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Abstract. Automatic detection of atrial activity (P waves)dlectrocardiogram (ECG) is a crucial task to
diagnose the presence of arrhythmias. P wavefisudifto detect and most of the approaches in the
literature have been evaluated on normal sinusinhgtand rarely considered arrhythmia contexts other
than atrial flutter and fibrillation. A novel knoedige-based P wave detector algorithm is preseltisd.
self adaptive to the patient and able to deal eétttain arrhythmias by tracking the PP rhythm. The
detector has been tested on 12 records of the MiHTaBrhythmia database containing several ventaicul
and supra-ventricular arrhythmias. On the oveebrds, the detector demonstrates Se=96.60% and
Pr=95.46%; for the normal sinus rhythm, it reacBes97.76% and Pr=96.80% and, in the case of Mobitz
type I, it demonstrates Se=72.79% and Pr=99.51#sb shows good performance for trigeminy, and
bigeminy and outperforms some more sophisticatelthigues. Although the results emphasize the
difficulty of P wave detection in difficult arrhythias (supra and ventricular tachycardias), it shihas
domain knowledge can support efficiently signalgessing techniques.
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1 Introduction
Automatic electrocardiogram (ECG) analysis is adamental task in cardiac monitoring and Holter ysialto

detect cardiac arrhythmias. The ECG reflects twrhaart activities: the ventricular activity, repented by the
QRS complexes and the T waves; and the atrialipgtiepresented by the P waves. The detectiomefatrial
activity is a crucial task to diagnose the preseoicsupra-ventricular arrhythmias as well as toficonthe
presence of ventricular arrhythmias (Carratlal,2003). If the ventricular activity has been stddfer many
decades and several efficient solutions have bemgoped (Kohleet al.2002; Porteet al,2005; de Chazal and
Reilly,2006), the detection of the atrial activisystill an unsolved problem, especially in arrmgtt situations. P
waves are difficult to detect particularly for fomain reasons (Hernandetal,2000):

1. P-waves have low signal-to-noise ratio (SNR), eigffigan clinical ECG and Holter;




2. P waveforms show high inter-patient variability,islhmakes a non adaptive approach inadequate;

3. P waves have no exclusive time and frequency ctaistics, which makes a source separation approach
difficult;

4. P waves may be invisible on the ECG signal, in aafsatrioventricular (AV) dissociations. The AV
dissociation leads to an ECG where QRS, T and R wagurrences do not respect the normal time aidere
sequence (P, QRS, T), and the P wave may be hlidarbigger wave (QRS or T).

Due to the lack of annotated beat-to-beat P-watabdaes, several P wave detection approaches baween
evaluated quantitatively. Moreover, some approaalss a learning method that needs a pre-idertditaf the
P waves, which might be too time consuming fordl@cian in the stressful environment of Intensivare Unit
(ICV). Finally, some of the approaches are so cemtilat they are very hard to reproduce.

In this paper, we present a P wave detector algorithat uses signal processing methods supported by
knowledge about the cardiac domain. This algorittemreal-time implementable and tackles four main
difficulties:

(1) The low SNR of the P wave is enhanced by amtifitter that removes baseline wandering and high-
frequency noise. Then, the algorithm localizesates in which a P wave is most likely to appearfandses the
P wave detection solely in this area.

(2) The P wave variability is tackled by adaptihg tetection to the most recently detected P wavass the
algorithm adapts itself to the patient’s P waves.

(3) The detection of P waves is based on geneticidtes that do not depend on pre-learning théepat
characteristics, as is often required in the ltteea (Carraultet al.2003; Madhukaret al,1994; Pilla and
Lopes,1999).

(4) Some of the AV dissociations are solved by Kirag the PP rhythm (temporal distance between two
successive P waves). We do not focus the detestiatrial flutter and fibrillation which are pari@r processes
and for which promising studies have been undentglotsinsky,2007; Rieta and Hornero,2007; Strath
al.,2004; Vayéet al,2007).

We do not deal with invisible P waves (hidden bg RS or T waves) in our method. Although hidden P

waves can be crucial for identification of someesasf AV dissociations, the absence of P wavef@nmative in



many other rhythms. For example, the absencePfrave before a QRS (either because the QRS HideB t
wave or because no P wave exists) re-enforce gpcson that the heart beat is abnormal.

