal streamwise
vortices and streaks displayed in figure 3(a) and corresponding to the secondary peak
at λ+

z =81.5 are centred near y+ = 10 like in the turbulent channel flow case of del
Álamo & Jiménez (2006) in agreement with previous results on the sublayer streaks
(e.g. del Álamo et al. 2004; Jiménez, del Álamo & Flores 2004). For the primary peak
(figure 3b) the optimal initial vortices are centred above the edge of the boundary
layer, and the corresponding optimal streaks have non-negligible amplitude inside
boundary layer.

In figure 4 are reported the normalized amplitudes of the wall normal v component
of the optimal initial condition (t = 0) and the streamwise u component of the optimal
response (t = tmax ) for different spanwise wavelengths λz. For all λz, the optimal initial
conditions (vortices) are more concentrated in the wall normal direction and located
farther from the wall than the corresponding optimal responses (streaks). When λ+

z

is increased, starting from 100, the centre of the optimal vortices moves away from
the wall (figure 4a) in an almost self-similar way. For λz > 10 δ the primary peak
optimal vortices (figure 4c) are localized outside the boundary layer, with a centre
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Figure 4. Normalized amplitude of (a), (c) the v component of the optimal initial vortices and
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intensity is proportional to the amplitude of the velocity component (the maximum amplitude
being black); the two black lines correspond to 80 % of the maximum amplitude.
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Figure 5. (a) Dependence on the spanwise wavenumber β� of the maximum growth Gmax of
streamwise uniform (α = 0) perturbations for the selected Reynolds numbers Reδ∗ . (b) Times
tmax at which the optimal growths reported in (a) are attained.

that remains near y = 2 δ for λz � 20, while the optimally induced streaks (figure 4d )
have the maximum near y = δ and extend well inside the boundary layer.

3.3. Dependence on Reynolds number

3.3.1. Scaling of the maximum growth

We have repeated the computations of the optimals for an additional set of low
(103, 2 × 103) and relatively large (104, 2 × 104, 4 × 104 and 6 × 104) Reynolds numbers
Reδ∗ considering only streamwise uniform (α = 0) perturbations, which are the most
amplified. As expected, the inner and the outer peaks are separated only at sufficiently
large Reynolds number (indicatively for Reδ∗ > 1500) as can be seen from figure 5(a),
where the curves Gmax (α = 0, β) are reported for the considered set of Reδ∗ . The
maximum growth, corresponding to the primary peak, increases with Reδ∗ and is
attained for essentially the same range of spanwise scales in external units, while the
secondary peak growth is essentially independent of Reδ∗ and is shifted to larger β

(smaller λz) when Reδ∗ is increased. The time tmax at which the optimals are reached



Optimal growth in turbulent boundary layers 87

1.0

1.5

2.0

2.5

3.0

110–110–210–3

G
m

ax

β +

(a) (b)

 0

0.01

0.02

0.03

0.04

0.05

102101

G
m

ax
/R

e •

βΔθ

Figure 6. Large Reynolds number (Reδ∗ = 104, . . . , 6 × 104) optimal growth data already
reported in figure 5 but rescaled in (a) inner units and zoomed on the secondary peak
represented by the vertical line at β+ = 0.077 (λ+ = 81.6) and (b) outer units with the modified
Rotta–Clauser length �θ and the effective Reynolds number Re• and zoomed on the primary
peak represented by the vertical line at β�θ = 2.7. The legends in (a) and (b) are the same as
the ones used in figure 5, but in (b) the four curves are almost indistinguishable.

is approximately proportional to λz (figure 5b), as already noticed in the case of the

turbulent channel flow by del Álamo & Jiménez (2006). An overshoot in tmax however
appears when λz > 0.1�.

The large Reynolds number (Reδ∗ � 104) optimal growth data reported in figure 5
are redisplayed in inner units in figure 6(a) and zoomed on the lower peak. In inner
units the data corresponding to all the considered Reynolds numbers collapse on
a single curve with a maximum amplification of G(inn)

max = 2.8 obtained for β+(inn)
max =

0.077 ± 0.001, corresponding to an optimal λ+
z = 81.5 ± 1. As already remarked, the

maximum growth in the secondary peak does not seem to depend on the Reynolds
number when Reδ∗ is sufficiently large.

