UO - Université d'Orléans : UMR 7349 (Château de la Source - Avenue du Parc Floral - BP 6749 - 45067 Orléans cedex 2 - France)
Abstract : We shall prove dispersive and smoothing estimates for Bochner type laplacians on some non-compact Riemannian manifolds with negative Ricci curvature, in particular on hyperbolic spaces. These estimates will be used to prove Fujita-Kato type theorems for the incompressible Navier-Stokes equations. We shall also discuss the uniqueness of Leray weak solutions in the two dimensional case.
https://hal.archives-ouvertes.fr/hal-01002061 Contributor : Vittoria PierfeliceConnect in order to contact the contributor Submitted on : Thursday, June 5, 2014 - 9:12:00 PM Last modification on : Wednesday, November 3, 2021 - 6:38:45 AM Long-term archiving on: : Friday, September 5, 2014 - 11:51:03 AM
Vittoria Pierfelice. The incompressible Navier-Stokes equations on non-compact manifolds. Journal of Geometric Analysis, 2017, 27 (1), pp.577-617. ⟨hal-01002061⟩