We have compared our detector to another algoridbstribed in the literature (Lagueaal,1994) and both
have been evaluated on a large database (Moodivarid2001) that contains ventricular and supra-ieumiar
arrhythmias as well as normal sinus rhythms. Tokmawledge, several studies are focused on P wetestibn
in normal sinus rhythm ECGs only. Except for AFLdafAF (Dotsinsky,2007; Rieta and Hornero,2007), few
studies have been undertaken also in presencehgtlamias.

The following section gives a short review of thate of the art. Then, the implemented P wave tatés
described in section Ill. The dataset used forwatan is presented in section IV. The evaluatibthe P wave
detection, for which there are no standard pro@sias yet, is explained in section V. Then, thalte®f our
approach are compared to another detector froriténature in Section VI. These results are analyaecording
to the context of the cardiac rhythm in order teeas the performance of the detectors in a mongratecway
than common evaluations found in the literaturaaly, the approach and the results are discusssédtion VII

and conclusions are presented in section VIII.

2 Review of P wave detection algorithms

The algorithms found in the literature are mainkg&d on three approaches: a) localized searchvetends,

b) ventricular and atrial source separation methadd c) Esophageal electrocardiogram (EECG) barsdkods.

2.1 Localized search area

The first method consists in searching for the Renia a localized area outside the QRS-T (genelmdfpre
the QRS) (Agilent Technologies,2000; Almeieal,2003; Gouta®t al,2005). Once the area is defined, the P
wave can be detected directly by: heuristics (Agileechnologies,2000); digital fractional differietion (Goutas
et al,2005); differentiated low-pass filtering (Lagure al,1994); wavelet analysis (Almeidat al.2003;
Martinezet al,2004; Soviljet al,2004); wavelet transform and neural network (S¢é&i,2002); morphological
transform (Suret al,2005); template matching (Dotsinsky,2007); or coration of Hidden Markov Model and
wavelet (Graja and Boucher,2005). The localizedctearea approach presents satisfactory resultE@ps

where the QRS is easy to identify. However, ita®ldbnly on ventricular activity (QRS) to estimateah activity



(P wave); thus, it is not able to deal with atriotvizular (AV) dissociations. Nevertheless, a recapproach
(Dotsinsky,2007), that is close to the one preskiethis paper, showed that, using adaptive tholeshnd
templates similar to P-wave templates, a good tleteof AFL and AF can be reached with the deteciid

visible F- or f-waves.

2.2 Ventricular and atrial source separation

The second approach consists in viewing P wavectigteas a source separation problem. It first spa
atrial activity from ventricular activity, eithewytirect separation or by QRS-T cancellation. Tails to a signal
with an increased SNR in which the P waves arectitle This approach is expected to perform bettehé
presence of AV dissociations. The most common ambrds the subtraction of a QRST template from the
original signal (Gritzalet al. 1989; Hernandeet al,2000; Lemayet al,2005 ; Thakor and Zhu,1991). To prevent
poor performance in case of variation of the beatrpmology, others methods, compared in (Rieta and
Hornero,2007; Vayé&t al,2007) have been proposed consisting in neuralaresyVasquezt al,2001), blind
source separation or independent component analydgter the cancellation, the atrial activity mbag analyzed
by a classification stage (Carra@t al.2003; Hernandezt al,2000), or, more recently, by spectral profile
analysis (Stridret al,2004).

Although these approaches separate ventriculavitgcfrom atrial activity, they remain sensitive tthe
presence of abnormal beats. Moreover, the QRS mwe is not taken into account in detecting theake.
Although the QRS is not useful in the presence dfdissociations, it could be exploited in othewuations to

support P wave activity detection.

2.3 Esophageal electrocardiogram (EECG) based

The EECG is a semi-invasive technique used to mlaaiamplified representation of the atrial acyi#tria
are close to the oesophagus). Despite its good &NRncement and the improvement of P wave detection

(Hernandezt al.1999; Jeragt al,2003), this technique is rarely used due to itsigavasive aspect.

3 The P wave detector

The proposed P wave detector relies on a QRS aetexthge coupled with a PP rhythm estimation fupsut

P wave detection in case of AV dissociations. Ttmppsed method is a knowledge-based approach abwyitie



a signal processing one. All the parameters usddeirstudy are derived from knowledge of cardiagspiogy.
Cardiac physiology is out with the scope of the gragbut all the parameter values have been chasen i
accordance with ECG standards (Goldman,1973) aesdetithoices are explained in this paper as much as
possible. The whole processing chain, presenteigare 1, is composed of 5 stages: filtgring, (2) QRS
detection,(3) P wave occurrence estimatio() area selectionand finally (5)P wave detectianFiltering
removes the main noise, and thBRS detectiomnd P wave occurrence estimatidrigger thearea selection
process. When triggeredrea selectiorselects the ECG segment to be analyzed b thave detectiostage. At
the initialisation, the P wave buffer is empty battthe P detection relies only on the QRS deteétiver a while
there are sufficient P waves in the buffer to estarthe next P wave occurrence. Old P waves dbtiffer are
removed during the process so that the estimatitiesronly on the most recent previously detectedhfes. All

the stages are detailed in the following sections.