The primary, dominant peak scales in outer units. In the channel flow case the
unique outer length scale is the channel half-width h. For a boundary layer, different
choices, like δ∗, θ and �, are available, but they are not equivalent when the boundary
layer mean profiles are not self-similar, like in the present case. The Rotta–Clauser
length � is the more natural length to use, since it is the external scale used to build
the mean velocity profile. However, as seen from figure 5, the spanwise wavenumber
of maximum amplification does not scale on this length, which is probably due to
the fact that the shape factor H = δ∗/θ of the mean flow depends on the Reynolds
number. For laminar boundary layers with pressure gradient, where the shape factor
depends on the pressure gradient, Corbett & Bottaro (2000) found that the most
relevant length is the momentum thickness θ . In our case we therefore consider a
modified Rotta-Clauser length, no longer based on the displacement thickness but
on the momentum thickness: �θ = θUe/uτ . This new characteristic length is related
to the Rotta–Clauser length by �θ = �/H . The most amplified wavenumber is seen
to fairly scale on �θ for sufficiently large Reδ∗ with β (out)

max �θ = 2.7 ± 0.1. In the case
of laminar flows the maximum energy growth scales on the square of the Reynolds
number based on the outer length scale and velocity and the molecular viscosity. In
the present turbulent mean flow case, for the outer structures it is natural to use the
external velocity Ue and the relevant length scale �θ ; furthermore, the choice of the
maximum total viscosity νT max = supy νT (y) leads to the definition of an ‘effective’
Reynolds number Re• = Ue�θ/νT max . For the considered mean flow profiles Re•
ranges approximately from 1200 to 1500 for Reδ∗ ∈ [10 000, 60 000]. For Re• � 1000
the maximum growth data are seen to very well collapse on a single curve when
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Figure 7. (a and c): Normalized amplitude of the v component of the optimal initial (t =0)
vortices (b and d): the u component of the corresponding optimally amplified (t = tmax ) streaks
respectively corresponding to the inner (a, b) and outer (c, d) peaks plotted versus the wall
normal coordinate respectively scaled in inner and outer scales. The four curves corresponding
to Reδ∗ = 10 000, 20 000, 40 000 and 60 000 are almost undistinguishable. The legends are the
same as figure 5.

rescaled on Re• and β�θ , as shown in figure 6(b). In particular, it is found that
G(out)

max = (0.0508 ± 0.0004)Re•. It is important to stress that in this turbulent case the
the dependence of Gmax on the Reynolds number is linear, while it is quadratic
in the laminar case. Attempts to rescale the data on other Reynolds numbers based
on the molecular kinematic viscosity ν and/or non-Rotta–Clauser length scales, such
as δ∗ and θ produced less correlated (more scattered) results.

3.3.2. Scaling of the optimal perturbations

In figure 7 the wall normal velocity component v of the optimal initial vortices and
the streamwise velocity component u of the optimally induced streaks corresponding
to the primary and secondary peaks are plotted versus respectively the wall normal
inner (y+) and outer (y/�θ ) coordinates. When rescaled in proper units the optimal
perturbations are seen to assume a shape independent of the Reynolds number.
For the inner peak, the maximum of the optimal initial v, giving the distance from
the wall of the centre of the optimal initial counter-rotating vortices, is situated
approximately at y+ = 13, while the maximum of the optimal final u is situated
near y+ =8.5. Considering the outer peak, the maximum of the optimal initial v is
situated approximatively at y = 0.36 �θ , just above the edge of the boundary layer.
The maximum of optimal outer streak is situated at y = 0.22 �θ , inside the boundary
layer, but as already remarked, these streaks have non-negligible amplitude in almost
the entire boundary layer.

The u component of the optimal outer peak streaks already reported in figure 7(d)
is replotted in inner variables in figure 8 for the same set or Reδ∗ expressing uopt in
friction velocity units by using the factor U+

e (Reδ∗)/U+
e (104) in which Reδ∗ = 104 is

taken as the reference case. The u+(out)
opt (y+) curves collapse on a single curve in the log

and near wall regions in which they are proportional to the mean flow velocity profile.
In figure 8, the Reδ∗ = 104 mean velocity profile rescaled to have unit amplitude at the
position of the maximum of the corresponding streak (where the streak amplitude is
also normalized to one) is also reported for comparison. This particular scaling of the
optimal streaks allow them to have very large amplitude inside the near wall region,
just like the mean flow: at y+ = 20 they still have half of their maximum amplitude.
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Figure 8. Normalized u component of the optimally amplified (t = tmax ) streaks of the primary
(outer) redisplayed in wall units and normalized on the Reδ∗ = 104 reference case. Same data
and legends as in figure 7(d). The mean flow profile corresponding to Reδ∗ = 104 and normalized
to unity at the position of the maximum of the corresponding optimal streaks is also reported
for comparison as a solid thick line.

