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Explicit investment rules with time-to-build and uncertainty∗

René Aid† Salvatore Federico‡ Huyên Pham§ Bertrand Villeneuve¶
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Abstract

We establish explicit socially optimal rules for an irreversible investment deci-
sion with time-to-build and uncertainty. Assuming a price sensitive demand function
with a random intercept, we provide comparative statics and economic interpreta-
tions for three models of demand (arithmetic Brownian, geometric Brownian, and the
Cox-Ingersoll-Ross). Committed capacity, that is, the installed capacity plus the in-
vestment in the pipeline, must never drop below the best predictor of future demand,
minus two biases. The discounting bias takes into account the fact that investment is
paid upfront for future use; the precautionary bias multiplies a type of risk aversion
index by the local volatility. Relying on the analytical forms, we discuss in detail the
economic effects.

Keywords: optimal capacity; irreversible investments; singular stochastic control; time-
to-build; delay equations.

AMS Classification: 93E20, 49J40, 91B38.

JEL Classification: C61; D92; E22.

1 Introduction

How to track demand when the time-to-build retards capacity expansion? When to invest
and how much? We answer these questions with a model of irreversible investment. In
this model, the objective of the decision-maker is to minimize the total discounted social
cost. That is, the decision-maker maximizes the standard microeconomic social surplus.
We are able to show in particular that the solution is implementable as a competitive
equilibrium. We are able to calculate explicit, compact, decision rules.

In many capitalistic industries, construction delays are essential. In this paper, we
focus on electricity generation. In this sector, construction delays can be considerable:
they could be only one year for a small wind-farm but could be three years for a gas turbine
and eight to ten years for a nuclear plant. The scenarios of the evolution of demand with
their trends, their drag force, and their stochastic parts require particular attention. To
this purpose, we develop the comparative statics and economic interpretations for three
demand models applied to electricity generation. The intercept of the price sensitive
demand function follows either an arithmetic Brownian motion as in Bar-Ilan et al. [2002],
or a geometric Brownian motion as in Bar-Ilan and Strange [1996] and Aguerrevere [2003],
or the Cox-Ingersoll-Ross (CIR) model. The latter is a mean-reverting process, and, to
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our knowledge, no real options investment model exists in the literature with time-to-build
and a process of this type. The basic existence and regularity results are provided in a
companion paper (Federico and Pham [2014]), but we simplify the specification for the
sake of calculability.

An exact decision rule facilitates the clear understanding of the effects at play. The
decision rule stipulates what the committed capacity should be, that is, the installed
capacity plus capacity under construction. The action rule, given the current conditions,
is that the committed capacity must not fall below the best predictor of demand after the
delay, minus two biases. The first bias is a pure discounting bias unrelated to uncertainty:
because the investment is paid for upfront but only produces after the delay, the required
committed capacity is reduced. The second one is a precautionary bias where a risk
aversion index is multiplied by local volatility .

Because of this decomposition, we find the following qualitative results. For investment
with a long construction horizon, we find that uncertainty has very little importance
compared to the trend of demand growth. Thus, an error on the long-term trend is much
more harmful than an error on volatility. For investment with a short construction horizon,
the opposite is true: decision-makers should pay greater attention to volatility. We also
illustrate the practical importance of a possible saturation of the demand with the CIR
model. The investors’ behavior is very different depending on whether demand is above
or below the long-run average, or target. When demand is above the target, the investor
is almost insensitive to the current demand, except if the return speed is very slow. Below
the target, the comparison between the time-to-build and the expected time-to-target is
critical: if the time-to-build is longer, then the optimal committed capacity is practically
the target itself minus the biases; if the time-to-build is shorter, then the investors observe
the process and invest progressively.

The literature on the topic provides a number of insights. Table 1 provides a tentative
classification. The competitive pressure matters: competition kills the value of waiting and
thus accelerates investment. Grenadier [2000, 2002] and Pacheco de Almeida and Zemsky
[2003] follow this line of thought. We exclusively use a competitive market and show that
this effect is completely internalized. The seminal work McDonald and Siegel [1986] on the
option to wait in the case of irreversible decisions shows that uncertainty has a negative
effect on investment. Strong support for this result is that with greater volatility, invest-
ment is triggered by a higher current product price, i.e. a smaller probability of a market
downturn. Several extensions provide conditions under which this result does not hold or
might be mitigated. Construction delays, that is, the time between the decision and the
availability of the new capacity, have attracted the attention of economists. In particular,
the models in Bar-Ilan and Strange [1996], Bar-Ilan et al. [2002], and Aguerrevere [2003]
exhibit situations where an increase in uncertainty leads to an increase in investment.

