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ABSTRACT

Adding invariance properties to a dictionary-based model is a

convenient way to reach a high representation capacity while

maintaining a compact structure. Compact dictionaries of

patches are desirable because they ease semantic interpreta-

tion of their elements (atoms) and offer robust decomposi-

tions even under strong speckle fluctuations. This paper de-

scribes how patches of a dictionary can be matched to a speck-

led image by accounting for unknown shifts and affine radio-

metric changes. This procedure is used to build dictionaries

of patches specific to SAR images. The dictionaries can then

be used for denoising or classification purposes.

Index Terms— Patches, dictionary, shift-invariant, contrast-

invariant, SAR images.

1. INTRODUCTION

Image patches are small rectangular regions, typically 3×3 to

11×11 pixels, that capture local geometry (e.g., edge, corner,

smooth area, point-like source) and texture. Patch-based sta-

tistical modeling of natural images has encountered growing

success in image processing the past decade, with applica-

tions such as denoising, compression and annotation. While

non-local approaches rely on an auto-similarity principle

(similar patches are likely to arise within the area surround-

ing a given patch), dictionary-based modeling decompose

patches as a linear combination of (few) patches taken from

a given collection (so-called dictionary of patches). Unlike

fixed dictionaries based on Fourier or wavelets basis, learned

dictionaries are suited to the specific content of a given image

or class of images.

The dictionary learning procedure is usually expressed as

the minimization of an energy that enforces the obtained dic-

tionary to reconstruct well the image or its patches with only

few atoms, i.e. sparsely. This idea was already at the heart of

the pioneering work of Olshausen et al. in [1] and has more

recently been popularized with the K-SVD algorithm [2]. In-

spired by vectorial quantification methods such as K-means,

K-SVD builds a dictionary iteratively in two steps: for each

patch of the image a suitable linear combination of few atoms

is found (the sparse coding step), next the atoms are updated

according to those coefficients (the dictionary update step).

Few researches considered the adaptation of dictionary

learning methods for SAR (Synthetic Aperture Radar) im-

ages. Due to the multiplicative behavior of speckle, the stan-

dard K-SVD algorithm tends to learn dictionaries that essen-

tially explain the brightest areas. For speckle reduction pur-

poses, [3] suggested using a logarithmic transform of the data

to map speckle noise to additive noise, and then applying the

K-SVD procedure. To our knowledge, only [4] proposed a

learning method that directly takes into account the speci-

ficity of non-additive noise. As a first step towards dictionary

learning with non Gaussian noise, [4] suggested using only a

vectorial quantification method, the k-medoı̈ds, in which each

patch is only represented by one atom (1-sparse coding).

Although dictionary learning approaches can be very ef-

fective, they usually require a large dictionary to capture the

diversity of patch structures found in an image. A notable

reason is that all shifted versions of the structures must be

encoded in the dictionary to be correctly modeled. If the dic-

tionary incorporates in some way a shift-invariance, it can be

made much more compact. In the MoTIF algorithm (Match-

ing of Time Invariant Features) [5], the best shift parameter

is computed over a training basis of patches by maximizing a

square correlation. A shift invariant version of the Olshausen

method was proposed in [6] and, more recently, the K-SVD

algorithm has been extended in [7], [8]. Another proposed ap-

proach to implement shift-invariance is to use epitomes [9].

In this work, we design dictionaries for 1-sparse coding,

as in [4]. Since atoms are not combined together, it is nec-

essary to provide invariance properties to reach a sufficient

expressive power. We show on numerical experiments that 1-

sparse coding is a relevant choice for SAR images due to the

strong noise level (Section 2). Next, as in [3], we consider the

homomorphic transform, and we show how 1-sparse coding

with shift and radiometric invariance can be implemented ef-

ficiently (Section 3). Finally, we apply our methodology for

1-sparse dictionary learning with shift and radiometric invari-

ance (Section 4).
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Fig. 1. Distributions of the mean squared error with respect to the

sparsity level S. The MSE tends to increase with the number of

atoms used in the linear combination for highly noisy patches.

2. APPROXIMATING NOISY SAR PATCHES WITH A

SINGLE ATOM IS OPTIMAL IN THE MSE SENSE

While [4] motivates the 1-sparse coding assumption as a first

step towards dictionary learning with non Gaussian noise,

we draw here another motivation. To illustrate our point we

conduct the following experiment. A dictionary of patches

is learned with K-SVD on a log-transformed SAR image

with very high signal-to-noise ratio (100 looks image). Then

several patches are extracted from this SAR image and cor-

rupted with multiplicative noise corresponding to single-look

images. Log-transformed versions of these noisy patches

are then sparse-coded with several sparsity degrees in order

to evaluate which degree achieves the best approximation

error (i.e., the smallest mean square error, MSE). The MSE

distributions of the estimates obtained with different sparsity

degrees are presented in Figure 1. We observe that sparsity

1 produces frequently the smallest MSE, and is optimal on

average. Indeed, with such a high level of noise, higher spar-

sity levels lead to higher degrees of freedom and result in

larger estimation variances. These experiments suggest that a

single atom is enough to approximate noisy patches in SAR

imaging.