4. Summary and discussion
4.1. Summary of the main results

The optimal linear mean perturbations and growth have been computed for a zero
pressure gradient turbulent boundary layer modelled with the two-scale composite
expansion of Monkewitz et al. (2007) which has been previously validated with large
Reynolds number experimental data. The turbulent eddy viscosity associated with
the selected basic flows is included in the linearized operator. The main results found
in this investigation are as follows:

(a) All the considered turbulent boundary layers are linearly stable but sustain
transient energy growths.

(b) Only disturbances with streamwise wavelength λx larger than the spanwise
wavelength λz are noticeably transiently amplified, the most amplified one always
being streamwise uniform.

(c) For sufficiently large Reynolds numbers two distinct peaks of the optimal
growth exist for streamwise uniform perturbations: a primary peak scaling in outer
variables and a secondary peak scaling in inner variables.

(d) The energy growth associated with the secondary peak is small (Gmax = 2.8),
independent of the Reynolds number and attained by vortices and streaks with a
spanwise wavelength λ+

z = 81.6.
(e) The energy growth associated with the primary peak is larger than that of

the inner peak (Gmax > 60 when Reδ∗ > 104) and scales on a Reynolds number
Re• = Ue�θ/νT max based on the external velocity, the maximum eddy viscosity and a
modified Rotta–Clauser length based on the momentum thickness �θ = θUe/uτ . The
scaling is linear and not quadratic like in the laminar case.

(f ) The primary peak is realized by optimal perturbations that have a very large
spanwise wavelength λz ∼ 8 δ. The optimal initial vortices are centred near the edge
of the boundary layer, and the corresponding streaks extend inside all the boundary
layer and have non-negligible amplitudes inside all the viscous layer. The optimal
velocity profiles scale on �θ , but in the viscous layer the amplitude of the optimal
streaks is proportional to the local mean velocity and scales in inner units.
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(g) Intermediate optimal vortices and streaks, with spanwise wavelength between
the two peaks, have a wall normal extension approximately proportional to their
spanwise wavelength.

4.2. Limitations of the results due to the parallel flow assumption

To compute the linear optimals a parallel flow assumption has been made
for the basic mean flow. Since the boundary layer thickness doubles in about
50−100δ, corresponding to 10–20�, depending on the Reynolds number, a standard
Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) approach would formally be limited to
perturbations with λx < 50–100δ, corresponding to α�> 0.3–0.6. All the presented
results not respecting this limitation, and in particular those obtained for the optimal
streamwise uniform structures (α =0), are therefore subject to caution. The same
issue has already been addressed in the case of the optimal perturbations of the
laminar boundary layer (the Blasius profile). Butler & Farrell (1992), under the
parallel flow assumption, found the optimals αδ∗ =0, βδ∗ = 0.65 and a maximum
growth Gmax = 1.5 10−3Re2

δ∗
. Using the fully non-parallel approach and forcing the

optimal vortices at the leading edge of the flat plate (where δ∗ = 0), Andersson,
Berggren & Henningson (1999) and Luchini (2000) found αδ∗ = 0, βδ∗ = 0.77 and
Gmax = 0.784 10−3Re2

δ∗
. In the laminar case the parallel flow analysis is therefore able

to predict the qualitative features of the optimals like their streamwise uniform nature
(α = 0), the scaling of Gmax with Reδ∗ and the shape of the optimal perturbations.
The parallel flow predictions however overestimate βδ∗ by 18 % and Gmax/Re2

δ∗
by

almost a factor 2. However, in the cited non-parallel analyses the optimal vortices are
forced at leading edge of the flat plate (x =0, where δ∗ = 0) which is the worst case to
compare with parallel flows approximations, and the results are made dimensionless
with the δ∗ corresponding to the final position at which the maximum amplitude of
the streaks is observed, which again is the worst choice for a comparison. In passive
control applications (e.g. Fransson et al. 2004, 2006) vortices are forced downstream at
an already large Reδ∗ , and in this case the parallel flow theories should give even more
accurate predictions. Of course a fully non-parallel analysis could also be desirable for
the turbulent boundary layer case. However, if the optimal vortices are to be forced
at the leading edge, such an analysis would require to take into account the laminar
and the transitional regions, leading to an even more complex study. Furthermore,
the relevance of non-parallel, very accurate predictions could be questioned given the
very crude assumptions made for the turbulence dynamics (modelled with νT ).