The models that exhibit a positive effect on investment from an increase in uncertainty,
do so only for a specific range of parameters. Besides, the quantitative effects are very
small. Bar-Ilan et al. [2002] show in their simulations that when the uncertainty on
demand is multiplied by five, then the investment threshold moves only by 1%. And as
the authors themselves point out, the investment thresholds are nearly independent of the
level of uncertainty. The large effects found in Majd and Pindyck [1987] are reconsidered
in Milne and Whalley [2000].

In Aguerrevere [2003], a paper with which we share most of the modeling choices, the
production is flexible, although the capacity accumulation is not. Investors keep the choice
to produce only when it is profitable, and thus the rigidity of investment is attenuated by
the option to produce or not. The capacity reserves are all the more profitable the longer
the time-to-build. In consequence, uncertainty tends to increase the investment rate. This
paper is significant because of the way it integrates meaningful economic questions, and
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Paper Objective Competition Investment

Majd and Pindyck 1987 firm no irreversible
Bar-Ilan and Strange 1996 firm no reversible
Grenadier 2000 firm perfect irreversible
Bar-Ilan et al. 2002 planner no irreversible
Grenadier 2002 firm imperfect irreversible
Aguerrevere 2003 planner/firm perfect/imperfect irreversible with

flexible production

Table 1: Papers on investment with uncertainty and time-to-build.

the numerical simulations are instructive.
As far as electricity production is concerned, the flexibility of the base production is

limited either for technological reasons (nuclear plants) or because the fixed cost per idle
period are important (coal- or gas-fired power plants). In which case, the cost difference
between producing or not is narrow. Our approach fills a gap in the literature.

This paper is organized as follows. Section 2 describes and justifies our modeling ap-
proach. Solutions and general properties are provided in Section 3. We give the expression
of the decision rule and we show that the solution to the optimization program can be
decentralized as a competitive equilibrium. The economic analysis of the joint effect of
time-to-build and uncertainty is given in Section 4 for the a geometric Brownian motion,
and in Section 5 for the CIR model. Section 6 concludes.

For information on the popular arithmetic Brownian motion application, please see
Appendix A.

2 The model

We set up a model of an irreversible investment decision in which the objective is to track
the current demand of electricity as closely as possible.

1. The inverse demand function at date t is

pt(Q) = η + θ(Dt −Q), (1)

with η ≥ 0 and θ > 0, where p is the price and Q is the output.1 The (quasi) intercept
(Dt)t≥0 is a diffusion that satisfies the SDE

{

dDt = µ(Dt)dt+ σ(Dt)dWt,

D0 = d,
(2)

where (Wt)t≥0 is a Brownian motion on some filtered probability space (Ω,F , (Ft)t≥0,P).
Without loss of generality, we suppose that the filtration (Ft)t≥0 is the one generated by
the Brownian motion W and enlarged by the P-null sets.

2. There is a time lag h > 0 between the date of the investment decision and the date
when the investment is completed and becomes productive. Thus, the investment decision
at time t brings additional capacity at time t+ h.

1Aguerrevere [2003] takes a similar form and discusses its flexibility.
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3. At time t = 0, there is an initial stream of pending investments initiated in the interval
[−h, 0) that are going to be completed in the interval [0, h). The function that represents
the cumulative investment planned in the interval [−h, s], s ∈ (−h, 0), is a nonnegative
non-decreasing càdlàg function. Therefore, the set where this function lives is

I0 = {I0 : [−h, 0) → R
+, s 7→ I0

s càdlàg, non-decreasing}. (3)

We set

I0
0− = lim

s↑0
I0
s , I0 ∈ I0. (4)