--- INSERT FIGURE 1 ---

3.1 Filtering

The filtering stage eliminates baseline wanderiggusing two consecutive median filters (de Chaegl
al.,2004). The first median filter of width 200ms reme the QRS and P waves. The output feeds a second
median filter of 600ms-width to remove the T wav@he resulting signal represents the baseline and i
subtracted from the original ECG. The high frequencise is then removed by a 5-order low pass Butteh
filter with a cutting frequency of 40Hz. After fiting in the forward direction, the filtered sigimgkthen run back
through the filter in the reverse order. This resin a filtered ECG with zero phase distortiong amagnitude

modified by the square of the original magnitudsponse.

3.2 QRS detection

This study is focused on the P wave detection ared dhot investigate the QRS detection problem. QRS
occurrence times used in the study are taken fnamaln annotations. However, any QRS detection algoror
composition of QRS algorithms (Portet and Carra005) can be used at this stage.
3.3 P wave occurrence estimation

This stage estimates the next P wave occurrenceding to the previously detected P waves. Thisresion



is then used by tharea selectiorto define in which area of the ECG a P wave shd@dsearched for. The
estimation of the next P wave occurrence, calleg, is based on a time ordered buffer of Sikeof the
previously detected P waves. The PP intervals (teahpdistance between two successive P waves)irste f

computed according to the following expression:

OiO0{2K ,k,K N}, PP@)=t.()-t.(i -1 (1)

where tp(i) is the time occurrence of thé” P wave in the buffer. The set of indexes
lop ={i O{L,K ,N -1} : PP(i) J[0.61] s} is then computedlpr represents the indexes of the PP values that

belong to the interval [0.6, 1]s. This range cquoegls to [60,100]bpm (beat-per-minute) which aeedtandard
limits for bradycardia and tachycardia in adult®l@nan,1973). This can be justified by the fact thradycardia
is a slow rhythm for which P wave search can bedas the QRS, while tachycardia is a rapid rhythnvhich

the P wave is seldom visible. In the other casese values let the algorithm check whether a Revisamissing

between two successive P waves, or two P wavetarelose to each other. The estimates of the Raxave
occurrence candidates are nofgc(i) and are computed independently according to eecépsable P wave in

the buffer by:

. e P o g 8 : N t—t,(i)
Oi O1 o, nON*, t,() =t (1) + nx PP(i), wheret >t (i), n 1+{—PP(i)J 2

wheret is the current time (absolute time since last QRRt&ction or P wave detection). Th[ﬁ§(i) is computed

by addingn timesPP(j) to &(i) until f,(i)>t. From all the independent estimatidngi) , the final estimated P

wave OCCurrencChesimiS computed by:

Oi 01 pp, mediarg[..., T, (i),...1), if (1pp| = N/2
Pestimz{ | me Iar([ (I) ]) | (| | ) (3)

@, otherwise

If there are at leastl/2 candidatesfp (i) , then the median of all thé, (i) is taken to reduce the effect of

outliers. As far as we are aware, the benefit afigu®P rhythm tracking for the detection of P wakias rarely

been investigated (Sovigt al,2004). An empirical study analyzing the detectsmmsitivity according to the



buffer length (on records independent from the arsed in the evaluation section with sampling ferquy of

360HZz) concluded that an optimal value of the bu#fagth was 15s.

3.4 Area selection

The area selection extracts an ECG segment withiohaa P wave occurrence will be searched for. varage
P wave widthw=100ms(the average width of physiological and patholafie waves (Guragt al,2003)), is
defined to perform this operation. Area select®adtivated if there is a QRS occurrence, or a Weweatimation
not followed by a QRS occurrence during a definedaal. The process is shown in Figure 2.

---INSERT FIGURE 2 ---

Two cases are considered:

1) If the area selection is triggered by the P wastmation, then the area is estimated by thevatg

expression:
AR EA: [tPestim - BI; ’ .tPestim + B; ]’ If neXttQRS > tPestim + B; (4)
@, otherwise

wheretpesimis the estimated P wave occurrence BpdandB', are the backward and the forward P boundaries,
respectively. The aim of the waiting condition ésdustain P wave detection with a QRS occurrendehais
generally more reliable than P wave estimation.aRerestimation is thus used only when the PR iatésMong,
which can be the case in presence of an AV commtuethomaly. An empirical study performed on indelsen
records (ECG records not used in the evaluatios)lted in the following optimal value®&,=0.1s and B, =
0.4s.