3. CONTRAST AND SHIFT INVARIANT MATCHING

OF A DICTIONARY ATOM

Dictionary learning procedures rely on some performance

measure of the dictionary being learned, typically the ap-

proximation error of a given noisy image. Such a criterion

is simple to evaluate in our context: since we consider 1-

sparse codes, the performance of an atom is independent

on other atoms. For speed and to reduce estimation vari-

ance, dictionaries should be as small as possible while being

representative of the image content. To limit the size of dic-

tionaries, a common idea is to let atoms represent a class of

patches that are identical up to some transformations. We

propose here a methodology to match an atom up to a shift

and affine radiometric change.
Let y be an observed patch corrupted by a white Gaussian

noise with standard deviation σ (in the following, y will be ex-
tracted from a log-transformed SAR image). Given an atom a
and the patch y, the approximation error when approximating
patch y with atom a up to an affine radiometric change can be
measured with the optimal sum of square difference (SSD) as
described by the CI-GLR test (Contrast-Invariant Generalized
Likelihood Ratio) in [10]:

GLR
CI(a, y) =

{

(1− C(y, a)2) ‖y−ȳ✶‖2

2σ2 if a 6= ā1 and y 6= ȳ1

‖y−ȳ✶‖2

2σ2 otherwise ,

(1)

where C(y, a) =
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is the

normalized correlation, and ā and ȳ are the empirical means

of a and y, P is the size of each patch, yk (resp. ak) is the

value of the patch y (resp. a) at location k, and 1 is a vec-

tor whose entries are all equal to 1. From Equation (1), the

optimal atom is the one maximizing the correlation. This

principle is indeed at the heart of several greedy approaches

such as matching pursuit algorithms. However correlation it-

self is not a measure of fitness since the approximation er-

ror depends also on ‖y − ȳ1‖2/2σ2: a quantity related to the

signal-to-noise ratio of the observation y. Hence, correlation

indicates which atoms explain well a given patch, while (1)

define which patches are well explained by a given atom.
Equation (1) provides a criterion to evaluate how a noisy

patch y matches an atom a up to an affine change of contrast.
To evaluate the overall performance of an atom a, we then
need to be able to quickly match it against all the patches
y that could be extracted from the whole image y. In [9],
the authors proposed an algorithm to extract quickly an atom
from a large image (called epitome) that correlates best with
a given patch. We employ here a similar strategy to compute
for all patches of a noisy image y the 1-sparse approximation
error obtained with a given atom. The map associating to all
pixel locations the approximation error (1) between a and y

can be computed by:

SSDCI
map(a,y) =

1

2σ2
×







y
2 ⋆ ι− P (y ⋆ ι/P )2 −

(y ⋆ (a− ā1))2

‖a− ā1‖2
if a 6= ā1

y
2 ⋆ ι− P (y ⋆ ι/P )2 otherwise ,

(2)

where CI stands for contrast invariance and ι is the sup-

port of a patch (typically a P × P squared box window).

The approximation of a noisy image with a given dictio-

nary can be computed efficiently using Equation (2) since

each convolution can be computed separately in the Fourier

domain. SSDCI
map(a,y) can thus be evaluated for a given

atom a against all patches of an image with a complexity



O(N logN) where N is the image size. In comparison, ap-

plying (1) after extracting all patches would be of complexity

O(NP ).
Beyond contrast change invariance, we wish to implement

a shift invariance. Rather than requiring that all patches from

the noisy image be approximated with the dictionary (i.e., that

each pixel from the image be represented several times), in

each patch that includes the pixel, we require that each pixel

be well approximated at least once. The approximation er-

ror is then the smallest error among all patches including the

pixel. The map giving at each pixel the optimal approxima-

tion error between a given atom and all surrounding patches

can readily be obtained by gray-level erosion (in the mathe-

matical morphology sense) of the map given by equation (2):

SSDCI+SI
map (a,y) = erode( SSDCI

map(a,y), ι) (3)

where SI stands for shift-invariance and erode(·, ι) is the ero-

sion operator with structural element ι.