4. The decision variable is represented by a càdlàg non-decreasing (Ft)t≥0-adapted pro-
cess (It)t≥0 that represents the cumulative investment from time 0 up to time t ≥ 0.
Therefore, formally dIt is the investment at time t ≥ 0. The set of admissible strategies,
which we denote by I, is the set

I = {I : R+ × Ω → R
+, I càdlàg, (Ft)t≥0-adapted, nondecreasing}. (5)

5. Due to the considerations above, given I0 ∈ I0, I ∈ I and setting I−h− = 0, we
assume that the production capacity (Kt)t≥0 follows the controlled dynamics driven by
the state equation

{

dKt = dIt−h,

K0− = k, Is = I0
s , s ∈ [−h, 0).

(6)

The equation above is a controlled locally deterministic differential equation with delay in
the control variable. By solution to this equation, we mean the the càdlàg process:

Kt = k + Īt−h, ∀t ≥ 0, (7)

where Ī is the process

Īt =

{

I0
t , t ∈ [−h, 0),

I0
0− + It, t ≥ 0.

(8)

Significantly, the randomness in (6) enters only through I, and there are no stochastic
integrals.

6. The objective is to minimize over I ∈ I the functional

F (k, d, I0; I) = E

[∫ +∞

0
e−ρt

(
1

2
(Kt −Dt)

2dt+ q0dIt

)]

, (9)

where q0 > 0 is the unit investment cost.

Economic interpretation of the loss function. The program is a maximization of
the social surplus or conversely the minimization of the deadweight loss. Given (1), the
instantaneous net consumers’ surplus is by standard definition:

St =

∫ Kt

0
(η + θ(Dt − q)) dq − ptKt. (10)

This is the sum of the values given to each unit consumed minus the price paid for them. If
the unit production cost is η and if there is some fixed cost F per year, the instantaneous

4



producer’s profit πt is (pt − η)Kt − F . The total instantaneous surplus TSt = St + πt is
therefore:

TSt = θ

∫ Kt

0
(Dt − q) dq − F (11)

= −θ

2
(Kt −Dt)

2

︸ ︷︷ ︸

Depends on control

+
θ

2
D2
t − F

︸ ︷︷ ︸

Doesn’t

. (12)

Maximizing the discounted social surplus minus the investment costs amounts to program
(9), where the true investment cost q0 is divided by θ.

Thus, the solution and (1) generate an electricity price process. It reflects the marginal
cost plus a term, which can be negative, that reflects tension in the market.

Diffusion process. The process D satisfies the following conditions:2 we assume that
the coefficients µ, σ : R → R in (2) are continuous with sublinear growth and regular
enough to ensure the existence of a unique strong solution to (2). Further, we assume that
this solution takes values in an open set O of R and that it is non-degenerate over this
set, that is, σ2 > 0 on O. In the example we shall discuss in the next section, the set O
will be R or (0,+∞). We observe that, due to the assumption of sublinear growth of µ, σ,
standard estimates in SDEs (see, e.g., Krylov [1980, Ch. II]) show that there exist κ0, κ1

depending on µ, σ such that

E

[

|Dt|2
]

≤ κ0(1 + |d|2)eκ1t, t ≥ 0. (13)

3 Solution

The problems with delay are by nature of infinite dimension. Referring to our case, the
functional F defined in (9) depends not only on the initial k but also on the past of the
control I0, which is a function. Nevertheless, the problem can be reformulated in terms of
another one-dimensional state variable not affected by the delay. We rewrite the objective
functional to introduce a new state variable, the so-called committed capacity.

The idea of the reformulation in control problems with delay is contained in Bar-Ilan
et al. [2002] (cf. also Bruder and Pham [2009]) in the context of optimal stochastic impulse
problems. Here, we develop this idea for singular stochastic control. It is worth stressing
that, unlike Bar-Ilan et al. [2002], we simplify the approach by working not on the value
function of the optimization problem but directly on the basic functional.