2) If the area selection is triggered by the QRt®&a®n, then the area is estimated by equation (5)

[tQRS - C(SRS xRR tQRS + C(;RS X Rd' if RR> RR_imit

AREA= _
@, otherwise (5)

where RR=t,ps~torss

where ty.s is the current detected QRS occurrentg,s, is the previous QRS occurrence, afidgsand

CgRSare the backward and the forward QRS coefficientdaries, respectively. If the RR interval is larf&n

RRimit then the ECG segment is selecte® ;; is set to 450 ms; this represents the sum of tkhéhvef the P

wave (100ms) plus the narrowest standard QT intex¥/850ms (Goldman,1973). Indeed, a P wave is lwort



searching for if there is enough time for the P-@R®aves to occur. The selection of an area bedo@RS is
related to the PR interval which varies with the RErval: the higher the Heart Rate (HR), the &hothe PR

interval. A standard PR interval is about 200msafoi80bpm HR (Goldman,1973). Starting from thiewdedge
Carsand Cgechave been set .3sand0.1s this leads to an area betweled.3, -0.1]s before the QRS for a

60bpmHR, and[-0.18, -0.06]s before the QRS for #00bpmHR, which is in accordance with standard values
(Goldman,1973). Thus, the system adapts itseliggatient’s heart rate and avoids searching mave when

a very premature ventricular contraction occurs.

3.5 P wave detection

The P wave detection phase consists in searchirfgfeave candidates in the area defined by thesaleation
module. It detects local maxima above a baselimksatects which of the maxima is the most likelybtoa P
wave. The process is shown in figure 3.

---INSERT FIGURE 3 ---

The segment from the area selection is smoothddawhedian filter of 36ms-width to reduce artifaldten, a
baseline is estimated by applyingMawidth median filter to the absolute of the filtdr&CG segment. Every
interval of the absolute filtered ECG above theebas is a possible candidate. The candidates laa t
eliminated using the tests below:

1- Every interval that starts or ends at the bowidke area is removed (T end and QRS start)

2-  Every interval whose maximum magnitude is owside interval [MaxMed(P)/3, MaxMed(#3], is
removed. MaxMed(P) is the median of the P wave maxinagnitudes of the buffer.

After this stage, the remaining intervals (if aay® supposed to contain a P wave. The probabflibgeimg a P
wave is computed using the magnitude and the védtdording to formula 6. The most probable P wawhén

retained and stored in the P wave buffer.

P(Pwav Qi»:[ magP(i)) width(P(i)) j ©

maxmag(P)) maxwidth(P))



4 Data

The data used for this evaluation consists of 1@-lead records from the MIT-BIH arrhythmia database
(Moody and Mark,2001) lasting about 30 minutes eatth a sampling frequency of 360Hz. More precisely
records 100, 101, 103, 106, 117, 119, 122, 207, 222, 223, and 231 were used. Only the upper kigna
(modified limb lead II), in which the P wave is ik, has been used in this study. These recoresept a
representative variety of waveforms that an arnmghrecognizer must deal with. Indeed, they incladmplex
ventricular and supra-ventricular arrhythmias arwhduction abnormalities that are difficult to prese
automatically. Globally, this dataset representsustt hours of ECG, 21354 beat-to-beat P wave éxper
annotations, which are the same as in (Caretudl,2003), and 12 arrhythmia types: Normal sinus nmy{iV),
ventricular Bigeminy (B), ventricular Trigeminy (TYentricular FLutter (VFL), Ventricular Tachycaed{VT),
IdioVentricular Rhythm (IVR), moBitz of type Il (B), NODal (AV junctional) rhythm (NOD), Atrial Bigainy
(AB), Atrial Fibrillation (AF), Atrial FLutter (AFL), Supra-ventricular TachyArrhythmia (SVTA). Thtisere is a

good balance between normal sinus rhythms, veltdrieund supra-ventricular arrhythmias.

