New insight into the RNA interference response against cathepsin-L gene in the pea aphid, Acyrthosiphon pisum: Molting or gut phenotypes specifically induced by injection or feeding treatments.

Panagiotis Sapountzis, Gabrielle Duport, Séverine Balmand, Karen Gaget, Stéphanie Jaubert-Possamai, Gérard Febvay, Hubert Charles, Yvan Rahbé, Stefano Colella, Federica Calevro

To cite this version:

Panagiotis Sapountzis, Gabrielle Duport, Séverine Balmand, Karen Gaget, Stéphanie Jaubert-Possamai, et al.. New insight into the RNA interference response against cathepsin-L gene in the pea aphid, Acyrthosiphon pisum: Molting or gut phenotypes specifically induced by injection or feeding treatments.. Insect Biochemistry and Molecular Biology, Elsevier, 2014, to be published. <10.1016/j.ibmb.2014.05.005>. <hal-01002574>
New insight into the RNA interference response against cathepsin-L gene in the pea aphid, *Acyrthosiphon pisum*: Molting or gut phenotypes specifically induced by injection or feeding treatments

Panagiotis Sapountzis, Gabrielle Duport, Séverine Balmand, Karen Gaget, Stéphanie Jaubert-Possamaï, Gérard Febvay, Hubert Charles, Yvan Rahbé, Stefano Colella, Federica Calevro, Gérard Duport, Séverine Balmand, Karen Gaget, Stéphanie Jaubert-Possamaï, Gérard Febvay, Hubert Charles, Yvan Rahbé, Stefano Colella, Federica Calevro

A R T I C L E I N F O

Article history:
Received 17 March 2014
Received in revised form 12 May 2014
Accepted 12 May 2014
Available online 21 May 2014

Keywords:
Acyrthosiphon pisum
RNA interference
cathepsin-L
Molting phenotypes
Gut phenotypes

A B S T R A C T

RNA interference (RNAi) has been widely and successfully used for gene inactivation in insects, including aphids, where dsRNA administration can be performed either by feeding or microinjection. However, several aspects related to the aphid response to RNAi, as well as the influence of the administration method on tissue response, or the mixed success to observe phenotypes specific to the gene targeted, are still unclear in this insect group. In the present study, we made the first direct comparison of two administration methods (injection or feeding) for delivery of dsRNA targeting the cathepsin-L gene in the pea aphid, *Acyrthosiphon pisum*. In order to maximize the possibility of discovering specific phenotypes, the effect of the treatment was analyzed in single individual aphids at the level of five body compartments: the bacteriocytes, the gut, the embryonic chains, the head and the remaining body carcass. Our analysis revealed that gene expression knockdown effect in each single body compartment was dependent on the administration method used, and allowed us to discover new functions for the cathepsin-L gene in aphids. Injection of cathepsin-L dsRNA was much more effective on carcass and head, inducing body morphology alterations, and suggesting a novel role of this gene in the molting of these insects. Administration by feeding provoked cathepsin-L knockdown in the gut and specific gut epithelial cell alteration, therefore allowing a better characterization of tissue specific role of this gene in aphids.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Aphids (Hemiptera, Aphididae) belong to one of the major families of insect agricultural pests. They are known to cause the most destructive damage on cultivated plants throughout the world, through feeding and as major vectors of plant diseases. As phloem-feeders, some aphids inject a toxic saliva into the affected plants causing a variety of symptoms, including chlorosis, necrosis, wilting, stunting, growth malformation or galls formation (Goggin, 2007), and all of them use the phloem nutrients for their own sources, thus constituting a serious health risk to humans (Crimmin, 2009; Komarek et al., 2010). Furthermore, chemical...
insecticides show very low efficiency in preventing crop damage due to aphid-borne viruses (Dedryver et al., 2010). Finally, various aphid species have been found to develop resistance to chemical insecticides (Devonshire, 1989; Furk and Hines, 1993). Consequently, discovering alternative methods for the control of aphids is essential, and a better knowledge of their biology can lead to the development of novel control strategies.

In addition to their importance in agronomy, aphids are also a useful biological model system for studying insect–plant interactions (for a review see (Goggin, 2007)), bacterial-based symbioses (Brinza et al., 2009), insect interactions with parasitoid wasps and predators (Snyder et al., 2006; Dedryver et al., 2010), and phenotypic plasticity (Shigenobu et al., 2010). The recent availability of the pea aphid Acyrthosiphon pisum genome (IAGC, 2010) has brought this insect model to a full genomic status, facilitating the development of approaches to discover novel gene functions (Brisson and Stern, 2008; Tagu et al., 2010). Gene inactivation is a key research tool for studying gene function. Although no stable transgenesis techniques have been successfully developed for aphids so far, RNAi-based approaches have already been used to inhibit gene expression in this model where the presence of the siRNA pathway has been previously confirmed by genome analyses (Jaubert-Possmai et al., 2010).

Muttii et al. (2006) were the first to inject siRNA molecules into the abdomen of the pea aphid, obtaining a clear inhibition of the salivary transcript c002 (ACYPI008617-RA). More recently, it was shown that the RNAi transcript inhibition of this same gene affects several aspects of the foraging and feeding behavior of aphids, indicating a crucial role of the protein C002 in aphid feeding on its plant-host, although the mechanism of action of this orphan protein is still totally unknown (Muttii et al., 2008). Jaubert-Possmai et al. (2007) investigated the gene expression knockdown of two genes: calreticulin (ACYPI002622) and cathepsin-L (ACYPI006974). They observed, using dsRNA microinjection as a delivery method, up to 40% inhibition of calreticulin and 30% of cathepsin-L expression. Similar knockdown results were more recently obtained by Guo et al. (2014) on the pea aphid salivary gene ACYP393568. Shakesby et al. (2009) chose aquaporin (ACYPI006387), a gut-specific gene, to study the knockdown effects of the dsRNA administration technique by feeding and they observed up to 2-fold inhibition of the target gene. In a multigene study, Whyard et al. (2009) showed that the inhibition of vacATpase subunit E (ACYPI009155), following dsRNA ingestion, could cause a mortality rate of 50% in the pea aphid. More recently, the administration, by feeding, of dsRNA targeting the hunchback gene was shown to cause a similar mortality rate in the same aphid species (Mao and Zeng, 2013). Finally, two recent studies have shown the possibility of using plant-mediated RNAi technology to silence genes in the green peach aphid, Myzus persicae (Bhatia et al., 2012; Pitino et al., 2013), which is very promising for potential biotechnological applications.