3.1 Reduction to a problem without delay

For the case of the domain for the couple of variables (k, d) of our problem, the set is:3

S = R × O. (14)

Define the committed capacity as:

Ct := Kt + Īt − Īt−h = Kt+h. (15)

2A reference for the theory of one-dimensional diffusions is Karatzas and Shreve [1991].
3The real problem is meaningful for k ≥ 0; nevertheless, it is convenient from the mathematical point

of view to allow the case of k < 0. Because the problem is irreversible and starts from k ≥ 0, the capital
remains nonnegative.
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In differential form, the dynamics of Ct is

{

dCt = dIt,

C0− = c = k + I0
0− .

(16)

Therefore, it does not contain the delay in the control variable.
From now on, the dependence of K on k, I0, I; the dependence of C on c, I; and the

dependence of D on d is denoted respectively as Kk,I0,I , Cc,I , and Dd.

The crucial facts that allow the removal of the delay are the following.

1. The committed capacity is (Ft)t≥0-adapted. This is due to the special structure of

the controlled dynamics of K that makes Kk,I0,I
t+h known given the information Ft.

2. Within the interval [0, h), the control I does not affect the dynamics of Kk,I0,I ,

which is (deterministic and) fully determined by I0. In other words, Kk,I0,I(1)

t =

Kk,I0,I(2)

t for every t ∈ [0, h) and every I(1), I(2) ∈ I. Therefore, we can write

without ambiguity Kk,I0

t for t ∈ [0, h) to refer to the “controlled” process K within
the interval [0, h).

Given these observations, we have the following:

Proposition 1.

F (k, d, I0; I) = E

[∫ +∞

0
e−ρt(g(Cc,It , Dd

t )dt+ q0dIt
)
]

+ J(k, d, I0), (17)

where

J(k, d, I0) =
1

2
E

[
∫ h

0
e−ρt

(

Kk,I0

t −Dd
t

)2
dt

]

, (18)

and g : S → R
+ is defined by

g(c, d) : =
1

2
e−ρh

E

[

(c−Dd
h)2
]

=
1

2
e−ρh(c2 − 2β0(d)c+ α0(d)), (19)

where

α0(d) :=E
[∣
∣Dd

h

∣
∣
2]
, β0(d) := E

[
Dd
h

]
. (20)

Proof. Using the definition of g, the time-homogenous property of D, we have:

E

[

g(Cc,It , Dd
t )
]

=
1

2
e−ρh

E

[

E

[

(c′ −Dd′

h )2
] ∣
∣
∣
c′=Cc,I

t , d′=Dd
t

]

=
1

2
e−ρh

E

[

E

[

(Cc,It −Dd
t+h)2 | Ft

]]

=
1

2
e−ρh

E

[

(Cc,It −Dd
t+h)2

]

=
1

2
e−ρh

E

[

(Kk,I0,I
t+h −Dd

t+h)2
]

. (21)
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Therefore, (9) can be rewritten as

F (k, d, I0; I) = E

[
∫

[0,h)
e−ρt

(
1

2

(

Kk,I0,I
t −Dd

t

)2
dt+ q0dIt

)]

+ E

[
∫

[h,+∞)
e−ρt

(
1

2

(

Kk,I0,I
t −Dd

t

)2
dt+ q0dIt

)]

= E

[
∫

[0,h)
e−ρt

(
1

2

(

Kk,I0,I
t −Dd

t

)2
dt+ q0dIt

)]

+ E

[∫ +∞

0
e−ρ(t+h)

(
1

2

(

Kk,I0,I
t+h −Dd

t+h

)2
dt+ q0dIt+h

)]

= E

[∫ +∞

0
e−ρt(g(Cc,It , Dd

t )dt+ q0dIt
)
]

+ J(k, d, I0). (22)

Thus, the functional J(k, d, I0) defined in Proposition 1 does not depend on I ∈ I.
Therefore, by setting

G(c, d; I) := E

[∫ +∞

0
e−ρt(g(Cc,It , Dd

t ) + q0dIt
)
]

, (23)

the original optimization problem of minimizing F (k, d, I0; ·) over I is equivalent to the
optimization problem without delay

v(c, d) := inf
I∈I

G(c, d; I) subject to (16) and (2). (24)

3.2 Solution characterization

In the sequel, to give sense to the problem (i.e., to guarantee finiteness), we make the
standing assumption that the discount factor ρ satisfies

ρ > max(κ1, 0), (25)

where κ1 is the constant appearing in (13). This assumption guarantees that there is some
κ depending on µ, σ s.t.