5 P wave detector evaluation

The evaluation of the results of P wave detectiosmét straightforward. Indeed, sometimes a P wave
occurrence is hidden by a QRS or a T wave on th& Efannel. Thus, some P wave detection methods that
reconstruct the hidden P waves cannot estimatedébection results accurately (Almeida al,2003) as the
hidden P waves have not been annotated by humanauke they are not visible on the ECG). In oue,cas
deal only with P waves that are visible. This appio makes sense since missing (hidden) P waveslsoe
informative for diagnosing arrhythmia (the absermfeP wave in a ventricular tachycardia confirms the
diagnosis).

In this paper, the performance of P wave detecisoassessed by computing the True Positive, TR (tru
detection), the False Negative, FN (missed detectmd the False Positive, FP (false detectiongrdlis no
standard for the evaluation of P wave detectorspbuapproach mimics the ANSI/AAMI standard for GGeat
detector evaluation (ANSI/AAMI standard EC57:19988). For each actual P wave annotation, a centred

window of 170ms-size is defined (maximum lengthaoP wave). Every detected P wave that falls inte oh



such windows is a TP. If several detected P wamtsrto the same window, only one is counted as fhe
others are ignored. Every detected P wave that doe&ll into a window is an FP. Finally, everyndow that
does not contain a detected P wave is an FN. Ad ftrtter and atrial fibrillation are particulgrocesses, the
episodes corresponding to these arrhythmias areided from the evaluation (likewise ventricularrifilation
periods for QRS detector assessment in the ANSI/Astisindard(ANSI/AAMI standard EC57:1998,1998)).
TP, FP, and FN are used to compute three commtgriari Sensitivity (Se) = TP/(TP+FN), Precisions(al

called Positive Predictivity) (Pr) = TP/(TP+FP)r&rRate (ER) =(FP+FN)/(TP+FN+FP). We also comphte

F-Measure (FM) (van Rijsbergen,1979) which combi®es and Pr in a single efficiency measure; FM

2xSexPr/(Se+Pr).

6 Experiments

Two experiments have been undertaken to asses® auave detector. Firstly, it has first been comgare
against the ECG beat segmentation algorithm catmgpuwaveof Lagunaet al. (Lagunaet al,1994) which
detects P, QRS and T waves. This algorithm has kekdated on several databases and appears tormerf
heartbeat segmentation with accuracy comparableintér-expert annotation variation. In our stueggpuwave
has been fed with the manual QRS annotations tlu&wait in the same conditions as our detector.aFbetter
analysis, the results are presented accordingetoettords (classic presentation) and accordinge@irhythmias
(new presentation). Finally, to investigate theueabf using other kinds of information provided ttne QRS
analysis, tests with QRS classification and on-@RS detection have been made and are briefly ibesicat the

end of this section.

6.1 Global results

Detection results obtained on the selected re@melpresented in Table 1.

--- INSERT TABLE 1 ---

They show that our method presents similar resalsecgpuwavefor normal sinus rhythm records

10



(FM=99.70% against FM=99.76%). But our approachpetfbrms ecgpuwaveon the entire dataset with
Se=96.60% Pr=95.46% against Se=93.15% and Pr=92 B suggests that our method performs bettéren
presence of rhythm disorders. However, Table Is§ital presentation) is not informative enoughrtpleasize
clearly the performance of the detectors in arnmjthsituations where a P wave detector is challende

analyze the results in a more informative way, 18e present the results relatively to each arrhighm

6.2 Results according to arrhythmias

Table 2 presents the same information as in tapbibeitlrearranges the results according to the efpaythm.
In this table, each row is related to the normalisirhythm or to an arrhythmia. For each rhythra,dbration (in
seconds) and the number of P wave annotations\as.g

--- INSERT TABLE 2 ---

According to Table 2, and contrary to the resuttdable 1, our detector actually outperforatgpuwaven
normal sinus rhythm episodes. This can be expldinyethe fact that normal sinus rhythm periods prege the
arrhythmic records (106, 119, 207, 214, 222, 22A3) &re also taken into account. These specifibgerare
surrounded by arrhythmia periods, and also presemie bundle branch block anomaly periods that gethe
detection. Thus, this better presentation of tisellte emphasizes that our detector is actually maivast for the
detection of P waves in normal sinus rhythm teegpuwaveFigure 4 compares the outputseafpuwavepart
a) and the outputs of our method (part b) on an ERQGerpt containing LBBB QRS shapes and premature
ventricular contractions.

The rest of the results show that our detectonashiest for all the arrhythmias, except for NOD, &1d IVR.