These studies, while revealing new possibilities for the use of RNAi in aphids, also show a relatively high variation in the aphid response to RNAi treatment in terms of efficiency of inactivation, observed mortality rates, or other phenotypic effects. Overall, any conclusions regarding potential differences between the two delivery methods (injection vs. ingestion) for RNAi in aphids are very limited as different target genes were inactivated in all these previous studies. Moreover, all these studies have analyzed the gene expression inactivation produced by RNAi on pools of full insect bodies and, to our knowledge, no study has ever measured RNAi-induced gene expression reduction at the level of the tissue/body compartments of individual aphids. It has been shown that, even in organisms where delivering dsRNA causes a systemic response (such as in Caenorhabditis elegans), the silencing efficiency is not uniformly distributed in all tissues and it is, for example, difficult to establish an effect in the nervous system (Simmer et al., 2002; Timmons et al., 2001, 2003). The same disparity in RNAi efficiency is observed in Drosophila melanogaster, in which wing disk cells appear to be less sensitive than other tissues to RNAi inhibition (Kennenrell and Carthew, 2000). We therefore decided to perform a targeted tissue analysis to study the distribution of the RNAi effects in the pea aphid body. Such an analysis was expected to unravel tissue-specific phenotypes, which otherwise would be impossible to observe in pools of insects.

Cathepsin-L was chosen as a target gene. In many invertebrate groups, cathepsin-L proteases have been identified as major components of the gut digestive enzymes. It has also been demonstrated that they participate in other functions, such as immunological processes and tissue remodeling during insect metamorphosis (Baum et al., 2007; Laycock et al., 1989; Matsumoto et al., 1995; Tryselius and Hultmark, 1997; Hashmi et al., 2002; Wang et al., 2009). These diverse functions across different body compartments in insects make cathepsin-L a good candidate for detecting tissue-specific gene knockdown and potential differentiated phenotypes. In aphids, data on the localization and the functional roles of cathepsin-L gene are lacking. The few papers published on this subject have shown that the protein is expressed in the gut as an apical membrane-bound enzyme and in the bacteriocytes (Cristofoletti et al., 2003; Deraison et al., 2004), but there is no clear information on the expression of cathepsin-L gene in other aphid body compartments. The inhibition of cathepsin-L protein activity by a protease inhibitor decreases the development and reproduction rate in M. persicae (Cristofoletti et al., 2003), but does not reveal the presence of specific phenotypes related to the treatment. Therefore, the knockdown of cathepsin-L gene by injection of dsRNA failed in inducing other phenotypes than some aphid mortality (Jaubert-Possmai et al., 2007).

Our results show, for the first time, that the distribution of the cathepsin-L gene knockdown effects vary across the pea aphid tissues and demonstrate how this distribution depends on the dsRNA administration method used. In addition, we show that specific phenotypes are dependent on the inhibition of cathepsin-L in different body compartments. Finally, these phenotypes reveal new functions for the cathepsin-L gene in the pea aphid.

2. Methods
2.1. Design and synthesis of dsRNA

The selection of the target sequences used in the present study was made using the latest version of the E-RNAi webtool (http://www.dkfz.de/signaling/e-rna43/) (Arziman et al., 2005; Horn and Boutros, 2010). In this version, the A. pisum genome was included following a request from our group to the authors. We were thus able to choose regions of both cathepsin-L and EGFP that had no similarities with other transcripts or low-complexity regions in the pea aphid genome. Fragments of cathepsin-L and EGFP genes were amplified, by PCR, with cDNA prepared from whole aphid RNA extracts or the pMP2444 plasmid, respectively. Both primer-end sequences used for dsRNA synthesis included a T7 sequence tail (TAATACGACTCACTATAGGG, Table S1 in Supplementary data) to allow for subsequent dsRNA synthesis. Two picomoles of each PCR product were purified, using the PEG precipitation protocol (Pathikan and Prasad, 1991), and used as templates for dsRNA synthesis. The dsRNAs, synthesized using the MEGAscript T7 kit (Ambion by Life Technologies; Carlsbad, CA, USA), were then purified with the RNAeasy Mini Kit (Qiagen, Hilden, Germany) and quantified by a Nanodrop ND-1000 spectrophotometer (Nanodrop Technologies, Wilmington, DE, USA). Their quality was...
verified using an Agilent 2100 Bioanalyzer (Agilent Technologies
Inc., Santa Clara, CA, USA).

2.2. Insect rearing

The pea aphids *A. pismum* (Harris) used in this study were ob-
tained from a long established parthenogenetic clone (LL01). The
insects were maintained on *Vicia faba* L. (cv. Aguadulce) in ven-
tilated Plexiglas cages, placed in an environmental chamber, at 21 °C,
with a photoperiod of 16 h light – 8 h dark. For the microinjection
and feeding experiments, the developmental stage of injected
aphids was synchronized by collecting newly born nymphs over
24 h. The nymphs were collected either immediately after birth (1st
instar), for the feeding experiments, or 5 days later, when they had
reached the 3rd instar stage, for the microinjection experiments.
For both administration methods, and for the entire duration of the
experiments, aphid survival was monitored daily.

2.3. Set-up of dsRNA delivery by microinjection

Synchronized 3rd instar nymphs were injected using an auto-
matic injector apparatus Nanoject II (Drummond Scientific, Broo-
mall, PA, USA) set to slow speed, and with an injection volume not
exceeding 46 nl to ensure a low mortality rate in the injected
aphids, as previously shown (Jaubert-Possamai et al., 2007). To
further optimize this technique with aphid nymphs, we performed
several preliminary experiments injecting the insects with steril-
ized water and changing 3 different parameters: a) the glass cap-
illaries size and type, b) the injection site on the aphid body and c)
the method used for aphid immobilization. For these preliminary
experiments, 50 aphids were used for each injection group. The aim
of this experiment was to reduce accidental mortality linked to the
stress induced from manipulation of the aphids.

For the microinjections, we used two kinds of glass capillaries:
either pulled-glass capillaries, prepared according to the manu-
facturer’s instructions (3.5inc 3-000-203-G/X micropipettes,
Drummond Scientific, Broomall, PA, USA) and using two different
“melting” temperatures (65 or 72 °C), or glass needles of 1.0 mm
O.D. × 0.78 mm I.D. (Harvard Apparatus, Holliston, MA, USA).
The injections were performed at three different sites: a) in the meta-
thorax area between the legs, b) dorsally, or c) laterally, in the
middle of the aphid abdomen, between the second and third
abdominal segments.

