Skip to Main content Skip to Navigation
Journal articles

The incompressible Navier-Stokes equations on non-compact manifolds

Abstract : We shall prove dispersive and smoothing estimates for Bochner type laplacians on some non-compact Riemannian manifolds with negative Ricci curvature, in particular on hyperbolic spaces. These estimates will be used to prove Fujita-Kato type theorems for the incompressible Navier-Stokes equations. We shall also discuss the uniqueness of Leray weak solutions in the two dimensional case.
Complete list of metadatas

Cited literature [54 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01002061
Contributor : Vittoria Pierfelice <>
Submitted on : Thursday, June 5, 2014 - 9:12:00 PM
Last modification on : Thursday, May 3, 2018 - 3:32:06 PM
Document(s) archivé(s) le : Friday, September 5, 2014 - 11:51:03 AM

Files

Navier-Stokeshyperbolicjuin201...
Files produced by the author(s)

Licence


Copyright

Identifiers

  • HAL Id : hal-01002061, version 1
  • ARXIV : 1406.1644

Collections

Citation

Vittoria Pierfelice. The incompressible Navier-Stokes equations on non-compact manifolds. Journal of Geometric Analysis, 2017, 27 (1), pp.577-617. ⟨hal-01002061⟩

Share

Metrics

Record views

265

Files downloads

387