In theses cases both detectors perform quite batisf&tory results are obtained for our detector dome
ventricular arrhythmias: B (FM=91.08%), T (FM=93%88 and some supra-ventricular arrhythmias: BIl
(FM=84.08%) and AB (FM=79.0.3%). The results ob¢gifior Mobitz type Il (Bll) demonstrate the abili§ our
detector to deal with AV dissociation, wheresegpuwavemissed one out of two, on average (Se=49.76%).
Figure 4 (c and d) shows detection results in aifddb context.ecgpuwaves perturbed, whereas our method

detected all the P waves in this situation. Vergrpgesults are obtained for NOD (FM=25.38%) VT (F8489%),

11



IVR (FM=5.07%), and SVTA (FM=33.33%). Figure 4 &)da4 f) show a SVTA followed by a NOD rhythm in
which both methods failed. These rhythms are vefficdlt to analyze as the occurrences of the watrest
compose them are difficult to predict. However stheesults must be analyzed with caution as themtibn is
very short (except for NOD) and the low numberigfble P waves leads to suspiciously high ER.

--- INSERT FIGURE 4 ---

The delay between the detected P waves (TP ontl/}teir corresponding P wave annotations have lzen
computed and the results are presented in tabl&his delay is useful in evaluating how much tle¢edtion is
disturbed according to the arrhythmia. For examiplehe IVR arrhythmia, the delay between the datacand
the annotation is sensibly higher than for the oéshe arrhythmias (delay = 54+33ms). This suggéstt, in the
proposed method, the P waves that have been aadsai TP are less reliable than for other arrhighmeriods.
However, despite this isolated unreliability, theeall results deliver an accuracy comparable withr-expert
annotation variation (Jaret al,1997).

--- INSERT TABLE 3 ---

6.3 Exploratory experiments for further extensionshef inethod

Other experiments have been conducted to studyssitpe enhancement of the algorithm by considettireg
QRS type (QRS classification) and the use of a Q&8ctor in the algorithm.

Table 4 shows the results obtained when the QR& (typman annotations) is used to prevent the sedittie
P wave in the case of premature ventricular cotitia¢PVC).

--- INSERT TABLE 4 ---

As the recognition of PVC is improved, detectioreianced in ventricular rhythms. The error is cedufor
N, B and T rhythms. However, the detection is ngtrioved in other rhythms.

QRS classification seems to be an interesting feaiu exploit for P wave detection. However, wHRS
detection has reached very high performance, QBRSification has not reached a sufficient accutadye used

in practice.

Table 5 shows the results obtained when the QR8rimawes are detected using the inner QRS detettor

12



ecgpuwave which showed a Se=99.88% and a Pr=99f6r%he detection of the R wave in another ECG
database (Jaret al,1997).
--- INSERT TABLE 5 ---

Both of the detectors show an increase of eremrgpuwaveseems to be less affected (ER=13.03% to 13.78%)
than our method (ER= 7.64% to 9.13%). Periods efrature ventricular contraction (B and VT) leadhe
highest increase of errors for both the detectdmwvever, the proposed method is still superioe¢gpuwave
Furthermore, the P wave detectionecfipuwaveés obviously adapted to its QRS detector. Regarttie overall
delay, both the methods show similar performaecgguwaves 6:7ms while our method has still 8+8ms overall

delay). This shows that our method is able to wath on-line QRS detector.

7 Discussion

Results from the literature include those of Stekal (Sternickel,2002) with a Se between 92.68%%h89%.
However, the method was assessed on normal sigthsfECGs only (with or without effort) and withoahy
annotation of the true P wave occurrences (if aaWewis detected in a fixed window before QRSs tihas
considered as a true positive). Almeeataal. (Almeidaet al,2003) reported an Se of 98.87% on 3194 annotations
but without estimation of the precision. Hernandeal. (Hernandezt al,2000), compared their detector against
several approaches and obtained a sensitivity é8080 for the records #100 of the MIT-BIH Arrhythmia
Database. Their results were evaluated as beirgyisupo those of Thakor and Yi-Sheng (Thakor ahd,Z991)
and Gritzaliet al. (Gritzali et al,1989). Carrault et al. (Carrawt al,2003) reported a mean Se=99.3 and Pr=98.0
in different sinus rhythms, but the P waves of epetient were preliminary learnt. Other detectarstlie
literature have been evaluated on too few examplbe compared to the detector presented in thiyst

Some reported methods need prior learning of patbaracteristics (Carraukt al.2003; Madhukaret
al.,1994; Pilla and Lopes,1999). This bias the d&techs the intra-patient P wave morphology valiigitiends
to be lower than the inter-patient P wave morphplegriability, which is very high. This is why mosf these
studies were not compared to our approach. Moredkiese techniques require that a clinician initésd the
program in order to learn the P wave features efpitient. In practice, that might be too time-conimg for the

medical staff, and not free of human errors thatlead to inaccurate learning. Our approach adegef to the

13



patient. Indeed, the RR interval is taken into aot@nd the PP rhythm tracking is, by definitidme PP related
to the patient.