Two different immobilization techniques were used for the in-
jections: aphids were either anesthetized on ice for 5 min, or
immobilized with a home-made vacuum-operated insect-holder
useful to accurately position the aphids for intra-abdominal in-
jections. In this holder, a yellow tip was placed on the opening of a
plastic tube attached to a vacuum pump. An additional side opening
could be closed off with tape to regulate the force of the vacuum
holding the aphid on the edge of the yellow tip.

Finally, we tested different concentrations of dsRNA (from 2 to
10 µg/µl), injecting 3rd instar nymphs both with dsRNA targeting
EGFP (the negative control) or *cathepsin-L* transcripts, in order to
ascertain the highest concentration needed to induce effects spe-
cific to the target gene and not due simply to the RNAi injection
procedure. Higher than 8 µg/µl concentrations killed all injected
aphids, even using the negative control EGFP dsRNA.

2.4. Analysis of phenotypes induced by dsRNA microinjection

Having established optimization of the dsRNA microinjection
technique, a complete experiment was performed to check the survival rates following *cathepsin-L* dsRNA injection in the pea
aphid. Aphids were divided into three treatment groups: injected
with *cathepsin-L* dsRNA (75 aphids), or EGFP dsRNA (75 aphids), or
water (75 aphids). They were monitored daily over a five-day
period. Melanization of the cuticle of the living aphids was al-
ways observed at the injection point. For a thorough analysis of
cathepsin-L dsRNA injection effects, this experimental design
(*n* = 75 for each injection group) was repeated and the aphids were
followed individually in order to detect a possible induction of
external morphological defects or behavior modifications. Five
aphids from each injection group were dissected and the
morphology of five body compartments evaluated under stereo-
scopic microscopy at 24, 72 and 120 h after microinjection. For this
analysis, the head, the gut, the two ovaries (containing the em-
byronic chains produced by parthenogenesis in the asexual vivip-
arious aphids used in this study), the bacteriocytes and the
remaining body from each aphid were carefully dissected in iso-
smotic buffer (pH 7.5, 0.025 M KCI, 0.01 M MgCl2, 0.25 M Su-
crose, and 0.035 M Tris–HCl). The tissues were placed in RNAlute®
solution (Ambion by Life Technologies, Carlsbad, CA, USA), stored
at –80 °C and then used for qRT-PCR expression analysis. For each
tissue coming from single individual aphids, qRT-PCR analysis was
performed in triplicate. Each aphid dissected during the exper-
iment was labeled using an individual identifier (Table S2, Supple-
mentary data). All treated aphids and the corresponding
dissected tissues, were examined with a MDG-17 stereomicroscope
(Leica, Wild Heerbrugg AG, Switzerland).

2.5. Set-up of dsRNA delivery by feeding

For the feeding experiments, aphids were synchronized, as
described above, and 1st instar nymphs (aged between 0 and 24 h)
were collected and placed on AP3 diet, as described by Felvay et al.
(1988). Five days later, after they had all reached the 3rd instar
stage, we began the RNAi treatment putting the nymphs onto an
AP3 diet, with or without dissolved dsRNA, for a three-day period.
At the end of this period, it was necessary to change the artificial
diet and all the aphids were put back onto an RNA-free AP3 diet. In
order to perform an individual follow-up of the treated aphids, the
liquid diet was sealed between two Parafilm layers in a plate 9 mm
in diameter and 7.5 mm high (containing 4 µl of artificial diet and
allowing for complete nymph development) where one single
aphid was placed.

In the same way as for injection experiments, to establish the
best conditions for dsRNA administration by feeding, we performed
dose response assessments, monitoring the relationship between
the dsRNA concentration and survival of aphids. We performed our
assessment with doses ranging from 0.9 to 2.6 µg/µl, using both
cathepsin-L and EGFP dsRNA in order to ascertain the highest
concentration needed to induce effects specific to the target gene
and not due simply to the dsRNA treatment. Higher than 2 µg/µl
concentrations killed all injected aphids, even using the negative
control EGFP dsRNA. For these optimization experiments, we used
50 synchronized aphids for each treatment group.

2.6. Analysis of phenotypes induced by feeding on dsRNA

Having established optimization of the dsRNA delivery by
feeding, a complete experiment was performed to check the survi-
val rates induced by this treatment in the pea aphid. For this
experiment, 336 synchronized 3rd instar nymphs, pre-maintained
on dsRNA-free AP3 medium, were separated into three groups:
112 aphids were placed on AP3 with *cathepsin-L* dsRNA at a con-
centration of 1.8 µg/µl, 112 aphids were placed on AP3 with EGFP
dsRNA at a concentration of 1.8 µg/µl and, for the control group, 112
aphids were placed on dsRNA-free AP3. Each aphid was placed on
an individual dish containing an artificial diet and monitored daily
over a 5-day period. For a thorough analysis of cathepsin-L dsRNA feeding effects, this experimental design \((n = 112\) for each treatment group) was repeated and the aphids were followed individually in order to observe the possible induction of external morphological defects or behavior modifications. Six individuals were collected, from each feeding group, at 24, 72 and 120 h respectively. Aphids were dissected in an iso-osmotic buffer and 5 tissues were isolated as described above. The dissected tissues were then used for qRT-PCR expression analysis. For each tissue coming from single individual aphids, qRT-PCR analysis was performed in triplicate. Each aphid dissected during the experiment was labeled using an individual identifier (Table S2, Supplementary data). All treated aphids, and the corresponding dissected tissues were examined with an MDG-17 stereomicroscope.