4.3. Scaling of the inner and outer peaks

The existence of two different peaks for the optimal growth and their respective
scaling in inner and outer units confirms and extends the results found in the
turbulent channel flow by del Álamo & Jiménez (2006). This ‘bimodal’ distribution
with an outer-scaling peak whose amplitude increases with the Reynolds number
and the distance from the wall is furthermore compatible with the experimental
results of Hites (1997) and Österlund et al. (2000) among others. The fact that the
maximum growth corresponding to the inner peak does not depend on the Reynolds
number has already been explained by del Álamo & Jiménez (2006) using two facts:
one, the time of maximum growth scales linearly with the spanwise wavelength with
t+
max ∼ 0.1λ+

z (which we also found in our results); two, in the inner region the eddy
viscosity is νT ∼ uτλz. The effective Reynolds number ReT = λ2

z/(νT tmax ) associated
with the maximum transient growth is readily seen to be constant with ReT ∼ 10,
which also explains the low values of Gmax at the inner peak. The independence
of Gmax from the Reynolds number breaks down for the outer peak because for
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the outer optimals, extending outside the log layer; t+
max is no more exactly proportional

to λ+; and the assumption νT ∼ uτλz does not hold any more.

4.4. Structures associated with the peak scaling in inner units

The spanwise wavelength corresponding to the secondary peak, λ+
z = 81.6, is lower

than the commonly accepted value of 100+ for the spacing of the buffer layer streaks
reported by, for instance Kline et al. (1967) and Smith & Metzler (1983). However,
as discussed by Smith & Metzler (1983), λ+

z = 100 is the ‘mean’ value for the streak
spacing, while the ‘most probable’ value is 20 % lower, i.e. nearly λ+

z = 80, which is in
fairly good agreement with our results. The most amplified λ+

z = 80 could therefore
be related to the most probable streak spanwise wavelength, while the mean is shifted
towards larger λ+

z because they are more amplified than the smaller ones as it is
apparent from figure 6. The structure and scaling of the intermediate (in between
peaks) optimals is also in accordance with the experimental observations of Tomkins
& Adrian (2003) and the channel flow results of del Álamo & Jiménez (2006).

4.5. Robustness of the outer peak to the choice of the eddy viscosity

In the laminar and turbulent channel flows the outer optimal is attained with
perturbations with similar spanwise scales: Butler & Farrell (1992) found λz ∼ 3 h

for the laminar case just as Butler & Farrell (1993) and del Álamo & Jiménez (2006)
did for the turbulent case. (However Pujals et al. (in press) found a slightly larger
λz ∼ 4 h for the turbulent channel flow.) In the present turbulent boundary layer case
the optimal spanwise scale λz ∼ 8 δ is much larger than the optimal laminar value
λz ∼ 3.3 δ found by Butler & Farrell (1992). This difference persists even when λz is
scaled on the displacement or the momentum thickness. To understand if this large
optimal λz is mainly selected by the mean flow profile, which is a robust characteristic
of the boundary layer, or the eddy viscosity, which could be more dependent on
the assumptions made in its derivation, we have recomputed the optimal growth,
using a constant viscosity for Reδ∗ = 17 300. When the constant kinematic viscosity is
assumed equal to the molecular ν, i.e. using the same approach of Butler & Farrell
(1993), we similarly find a large peak (Gmax = 7467), but this peak is obtained for the
large λz ∼ 11 δ. When the artificially constant viscosity is assumed equal to νT max , the
maximum growth is reduced (Gmax = 5.67) and obtained with the optimal λz ∼ 4 δ. In
both cases an optimal λz larger than the laminar value is found, the optimal λz ∼ 8 δ

obtained with the ‘correct’ eddy viscosity νT (y) being situated in between the two
extrema. An optimal λz larger than the laminar optimal seems therefore to be a robust
feature of the turbulent boundary layer not very sensitive to the shape of the eddy
viscosity.