Despite the small number of available examplesrébalts show that the P wave detection fails @sence of
certain arrhythmias. This shows that P wave detedt far from being solved in difficult ECG rhytlsneven if
our approach can tackle some of them very welltfieobest of our knowledge, a study that identifidsch
arrhythmias that penalise the most the P wave tieteare, has never been undertaken. Along withrmwel
algorithm, this is one of our main contributions.comparison, other studies generally report perémce for the
normal sinus rhythm case or use very little quatitie data. Presenting the results according t@oidext of the
rhythm is also important to use the P wave detettoappropriate contexts as in the case of theiaard
monitoring system IP-Calicot (Portet al,2007).

Our method is not focused on the detection of tiwésible P waves. This is mainly due to two reaséiistly,
no database containing annotated invisible P waseavailable. To construct such a database, EECG or
pacemaker probes should be recorded with the s@fd2G and such a study is hard to set up. Congdyube
validation of invisible P wave detection is a hiztzy (Almeidaet al.2003; Martinezt al,2004) or reduced to the
studies that have access to such material (&@s2003). Secondly, the detection of hidden P waaesatso be
important for identification of some cases of A\ssbciations, but the absence (in the ECG trac®) whve is
also informative in the diagnosis of many hearthims.

The aim of the proposed detector was to build atie®, knowledge based and generic algorithm.dswot
expected to perform better than detectors using-QR&ncellation techniques. But, it appears to herélar if
not better performance in practice. This can bdaixgd by the fact that even the QRS-T cancellatahniques
rely on thresholds (e.g. thresholds used to séfecfrequency bands in multi-resolution analysisil ¢ghus are
subject to a lack of threshold adaptation to thiéepah The reason for our good performance in aHsAvV
dissociations is due to PP rhythm tracking thatcdess for P waves even when no QRS is present.i3 e
major limitation of the P wave detection based lom ®RS. Moreover, the use of knowledge about clagijo
supports efficiently the detection. Another examiplewhich knowledge is used is the detector of atsy
(Dotsinsky,2007) how uses a well-known QT formwabmpute the search areas and decision rulesHofAd-

recognition.
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Despite the good performance of our detectorilitr&teds to be improved and the combination ofaproach
with QRS-T cancellation applied inside the seangaaould improve its performance. Moreover, theipeter
values of the detector are based directly on kndgdeinformation. On-line parameter adjustment cdeidl to

better performance.

8 Conclusion

In this paper, a novel approach for P wave deteddcpresented. The related detector uses a QRStidet
based technique associated with PP rhythm trackihis detector can run in real-time and is genesélf-
adaptive to the patient’'s rhythm and P wave magdritand resistant to some atrioventricular (AVsd@ations
other than atrial fibrillation and flutter.

The presented detection algorithm relies on hecsistnd simple processing stages. This contrasksownirent
technigues which aim at using high level computiogenhance the P wave energy on the ECG and then us
classification technique to detect P waves. Howedespite its simplicity, our approach presentsessv
advantages: 1) it is implementable in real-time tfnole signal is not needed before beginning thegss), 2) it
is human checkable (the parameter values are wellvk), 3) it is generic (there is no need to leRrwave
features specific to the patient), 4) it adaptslfiteo the patient’s rhythm and to the P waves ritade, 5) it is
resistant to some AV dissociations (like Mobitzeay, and 6) it has good performance.

The detector resulted in Se=97.76% and Pr=96.80%amal sinus rhythm ECGs and Se=96.60% and
Pr=95.46% on 12 ECG records of the MIT-BIH arrhyihrdatabase containing several ventricular andasupr
ventricular arrhythmias. The approach presentgzhiticularly well adapted to the detection of P @éwv some
AV dissociations though it does not use any QRSiicellation technique. For example, in the casklabitz
type Il, it demonstrates Se=72.79% and Pr=99.5186.r€sults are presented according to each arrig/tiaman
estimation of the most perturbing heart rhythmse ftethod has been evaluated on normal and arrhytB@6G
records and demonstrated a good ability to dedl sdme arrhythmias (trigeminy, bigeminy, Mobitz Mo be
fair, poorer results were obtained with other attmjas, but this was also the case for other coafyar

detectors.