2.7. Histology preparations

For histological analyses, the antennae and legs were removed from aphids prior to fixation in Carnoy’s solution (absolute ethanol/chloroform/acetic acid – 6/3/1). After 24 h at 4 °C, the fixative solution was replaced with absolute ethanol. Samples were then moved to a 1-butanol solution, at 4 °C, for 24 h. Next, aphids were dehydrated, and then embedded in melted Paraplast (McCormick Scientific, St Louis, USA) and the wax blocks were kept in a dust-free place until sectioning. Tissue sections, 5 μm in thickness, were cut using a LKB Historange microtome (LKB Instruments, Bromma, Sweden) and placed on poly-lysine coated slides, dried overnight in a 37 °C oven, and then kept at 4 °C until staining. Paraffin sections were de-waxed in two baths of methylcyclohexane for 10 min, rinsed in absolute ethanol, and rehydrated through an ethanol gradient to water; cytoplasm staining in Eosin solution for 2 min and then nuclear staining in Mayer Haemalum for 3 min and washed in water; cyttoplasm staining in Eosin solution for 2 min and then washed in water; differentiation in graded ethanol baths, ending with absolute ethanol; collagen staining in alcoholic Saffron for 5 min and an ethanol wash, followed by mounting in Mountex medium (Histolab, Göteborg, Sweden). The tissue preparations were observed under transmitted light, using an Olympus IX81 microscope (Olympus Corporation, Tokyo, Japan) with 10X or 40X lens magnification. Pictures were taken using an Olympus Camedia C-5060 camera (Olympus Corporation, Tokyo, Japan).

2.8. Immunolocalization of cathepsin-L

For the immunohistochemical detection of cathepsin-L, the antennae and legs from aphids were removed prior to fixation of the remaining body in 4% paraformaldehyde in phosphate buffered saline solution (PBS). After one week at 4 °C, the fixative was replaced by several baths of PBS before embedding the aphids in Carnoy’s solution at 4 °C. The fixed aphids were then dehydrated in a graded ethanol series and embedded in modified paraffin (McCormick Scientific, St Louis, MO, USA). The wax blocks were kept in a dust-free place until sectioning. Tissue sections, 5 μm thick, were cut using an LKB Historange microtome (LKB Instruments, Bromma, Sweden) and the sections were placed on poly-lysine coated slides, dried overnight in a 37 °C oven, and then maintained at 4 °C until immunostaining. Paraffin sections were de-waxed in 2 baths of methylcyclohexane for 10 min, rinsed in absolute ethanol, and rehydrated, through an ethanol gradient, to PBS. Slides were incubated with 1% bovine serum albumin (BSA) in PBS for 30 min prior to a primary incubation overnight, at 4 °C, with a monoclonal anti-insect cathepsin-L antibody (mouse antibody raised against Spodoptera frugiperda cathepsin-L, clone 193702, R&D Systems, Minneapolis, MN, USA), diluted to 1:200 in BSA 0.1%. BSA 0.1% was used as a negative control. After primary anti-serum incubation, sections were washed with PBS containing 0.2% Tween-20. Primary antibodies were detected with a fluorescent goat anti-mouse IgG, coupled to Alexa Fluor® 568 (Molecular Probes by Life Technologies Ltd, Carlsbad, CA, USA). This secondary antibody was applied for 1 h, at room temperature, diluted to 1:500 in BSA 0.1% in PBS. From this step onwards, all manipulations were carried out in the dark. Next, sections were washed with PBS-Tween, rinsed with PBS and with several baths of tap water. The sections were left to dry and then mounted, using PermaFluor™ Aqueous Mounting Medium (ThermoFisher Scientific, Cheshire, UK) together with 4,6-diamidino-2-phenylindole (DAPI) for nuclear staining (3 μg per ml of medium). Sections were observed under an epifluorescence IX81 Olympus microscope, using specific emission filters: HQ605/ 75 for a red signal (antibody staining), D470/40 for a blue signal (DAPI) and HQ535/50 for a green signal (non-specific auto-fluorescence from tissues). Microphotographs were captured and modified using an F-View II camera coupled with the Cell F Software (Olympus SIS GmbH, Münster, Germany).

2.9. Real-time quantitative RT-PCR

Total RNA was extracted from the dissected tissues using an RNeasy Mini Kit (Qiagen, Hilden, Germany). Twenty ng of the total RNA extracted were treated with RQ1 RNase-Free DNase I (Promega Corporation, Madison, WI, USA), and 10 ng of it were reverse-transcribed with the Sensiscript® RT kit (Qiagen, Hilden, Germany), using Oligo(dT) primers (Invitrogen by Life Technologies, Carlsbad, CA, USA) in order to obtain first-strand cDNA. The quality of the cDNA synthsized was examined by PCR, using 1 μl of the cDNA produced, as a template, and gene specific primers for actin in a concentration of 2 μm per reaction. As a negative control, the remainder of the DNase treated RNA (10 ng) was examined by PCR using the same conditions.

Real-time RT-PCR reactions were performed on a LightCycler® 480 Real-Time PCR System (Roche, Penzberg, Germany) using 1:2.5 diluted cDNAs and a LightCycler® 480 SYBR Green I Master Mix (Roche, Penzberg, Germany) according to the manufacturer’s instructions. For each gene, triplicate assays were performed. The specific primer pair cathepsin_F/cathepsin_R was used to amplify the cathepsin-L gene. In order to choose the best normalization gene for our study, we compared the gene expression levels of 5 candidate genes: actin (ACYPI000064), cyclophilin (ACYPI003541), gadh (ACYPI008372), rpl7 (ACYPI010200) and rpl22 (ACYPI000074). The gene expression variation in all the experimental conditions tested in this work for these five genes were tested with the BestKeeper software tool (Pfaffl et al., 2004). Only the rpl22 gene was retained as a normalization gene as it met the criteria imposed by the BestKeeper analysis: standard deviation ≤ 1 CP (Crossing Point) between the different tested conditions for each experimental point (data not shown). All the primers used in this study are listed in Table S1 (Supplementary data).

2.10. Statistical analyses

For mortality scoring, all data were analyzed by non-parametric (Kaplan Meier) and parametric survival analysis using the JMP® software (SAS institute, Cary NC USA). As a result of the experimental design employed (insects always caged individually), each individual aphid score was a true independent measure, with n ranging between 50 and 112 according to the experiment and the group. Individuals still alive at the end of experiment were labeled as censored on the last observation day. The effect of the treatment...
on survival was tested using the Log-rank statistics (Chi2 at 1 df, performed on three or two groups, either with both controls or with the EGFP control alone).