4.6. Structures associated with the peak scaling in outer units

As it is well known large-scale structures, observed in the outer layer (e.g. Kovasznay,
Kibens & Blackwelder 1970), can extend deep inside the viscous layer (e.g. Morrison,
Bullock & Kronauer 1971; Townsend 1976; Hoyas & Jiménez 2006; Jiménez 2007 and
the references therein). This is also the case for the optimal streaks associated with
the outer peak that strongly protrude with large amplitudes inside the viscous layer in
which they furthermore have amplitudes proportional to the mean velocity. One can
then expect to find a signature of these optimal streaks in experimental measures of
turbulent boundary layers. However very large–scale structures with λz ≈ 4 − 8δ have
not yet been observed in experiments or numerical simulations. There are different
possible reasons of this lack of observation:
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(a) The parallel flow assumption. This assumption has a tendency to overestimate
the spanwise wavelength, but in the laminar flow case this error was of the order of
20 % and would be less if the optimal perturbations are not forced at the leading
edge but further downstream or if appropriate average δ∗ are taken for comparison
of parallel and non parallel results.

(b) The finite streamwise size of the observed streaks. In typical experiments, such
as those of Tomkins & Adrian (2003), the structures observed have streamwise lengths
of the order of λx ≈ 2–2.5δ corresponding to α� ≈ 14–11. For these perturbations
the optimal perturbations have shorter spanwise wavelengths λz ≈ 1–3δ, which is
compatible with the observations.

(c) The size of the data acquisition window. The largest field of view in the
experiments of Tomkins & Adrian (2003) is limited to 2.5δ in the streamwise direction
and 3.15δ in the spanwise direction, and therefore the structures corresponding to the
outer peaks with α�< 1 (λx > 28δ) that have 4δ < λz < 8δ could not be detected . In
the more recent experiments of Hutchins & Marusic (2007), structures with λx < 20δ

are measured, but the spanwise field of view is limited to 2δ, precluding again the
observation of larger structures.

(d) The selection of the spanwise wavelength by nonlinear effects. The transient
growth of vortices into streaks is only a part of the more complicated processes like
the one leading to self-sustained cycles. It could be that very large–scale structures are
not selected for a self-sustained process nor passively forced by other self-sustained
processes. In this case these structures would have to be artificially forced to be
detected, like it has been done by Kitoh & Umeki (2008) in the turbulent Couette
flow.

Even if the question of the relevance of the optimal large-scale structures to real-
world, unforced turbulent boundary layers is still open, these structures may have an
important role in active or passive control applications.

Appendix A. Explicit expression of the mean velocity profile
We report the explicit expressions of the mean velocity profile expressions proposed

by Monkewitz et al. (2007):

U+
w (η) =

[
1

κ
E1(η) + w0

]
1

2

[
1 − tanh

(
w−1

η
+ w2η

2 + w8η
8

)]
(A 1)

with w0 = 0.6332, w−1 = − 0.096, w2 = 28.5 and w8 = 33 000,

U+
log(y

+) =
1

κ
ln(y+) + B (A 2)

Ue
+(Reδ∗) =

1

κ
ln(Reδ∗) + C, (A 3)

where κ =0.384, B = 4.17, C = 3.3;

U+
i (y+) = 0.68285472 ln(y+2 + 4.7673096y+ + 9545.9963),

+ 1.2408249 arctan(0.010238083y+ + 0.024404056),

+ 1.2384572 ln(y+ + 95.232690) − 11.930683,

− 0.50435126 ln(y+2 − 7.8796955y+ + 78.389178),

+ 4.7413546 arctan(0.12612158y+ − 0.49689982),

− 2.7768771 ln(y+2 + 16.209175y+ + 933.16587),

+ 0.37625729 arctan(0.033952353y+ + 0.27516982),

+ 6.5624567 ln(y+ + 13.670520) + 6.1128254. (A 4)
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Hoyas, S. & Jiménez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to
reτ = 2003. Phys. Fluids 18, 011702.

Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic
region of turbulent boundary layers. J. Fluid Mech. 579, 1–28.
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