0 ≤ v(c, d) ≤ κ (1 + |c|2 + |d|2), ∀(c, d) ∈ S. (26)

In particular, it implies that the value function v is finite and locally bounded.
Federico and Pham [2014] prove the following facts.4

1. v is convex with respect to the variable c

2. v is differentiable with respect to c, and vc is continuous in S

3. The function d 7→ vc(c, d) does not increase for each c ∈ R

4. vc ≥ −q0

4Federico and Pham [2014] deal with reversible problems. We can apply their results by taking an
infinite cost of disinvestment. The irreversible case with a profit maximization criterion is studied with
similar generality in Ferrari [forth.].
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In view of these facts, there is now the continuation region

C := {(c, d) ∈ S | vc(c, d) > −q0}, (27)

and the action region

A := {(c, d) ∈ S | vc(c, d) = −q0}. (28)

Therefore, C and A are disjoint and S = C∪A. Due to the continuity of vc, the continuation
region is an open set of S, while the action region is a closed set of S. Moreover, due to
the monotonicity of vc(c, ·) and to the convexity of v(·, d), C and A can be rewritten as

C = {(c, d) ∈ S | c > ĉ(d)}, A = {(c, d) ∈ S | c ≤ ĉ(d)}, (29)

where ĉ : O → R is a non-decreasing function. The latter function is the optimal boundary

for the problem in the sense that it characterizes the optimal control. Thus, in this singular
stochastic optimal control, the optimal control consists of keeping the state processes
within the closure of the continuation region C by reflecting the controlled process on the
optimal boundary along the direction of the control. See Figure 1.

✲
d

C

A◦

✻

✻
✻

✻
✻

✻

ĉ(d)
c

Figure 1: Continuation region (C) and action region (A) in the demand-committed capac-
ity space.

We have an explicit characterization of ĉ, that is, of the optimal control that is provided
by the following result.

Theorem 1. The optimal boundary is explicitly written as

ĉ(d) = β0(d) − q0ρe
ρh +

1

2
σ2(d)

β′′(d)ψ′(d) − β′(d)ψ′′(d)

ψ′(d)
, (30)

where β0(d) is defined in (20) as E
[
Dd
h

]
,

β(d) :=

∫ +∞

0
e−ρt

E[β0(Dd
t )]dt, (31)

and ψ is the strictly increasing fundamental solution to the linear ODE

[Lφ](d) := ρφ(d) − µ(d)φ′(d) − 1

2
σ2(d)φ′′(d) = 0, d ∈ O. (32)

The unique optimal control for the problem (24) is the process

I∗
t =

[

ĉ

(

sup
0≤s≤t

Dd
s

)

− c

]+

. (33)
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Proof. Theorem 4.2 and Corollary 5.2 of Federico and Pham [2014] state the above claim5

with

ĉ(d) = ρ

[

β(d) − ψ(d)

ψ′(d)
β′(d) − q0e

ρh
]

, (34)

Therefore, if (34) can be rewritten in the form (30), then it is more suitable for interpre-
tation.

To this purpose, because ψ solves the ODE (32), we have

ĉ(d) = ρβ(d) − µ(d)β′(d) − 1

2
σ2(d)

ψ′′(d)

ψ′(d)
β′(d) − q0ρe

ρh. (35)

On the other hand, it is well-known from the connection between the linear ODE and the
one-dimensional diffusions that the function β solves the nonhomogeneous ODE (32) with
the forcing term β0:

Lβ = β0. (36)

Hence, combining (35) and (36), the expression (30) follows.

The socially optimal investment as calculated above is also, given the price process, a
profit-maximizing investment for price-taking investors. Therefore, the optimum can be
decentralized as a competitive equilibrium:

Proposition 2. Let pc,d,∗ be the price process at the optimum. We have

E

[∫ +∞

0
e−ρt

(

pc,d,∗t − η
)

dt

]

≤ q0, (37)

with the equality holding if and only if (c, d) ∈ A.

More precisely, investment is null if the expected present revenue from the additional
unit is strictly lower than its cost, whereas all profitable opportunities are exhausted for
the case of equality. The proof is in Appendix B.