For the real-time quantitative RT-PCR experiments, the gene expression levels of all target genes were calculated and normalized using the REST software tool (Pfaffl et al., 2002). The expression levels (log2) of the cathepsin-L gene were normalized relative to those of the rpl32 gene. The relative expression ratio R (and the associated standard error) of cathepsin-L mRNA in the different tissues of individuals treated with cathepsin-L dsRNA (injection or feeding) was calculated using as a reference the mean of the cathepsin-L transcript expression levels of the aphid control group (water or AP3 diet, and EGFP). More precisely, this ratio was calculated taking into account the real-time PCR efficiency of each gene (E) and the crossing point difference (ΔCP) of a test condition, as compared to the reference condition, and expressed in comparison to the normalization gene (rpl32) using the following model (Pfaffl, 2001):

$$R = \frac{E_{\text{Target}}^{\Delta \text{CT}_{\text{Target}}(\text{control} - \text{sample})}}{E_{\text{Reference}}^{\Delta \text{CT}_{\text{Reference}}(\text{control} - \text{sample})}}$$

Statistically significant cathepsin-L knockdowns, calculated by the REST analysis, are shown in bold in Tables S3 and S4 (Supplementary data).

3. Results

3.1. Expression profiles of cathepsin-L mRNA in aphid body compartments

Before checking the inactivation of cathepsin-L gene expression, RT-PCR experiments were performed on total RNA extracted from different aphid body tissues. Cathepsin-L encoding transcripts were detected at similar levels in all of the five body compartments from *A. pisum* tested here, when compared to the ribosomal protein coding gene rpl32 (ACYPI000074) (Fig. S1, Supplementary data).

3.2. Optimization of the dsRNA administration by microinjection

Microinjection in small insects, such as aphids, is a critical point in RNAi approaches. To improve the existing microinjection protocols, that are known to induce high mortality in aphids even within control groups (29% mortality, observed by Jaubert-Possamai et al. (2007), after injecting 3rd instar nymphs with 46 nl of water), we performed several experiments in order to define the best injection procedure, as well the optimal dsRNA concentration.

In our experiments, microinjections using the 1.0 mm O.D. × 0.78 mm I.D. capillaries resulted in much lower mortality rates when compared to other capillaries. Immobilization using a vacuum-holder, applying a technique similar to that used by Mutti et al. (2006), was more effective than the partial anesthetization of the insects on ice, as previously used by Jaubert-Possamai et al. (2007). Furthermore, we found that injections performed laterally in the aphid body and directed towards the abdomen, between the 2nd and the 3rd abdominal segment on the height of the leg, resulted in the lowest out-flow of body fluid. This injection site resulted in lower mortality rates than injections performed dorsally, as in Jaubert-Possamai et al. (2007), or between legs, as in Mutti et al. (2006). Taking into account all these different parameters, we were able to reduce aphid mortality from 30% to 5% in the water control group.

Finally, our data showed that the dsRNA concentration should not exceed 8 μg/μl (in a volume of 46 nl) as, above that value, even negative control EGFP dsRNA caused significant mortality in the aphids. The observed high dose toxicity of dsRNA has been previously, and in other model systems, attributed to a non-specific saturation of RNAi machinery causing a consequent alteration of the microRNA pathway (Grimm et al., 2006). Following these results, all the microinjection experiments in this study were performed with a dsRNA concentration of 7 μg/μl.

3.3. Survival rates and phenotypes after dsRNA administration by microinjection

In order to characterize precisely the effects of cathepsin-L gene down-regulation by RNAi treatment in individual aphids, a total of 225 insects (75 for each injection group: water, EGFP or cathepsin-L dsRNA) were followed daily for 5 days to check their survival and the occurrence of body morphology phenotypes. With the exception of the first day, the mortality of aphids injected with cathepsin-L dsRNA was always significantly higher than that of aphids from other injection groups (Table 1, Injection treatments, Experiment 1). Survival analysis, with a Weibull fit adjustment (Fig. 1), revealed that this treatment had a significant effect on both controls, with a decrease in the mean survival time of the first 20% of the population from 141 ± 12 h (EGFP control) to 63 ± 6 h (cathepsin-L). This corresponds to a significant increase in the final cumulated mortality from 19% for EGFP to 31% for cathepsin-L treated aphids (p = 0.082 for a χ² test of the whole parametric model, and p = 0.069 in comparison to the water control). This experiment allowed us to detect a significantly higher number of behavior alterations and morphological defects in treated aphids than in the controls (Table 1, Injection treatment, Experiment 1).

Starting from the sixth day after microinjection, aphids were monitored every 48 h for a supplementary period of 10 days. All injected aphids surviving the treatment gave birth to correctly developed nymphs at a morphological level.

The same experiment was repeated: 75 aphids for each injection group were followed during a period of 5 days. This allowed us to detect that, 24 h after the injections, an approximately 20% of the aphids injected with cathepsin-L dsRNA showed morphological defects, which was significantly different from the control groups (p < 0.01, Table 1, Injection treatments, Experiment 2). The body of these aphids was deformed, resulting in a non-uniform insect shape (example in Fig. 2). A bigger proportion (50%) of the aphids injected with cathepsin-L dsRNA (and all the aphids with morphological defects) showed reduced mobility and they were easily detached from plant leaves. Five aphids from each treatment group were dissected and the stereoscopical examination of the body compartments showed that no visible alteration was affecting their bodies. In order to examine whether the phenotype observed was related to cathepsin-L gene inhibition, we used aphids presenting an altered morphology for the tissue gene expression analysis by qRT-PCR (for example aphids labeled ICD and ICE in Fig. 3, and Table S2 in Supplementary data), as well as the aphids that did not show visible phenotypic effects.

3.4. Tissue gene expression analysis after dsRNA administration by microinjection

For all time points (24, 72 and 120 h), cathepsin-L transcript levels in five selected body compartments (bacteriocytes, embryonic chains, gut, head and the remaining body), dissected from each of the five aphids that were examined with a stereoscopic microscope following microinjection, were measured by qRT-PCR. The aphids’ developmental stages were synchronized, excluding any
possible gene expression variation due to this parameter. Nevertheless, the expression levels of cathepsin-L in the same aphid tissue, showed significant variation between individuals. To take into account this variation (and to distinguish it from the effect of the injection), the expression of the cathepsin-L gene was normalized relative to the gene rpl32 and by using, as a reference, the mean of the cathepsin-L mRNA levels in each body compartment of the control groups (water and EGFP). Statistically significant cathepsin-L knockdowns calculated by the REST analysis, are shown in bold in Table S3 (Supplementary data) and summarized in Fig. 3.

Twenty-four hours after the injections, we observed a decrease in cathepsin-L transcripts in 3 out of the five individuals injected with cathepsin-L dsRNA, compared to the controls (Fig. 3). The strongest inhibition of the target gene was observed in the car- casses (up to 2.5-fold compared to the controls) and in the embryonic chains (up to 1.9) (Table S3, Supplementary data). Interestingly, the two aphids with the highest level of cathepsin-L gene expression down-regulation were ICD and ICE individuals, which presented the morphological defects shown in Fig. 2.