15



Fig. 1. Overall process of the P wave detector.

Fig. 2. Area selection process.

Fig. 3. P wave detection process.

Fig. 4. Excerpts of P wave detection results:ie@puwave detection on normal ECG with LBBB; (b)
our method on normal ECG with LBBB; (c) ecgpuwavith mobitz IlI; (d) our method with mobitz II;
(e) ecgpuwave with SVTA followed by NOD; (f) our thed with SVTA followed by NOD.
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Table 1. Global results.

Records

nb P

ecgpuwave Proposed method
ER(%) Se(%) Pr(%) FM(%) ER(%) Se(%) Pr(%) FM(%)

Normal sinus rhythm records® 10210
21354 13.

Entire dataset

0.

60 99.68 99.84 99.76 0.60 99.57 99.83 99.70
03 93.15 9291 93.03 7.64 96.60 95.46 96.03

®Records: 100, 101, 103, 117, 122

Table 2. Contextual results.

Rhythm Duration (s) nb P ecgpuwave Proposed method

ER(%) Se(%) Pr(%) FM(%) ER(%) Se(%) Sp(%) FM(%)
N 18421 19540 8.33 95.12 96.19 95.65 529 97.76 96.80 97.28
B 1087 610 35.81 90.82 68.65 78.19 16.37 98.85 84.45 91.08
Bll 700 838 50.30 49.76 99.76 66.40 27.47 72.79 99.51 84.08
NOD 583 40 79.04 87.50 21.60 34.65 85.47 4250 18.09 25.38
T 333 247 16.43 94.74 87.64 91.05 11.36 97.98 90.30 93.98
VT 115 2 96.15 100.00 3.85 7.41 96.43 100.00 3.57 6.89
IVR 109 14 90.16 42.86 11.32 17.91 97.40 14.29 3.08 5.07
AB 109 60 43.16 90.00 60.67 72.48 34.67 81.67 76.56 79.03
SVTA 59 3 88.89  100.00 11.11 20.00 80.00 33.33 33.33 33.33
Total 21516 21354 13.03 93.15 92.91 93.03 7.64 96.60 95.46  96.03

Table 3 Median delay and standard deviation forcorrectly detecteP waves (TP.

Rhythm Duration (s) nb P ecgpuwave Proposed method
Delay (ms) Delay (ms
N 18421 19540 6+6 8+8
B 1087 610 6+7 6+5
BII 70C 838 3+3 64
NOD 58¢ 40 8+18 8+15
T 33¢ 247 6+7 615
VT 11¢ 2 810 1342
IVR 10¢ 14 14427 54+33
AB 10¢ 60 8+18 8+7
SVTA 59 3 8+43 6+0
Total 21516 21354 6+6 818
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Table 4. Comparison of the P wave detection performance without and with the QRS type.

Rhythm Duration (s) nb P Without QRS type ER(%)  With QRS type ER(%)

N 18421 19540 5.29 4.92

B 1087 610 16.37 5.49

BII 700 838 27.47 27.47

NOD 583 40 85.47 85.47

T 333 247 11.36 5.18

VT 115 2 96.43 100.00

IVR 109 14 97.40 100.00

AB 109 60 34.67 34.67

SVTA 59 3 80.00 80.00

Total 21516 21354 7.64 6.41

Table 5. Contextual results using the QRS detector of ecgpuwave.

Rhythm Duration(s) nb P ecgpuwave Proposed method
ER(%) Se(%) Pr(%) FM(%) ER(%) Se(%) Pr(%) FM(%)
N 18421 19540 9.28 9451 9577 95.14 6.47 96.37 96.94 96.65
B 1087 610 36.56 90.16 68.15 77.62 23.06 95.74 79.67 86.97
BII 700 838 50.36  49.64 100.00 66.35 29.50 71.00 99.00 82.69
NOD 583 40 80.24 82.50 20.63 33.01 81.13 50.00 23.26 31.75
T 333 247 17.44 93.93 87.22 90.45 12.32 97.98 89.30 93.44
VT 115 2 98.11  50.00 1.92 3.70 97.53 100.00 2.47 4.82
IVR 109 14 90.32 4286 11.11 17.65 97.44  14.29 3.03 5.00
AB 109 60 49.49 83.33 56.18 67.11 35,53 81.67 75.38 78.40
SVTA 59 3 93.62 100.00 6.38 11.99 80.00 33.33 33.33 33.33
Total 21516 21354 13.78 9253 92.67 92.60 9.13 95.19 95.25 95.22
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