Figure 2 illustrates the efficiency of our shift invariant proce-

dure. In fact, in this toy example, we first computed an initial

SSDCI+SI
map with a constant atom. Then we selected an atom

(in this experiment: a portion of an edge) to prove that the

shift invariance is verified by the criterion of equation (2) (i.e.

the whole edge is explained).

Fig. 2. From left to right: the initial SSDCI+SI
map obtained

with the constant atom, the selected atom (indicated by the

red box); the updated SSDCI+SI
map using this atom given by the

minimum values of the two maps. Blue indicates small values

(i.e., good approximation).

4. LEARNING A DICTIONARY OF SAR IMAGE

PATCHES

Based on the shift and contrast invariant matching criterion

SSDCI+SI
map derived in previous paragraph, we design a dictio-

nary learning procedure. The aim of this dictionary is to pro-

vide a compact summary of a noisy image y. The atoms of

this dictionary are extracted from a high signal-to-noise ratio1

reference SAR image y
⋆. Both y and y

⋆ are log-transformed

in order to turn speckle fluctuations into an additive term with

constant variance.

First, T patches in y
⋆ are extracted at random locations.

They define a set C of candidate elements that will be consid-

ered for inclusion in the final dictionary D. The total number

1in practice, such an image can be obtained by multi-looking a very high

resolution image (e.g., 100 looks from decimeter to meter resolution).

of elements in the dictionary, K, is set manually. An initial

dictionary is built from the first K elements of the set of can-

didate patches C.

We define the map of patch approximation errors of image

y with dictionary D for each pixel i as:

SSDCI+SI
map (D,y)i = min

ki

SSDCI+SI
map (aki

,y)i , (4)

The dictionary is updated by considering all candidate patches

in C in turn and replacing atoms of the dictionary each time

the average approximation error can be reduced. When con-

sidering replacing patch ak from the dictionary with patch ct
from the candidates set C, a map of local gains is computed:

SSDCI+SI
map (D,y)i − SSDCI+SI

map (D ∪ {ct} \ {ak},y)i . (5)

Candidate patch ct makes its way into current dictionary C if

an atom ak can be found such that the average gain is positive,

i.e., the approximation error can be decreased by replacing ak
with ct. The process is then repeated for ct+1.

The computation of the gain can be made fast by keeping

track of the best two approximation errors and approximating

atoms with indices k1st
i
, k2nd

i
for each pixel i of the image y.

Computation of the gain defined in equation (5) then requires

only the computation of a map SSDCI+SI
map (ct,y) using (3).

Three cases can occur:

• The atom ak to be replaced is not the optimum at pixel i
(i.e., k 6= k1st

i
). In this case either ct improves at pixel i or

either it does not affect the reconstruction error. The gain

at pixel i is then given by:

max
(

SSDCI+SI
map (D,y)i − SSDCI+SI

map (ct,y)i, 0
)

,

• Otherwise ak1st
i

is going to be replaced. Suppose the candi-

date ct is better than the second best atom ak2nd
i

in terms of

reconstruction error, so the gain at pixel i is the difference:

SSDCI+SI
map (D,y)i − SSDCI+SI

map (ct,y)i ,

• Otherwise ak1st
i

is going to be replaced and the candidate ct
is worse than ak2nd

i

, so the gain at pixel i is:

SSDCI+SI
map (D,y)i − SSDCI+SI

map (ak2nd
i

,y)i .

Overall the complexity is of order O(TN logN) indepen-

dently of the number of atoms K.

An example of dictionary produced by our proposed ap-

proach is presented on figure 3. A K-SVD dictionary learned

on the same noisy image is also presented. They are learned

using the same 1-look SAR image (cf. fig. 4) and both are

composed of 64 atoms of size 8×8. One can observe that our

dictionary summarizes well the structures of the SAR image

(the backscattering lines for example). The K-SVD dictionary

seems to explain well edges but contains too many homoge-

neous atoms which makes the information provided by these

atoms too redundant.



Fig. 3. From left to right: our dictionary and the K-SVD

dictionary, both of them composed of 64 atoms of size 8 × 8
and learned from the images in figure 4.

5. CONCLUSION

In this paper, we have introduced a new methodology to de-

sign dictionaries of patches suited to SAR images with shift

and radiometric invariances. As a first contribution, we have

provided a measure of performance to evaluate the quality of

a dictionary in approximating a log transformed SAR image.

The second contribution was to show that this approximation

error is computed with an O(N logN) complexity. This low

complexity makes it so tractable to be used as an objective

criterion for a dictionary learning technique, as shown with a

proposed algorithm based on a simple replacement strategy.

The quality of the obtained results demonstrates the po-

tential of the approach. Future work will focus on designing

more sophisticated learning approaches based on our shift and

contrast invariant criterion and apply them to denoising and

clustering.
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