Seventy-two hours after the injections, all aphids injected with cathepsin-L dsRNA showed lower cathepsin-L transcript levels compared to the control group (Fig. 3). The strongest inhibition of the
target gene expression was observed in the carcasses (up to 4.5-fold, for four out of the five aphids analyzed here) and the heads (up to 3.1-fold, for all five aphids) (Fig. 3B, and Table S3 in Supplementary data). A significant inhibition of cathepsin-L expression was also observed in the gut and in the embryonic chains in two out of the five aphids analyzed (Fig. 3, and Table S3 in Supplementary data). All the aphids with morphological defects showed reduced cathepsin-L mRNA levels (ICF, ICG and ICI individuals).

One hundred and twenty hours after the injections, a significant inhibition of the target gene mRNA level was still observed in the carcasses (up to 2.9-fold lower than the controls for 3 out of 5 individuals) and the heads (up to 1.8-fold lower than the controls for two out of five individuals) of aphids injected with cathepsin-L dsRNA (Fig. 3, and Table S3 in Supplementary data). No significant reduction in the cathepsin-L expression levels among the different injection groups was observed in the bacteriocytes or the embryonic chains. On the other hand, an induction of the cathepsin-L expression levels was observed in the guts of aphids injected with cathepsin-L (Table S3, Supplementary data). This intriguing result is similar to that found by Jaubert-Possamai et al. (2007) in pools analysis following cathepsin-L dsRNA injection in the same aphid species.

In summary, over five days of treatment, a statistically significant knockdown of cathepsin-L gene expression was observed in 12 out of the 15 aphids analyzed here (Table 1, Injection treatment, Experiment 2). The knockdown was the highest at 72 h and variable depending from single individual aphids and tissues. The most sensitive tissue to the cathepsin-L dsRNA injection was the carcass. It is to mention that our sampling strategy (selection of surviving insects for the qRT-PCR analyses) may have created an underestimation of the number of insects showing a statistically significant gene expression knockdown: it is possible that aphids having the highest cathepsin-L gene inhibition were among the ones that died and could not be examined.
3.5. Optimization of the dsRNA administration by ingestion

The dose response assessments performed in our study showed that the highest amount of dsRNA that could be administered to 3rd instar aphid nymphs by feeding, whilst maintaining a relatively low mortality, was ranging between 1.8 µg/µl and 1.9 µg/µl over a 3-day period. At higher concentrations, the treated aphids died independently from the administered dsRNA. Hence, in our feeding experiments, in order to select a dsRNA concentration able to induce gene specific effects, we decided to perform our phenotypic and tissue analysis in aphids fed on artificial diets containing 1.8 µg/µl dsRNA.

3.6. Survival rates and phenotypes after dsRNA administration by ingestion

After the administration of dsRNA by feeding, we monitored insects daily to evaluate survival rates, over a five-day period, for 336 aphids (112 for each treatment) fed on cathepsin-L dsRNA, EGFP dsRNA or dsRNA-free AP3 artificial diets. No mortality was observed during the first 48 h (Fig. 4). After 96 h, a mortality rate of approximately 14% and 36% was observed in the aphids fed on EGFP dsRNA and on cathepsin-L dsRNA, respectively. The final increase in mortality for the ingestion assay (relative to the AP3 control group) was between 19% (EGFP control, as for the injection group) and 46% (cathepsin-L, higher than the injection group). In the feeding treatment, the effect of cathepsin-L RNAi ingestion was very significant ($p < 0.0001$ for a χ^2 test of the whole model, after a Weibull-fit survival analysis; Fig. 4). Conversely to the microinjection treatment, aphids did not show modification in their behavior or their body shape after cathepsin-L dsRNA feeding treatment (Table 1, Feeding treatments, Experiment 1).

The same experiment was repeated: 112 aphids for each feeding group were followed during a period of 5 days. Again, no behavioral changes or morphological alterations were observed for the aphids fed on cathepsin-L or EGFP dsRNAs, compared to those fed on the control diet (Table 1, Feeding treatments, Experiment 2).

During the experiment, six aphids from each experimental group were dissected and evaluated, using stereoscopic microscopy, 24, 72 and 120 h after the administration of dsRNA. The dissected tissues were then analyzed with the qRT-PCR technique (six aphids from the cathepsin-L group, and four aphids from the control groups). The stereoscopic analysis revealed several differences in the morphology of the stomach among the aphids fed on the different diets. While normally the stomach of aphids appeared to be dense under the microscope, with a layer of epithelial cells surrounding it, in several dsRNA treated aphids it was transparent and occasionally filled with granules and granular formations (Fig. S2, Supplementary data). We observed this phenotype significantly more frequently (seven out of the 18 aphids analyzed at the end of the observations, $p < 0.01$) in the aphids fed on cathepsin-L dsRNA than in aphids of the control groups (Table 1, Feeding treatments, Experiment 2).

Following these observations, we repeated the feeding experiment on a smaller group of aphids (50 aphids for each feeding group) and we evaluated the morphology of the aphid gut cells at the histological level using hematoxylin/eosine staining using six aphids from each diet and for each time point. This led to the discovery that, in all aphids fed on cathepsin-L dsRNA, the integral structure of the gut was deteriorating from 24 to 120 h after the administration, as indicated by vacuole formation (a sign of cell necrosis) and destruction of the epithelial cell membranes from 24 h onwards (Fig. 5E,F). These vacuoles were observed in the intestines of all cathepsin-L dsRNA treated aphids, but rarely in the stomachs, where they appeared only from 72 h after the beginning of the treatment. The microscopy analysis of these aphids also revealed an alteration in their stomachs, where we frequently observed lyzed epithelial cells (Fig. 5E). Conversely, histological alterations were not found in either the intestines or the stomachs of aphids fed on EGFP dsRNA (Fig. 5A–D and Table 1, Feeding treatments, Experiment 3). Vacuole structures were rare in the stomachs of aphids fed on EGFP dsRNA or on dsRNA-free AP3.

3.7. Tissue expression analysis of aphids after dsRNA administration by ingestion

For each of the time points described above (24, 72 and 120 h), the cathepsin-L transcript levels in five selected body compartments (bacteriocytes, carass, embryonic chains, gut and head) dissected from aphids analyzed by stereocical examination for the three treatment groups, were measured by qRT-PCR. Six aphids were examined from the cathepsin-L group and four aphids were examined from both control groups (EGFP and AP3 diet). Again, a variation in the expression levels of the cathepsin-L transcripts was observed among the aphid tissues of the different feeding groups, and also among tissue samples from aphids within the same feeding group. In order to take this variability into account, as regards the injection study, the expression level of the cathepsin-L gene was normalized relative to the gene rpl32 using, as a reference, the mean of the cathepsin-L mRNA levels in each body compartment of the individuals from the control groups (EGFP dsRNA and dsRNA-free AP3). Statistically significant cathepsin-L knockdowns calculated by the REST analysis, are shown in bold in Table S4 (Supplementary data) and summarized in Fig. 6.

Twenty-four hours after the administration of dsRNA, we observed that the aphids fed on dsRNA had higher cathepsin-L expression levels compared to the aphids fed on control diets, with induction varying among individuals and tissues (Table S4, Supplementary data). In order to exclude the possibility that the cathepsin-L induction was an artifact produced by the assay conditions, we repeated the feeding experiment and performed new independent qRT-PCR assays. In these experiments, the GAPDH-encoding gene was used to normalize the data (data not shown).
This allowed us to confirm the cathepsin-L mRNA induction observed 24 h after the administration of dsRNA.

Seventy-two hours after the beginning of the experiment, the cathepsin-L expression levels in the gut of four out of the six aphids analyzed (FCI, FCJ, FCK and FCL individuals) and the head of one out of the six aphids analyzed (FCK individual), and fed on cathepsin-L dsRNA, were reduced compared to the controls (Fig. 6, and Table S4 in Supplementary data). All these aphids belonged to the group showing altered gut morphology upon stereoscopical observation.

One hundred and twenty hours after the beginning of the treatment a reduction in cathepsin-L expression levels was observed only in the gut of one out of the six individuals analyzed and the bacteriocytes of three out of the six individuals analyzed (Fig. 6, and Table S4 in Supplementary data).

In summary, over five days of treatment, a statistically significant knockdown of cathepsin-L gene expression was observed in eight out of the 18 aphids analyzed here (Table 1, Feeding treatments, Experiment 2). The most sensitive tissue to the cathepsin-L dsRNA treatment by feeding was the gut. As for injection experiments, our sampling strategy (selection of surviving aphids for the qRT-PCR analyses) may have created an underestimation of the number of insects showing a statistically significant cathepsin-L knockdown.

4. Discussion

One objective of the present work was to investigate the differences between two dsRNA administration methods (injection vs. ingestion), with respect to specific tissue and individual responses to RNAi treatment in aphids. The gene target in our study was cathepsin-L, a gene initially described as being mainly expressed in the gut and the bacteriocytes in aphids (Deraison et al., 2004).
However, we found this gene to be expressed also in other parts of the aphid body (Fig. S1), and this allowed us to monitor its inhibition in all the different body compartments analyzed in this work. We have shown, for the first time in aphids, that the two administration methods for delivering dsRNA induce different phenotypic effects in *A. pisum* when used for the inactivation of the same target gene (see Table 1 for an overview of different phenotypes observed with injection or feeding). First, the body compartments targeted by the gene knockdown are specific to the administration method used. Indeed, microinjection of dsRNA targeting the *cathepsin-L* gene in aphids resulted in significant gene knockdown in the carcass, the head, the gut and the embryonic chains. Administration by feeding resulted in a clear gene knockdown in the aphid’s gut, together with mild effects in the bacteriocytes (Figs. 3 and 6). These data support the hypothesis that dsRNA administration by microinjection in aphids provokes a much more efficient spread to all the tissues. Therefore, injection into the aphid hemolymph should give access to the different compartments of the aphid body, as has been observed for other insect species (Araujo et al., 2006; Rajagopal et al., 2002; Walsh et al., 2009). In aphids, the absence of an efficient systemic spread of the RNAi effects, following oral administration, may be due to the presence, in the aphid’s gut, of a modified perimicrovillar membrane (MPM) (Cristofoletti et al., 2003), equivalent to the peritrophic membrane in other insects. This could act as a natural barrier preventing dsRNA transfer outside the gut. A possible role of the insect gut barrier in preventing the systemic spread of dsRNA has already been reported for the aminopeptidase gene knockdown in *Spodoptera littura* (Rajagopal et al., 2002). Our study also shows that, in aphids, the RNAi effects in the gut and the bacteriocytes are much more important, in terms of the number of individuals affected (for both tissues) and induced phenotypes (for the gut), when dsRNA is administered by feeding. Thus, this administration route remains essential for developing RNAi-based pest control strategies, in the field, against aphids.

The importance of different body compartment targeting related to the dsRNA delivery strategy in aphids was confirmed by the observation of specific phenotypes. Injection of dsRNAs targeting *cathepsin-L* induced a significant modification of the aphid body morphology (20% of treated aphids) and behavior alterations (around 50% of treated aphids). There is a high probability that the alteration of aphid body morphology was related to the inhibition of *cathepsin-L* gene expression in the aphid carcass since *cathepsin-L* expression knockdown was observed in all these aphids. This phenotype defect only appeared in the first 48 h of the experiment, i.e. when aphids were around the developmental switch from the 3rd to the 4th instar molting phase. The affected aphids always died 24 h after the observation of the phenotype. This altered body morphology phenotype was not observed by Jaubert-Possamai et al. (2007), who have already performed *cathepsin-L* gene inactivation in the pea aphid using the injection method. A possible explanation is that these authors did not use an individual aphid analysis-based approach following the *cathepsin-L* dsRNA injection. Moreover, the high mortality observed by these authors in the control groups (29% and 38% for water and the control gene respectively, vs. 45% mortality in the *cathepsin-L* injected groups) could also have masked the specific effects caused by the target gene inactivation, when compared with the general effects of the trauma induced by microinjection. The localization of *cathepsin-L* mRNA in insects’ carcass (Fig. S1, Supplementary data), and the
phenotypes observed following its inhibition (induction of nymph mortality correlated with alteration of aphid body shape) led us to hypothesize that cathepsin-L protein could be involved in the molting process in aphids. Therefore, its inhibition could alter the correct development and, thus, the survival of the aphids. The involvement of cathepsin-L in molting has been demonstrated in nematodes where, either the treatment with enzyme inhibitors (Richer et al., 1993; Lustigman et al., 1996), or RNAi experiments (Hashmi et al., 2002) showed that this cysteine protease is needed for successful molting. In insects, evidence of the crucial role of cathepsin-L in metamorphosis was shown in a holometabolous insect, the cotton bollworm Helicoverpa armigera, where this protein is suggested to be involved in the drastic larval tissues destruction necessary for the complete transformation that the larva undergo to form an adult (Liu et al., 2006; Zhang et al., 2013). Our work shows, for the first time, a possible involvement of cathepsin-L in molting in a hemimetabolous insect. Even if insects belonging to this group go through gradual changes as they turn into adults, as the insect grows, it sheds its cuticle, which cannot grow. Therefore, at each nymph phase transition, a new larger one replaces the old smaller cuticle. Cathepsin-L, and other cysteine proteases could be involved in the extensive degradation of proteins taking place during cuticle remodeling in molting of hemimetabolous insects, and this function requires further investigation.

Interestingly, 120 h after the administration of dsRNA, the levels of cathepsin-L mRNA were still strongly inhibited in the carcass, but no morphological defects were observed in the treated aphids. It is important to note that, 120 h after the injection, aphids in our treatment groups had already completed their molting from the 4th instar stage to the adult life phase, as this process is normally occurring 96 h after the moment we chose for dsRNA administration. This could be due to a different role or involvement of the cathepsin-L gene in aphid molting according to the different nymph stages switches.

On the other hand, the administration of cathepsin-L dsRNA by feeding induced a high mortality rate and an alteration of the gut morphology in treated aphids, when compared to the control groups. Inhibition of gut cysteine proteases by the use of enzymatic inhibitors is known to cause external morphological defects during development, arrested growth and mortality in insects (Stotz et al., 1999; Murdock and Shade, 2002; Tamhane et al., 2007; Parde et al. 2010). Although weakly, aphid mortality had already also been observed following cysteine proteases inhibition by an oral route (Cristoforetti et al., 2003; Azzouz et al., 2005). Nevertheless, our RNAi approach specifically targeting cathepsin-L gene was more efficient in killing aphids. Depletion of intestinal proteases is considered able to induce (and deregulate) the synthesis of other proteases, which could result in toxic effects altering insect development. This study is the first to report that the specific inhibition by RNAi of a cysteine protease causes an alteration of gut cells during insect development. Indeed, a further detailed histological analysis allowed us to observe number of lysed cells and necrotic vacuoles in the anterior midgut of aphids appearing after feeding on cathepsin-L dsRNA-supplemented diet. This phenotype is probably caused by the specific inhibition of cathepsin-L gene in the aphid gut following the feeding treatment. In fact, the highest mortality rate for the feeding treatment and the peak in the deterioration of aphid stomach cells both took place 120 h after the start of dsRNA administration, therefore following the most significant cathepsin-L mRNA knockdown in the aphid’s gut (observed 72 h after the beginning of the treatment). Previous studies on cathepsin-L localization have shown that this protein is found mostly in the anterior part of the gut and, more specifically, in vesicular and modified perimicrovillar structures (Deraison et al., 2004), but its sub-cellular localization has never been clearly shown. On the basis of our results, our aim was to provide more precise information on cathepsin-L expression in aphid gut cells. To achieve this, we used a new antibody recently developed against insect cathepsin-L, which is more specific than that previously employed. With this approach, we found a prominent and clear localization of cathepsin-L in the stomach cells (Fig. 7), proving that this protein is expressed in the same cells of the aphid gut as those where we observed the biggest and specific tissue deterioration following the gene knockdown caused by RNAi.

More generally on the aphid reaction to RNAi treatment, we were able to detect that variation in the knockdown effects exists among different individuals even when they have received the same treatment. This observation that, regardless of the administration method used, the RNAi will not have a uniform effect on all the individual aphids, has been previously shown for other insect species (Amdam et al., 2003; Dong and Friedrich, 2005; Marshall et al., 2009). In aphids, a difference in the response to RNAi treatment between different pools was already observed in the previous microinjection study performed by Jaubert-Possamaï et al. (2007). This variation could be explained by the physiological condition of each individual insect at the time of treatment, which can also have a consequence on the target gene expression knockdown. It is worth noting that, for the injection experiments, the dsRNA quantity administered to aphids is easily controlled, whilst, in the feeding experiments, individual variability may also be due to differences in dsRNA intake. Therefore, the individual feeding

![Fig. 7. Localization of cathepsin-L protein in the pea aphid gut.](image-url)
behavior of any single aphid could, in part, explain the high individual variability of gene knockdown observed in our feeding experiments. Finally, dsRNA appears to be susceptible to degradation by aphid salivary secretions and by aphid hemolymph (Christaens et al., 2014), which could also contribute to variable effect of the RNAi treatment on individual aphids.

Other important factors for the success of RNAi experiments are the duration and the timing of gene expression knockdown, because both of these parameters potentially affect the expression of detectable phenotypes. In our study, the peak in cathepsin-L inhibition was observed from 72 h after the beginning of the treatment. These results are consistent with most of those from previous RNAi studies in aphids (Jaubert-Possamai et al., 2007; Mutti et al., 2006; Whyard et al., 2009; Guo et al., 2014). Only Shakesby et al. (2009) observed the strongest RNAi knockdown effect 24 h after the start of the feeding treatment in aphids. This difference (24 vs. 72 h for the highest knockdown effect) could be an example of how the combination of the expression pattern and the administration method used is leading to the temporal pattern of gene expression down-regulation of a given target gene.

To summarize, our study highlights the importance of individual and tissue specific analyses to characterize precisely the phenotypic response to RNAi treatment in insects. We optimized two administration methods (injection and ingestion) and we have shown that the dsRNA administration alone is able to induce lethal effects above certain dose thresholds in aphids. Our individual analysis of treated aphids enabled us to observe phenotypes never previously seen in these insects following RNAi treatment, and to show a clear relationship between cathepsin-L gene knockdown and body compartment-specific responses.

Acknowledgments

The authors are grateful to Thomas Horn and Michael Boutros for the prompt inclusion of the pea aphid (Acyrthosiphon pisum) genome in the E-RNAi webtool when requested. We wish to thank Alain Clavel for plant production, François Cochet for his help at the beginning of the project, Elisabeth Cortier for her help in the production of the Nanoinjector capillaries and Corinne Dorel for her kind donation of the pMP2444 plasmid. We are grateful to Valerie James for the English corrections.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.ibmb.2014.05.005.

References