3.3 Interpretation of the boundary

The boundary ĉ(d) defined by (30) and the optimal control defined by (33) are easily
amenable to interpretations. The boundary is composed of three terms:

ĉ(d) = β0(d) − bρ − bσ(d). (38)

1. β0(d) is what d is expected to be h years later: one commits to what demand is
expected to be when the investment becomes operative.

2. The discounting bias bρ = q0ρe
ρh expresses the fact that the investment is paid right

away, whereas the cost of the insufficient capacity is discounted.

This effect can be retrieved with a heuristic non-stochastic version of the model.
Denote by ∆, the permanent downward shift in capacity, compared to the best
estimate β0(d). The investor permanently suffers the loss 1

2∆2 per year in which the

total actuarial cost is 1
2

∆2

ρ . The total money saved by shifting capacity is q0∆. The
investor minimizes

1

2
e−ρh∆2

ρ
− q0∆ (39)

with respect to ∆. The minimizing ∆ is q0ρe
ρh.

5Note however that here we have the term eρh multiplying q0. This is due to the fact that our function
g is equal to the function g in Section 5 of Federico and Pham [2014] up to the constant e−ρh.
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3. The precautionary bias

bσ(d) :=
1

2
σ2(d)

[

β′(d)
ψ′′(d)

ψ′(d)
− β′′(d)

]

. (40)

gives the security margin due to the stochastic nature of the demand process. It is
null if, for example, σ(d) = 0.

The calculations go one step further if we assume the affine drift µ(d) = ad + b.
Then we have

β0(d) = deah − bh
1 − eah

ah
. (41)

The ratio must be taken as −1 when a = 0. Therefore, β′′ = 0 in this case, and

bσ(d) =
1

2
σ2(d)

eah

ρ− a

ψ′′(d)

ψ′(d)
. (42)

For the latter term bσ(d):

• The delay has an impact only if a 6= 0. The sign of a determines the impact of the
delay: the uncertainty about the future grows (diminishes) when h increases if a > 0
(a < 0), which justifies a bigger (smaller) bias.

• The factor σ2(d) is local, it takes into account the local risk only.

• The factor ψ′′(d)
ψ′(d) > 0 takes into account the global risk.6 This term is a kind of

absolute risk aversion related to the dynamics of D, not the delay.

4 Geometric Brownian Motion

4.1 The boundary

In the case where the demand follows a geometric Brownian motion (GBM):

dDt = µDtdt+ σDtdWt, µ ∈ R, σ > 0, (43)

with initial datum d > 0, the minimal constant κ1 for which (13) is verified is 2µ + σ2.
Therefore, according to (25), we assume that

ρ > 2µ+ σ2. (44)

In this case O = (0,+∞) and

β0(d) = eµhd and β(d) =
eµh

ρ− µ
d. (45)

Moreover,

[Lφ](d) = ρφ(d) − µdφ′(d) − 1

2
σ2d2φ′′(d), φ ∈ C2(O;R), (46)

and the fundamental increasing solution to Lφ = 0 is

ψ(d) = dm, (47)

6Rogers and Williams [2000, Prop. (50.3), Ch. V (p.292)] show that ψ strictly increases and is convex.

10



where m is the positive root of the equation

ρ− µm− 1

2
σ2m(m− 1) = 0. (48)

Due to Theorem 1, we have

ĉ(d) = deµh − q0ρe
ρh − 1

2
σ2 eµh

ρ− µ
(m− 1)d, (49)

with

m =
1

σ2

(√
(

µ− 1
2σ

2
)2

+ 2ρσ2 −
(

µ− 1
2σ

2
)
)

. (50)

Further, (44) implies m > 2.

4.2 Comparative statics

Note that

ĉ(d) = Ad− q0ρe
ρh, with A =

1

2

eµh

ρ− µ



2ρ− µ+
1

2
σ2 −

√
(

µ− 1

2
σ2

)2

+ 2ρσ2



 . (51)

The next result analyzes the sensitivity of the boundary, and thus of the action region
with respect to the parameters of the model.

Proposition 3. The boundary in the GBM case has the following properties:

1.
∂ĉ(d)
∂q0

< 0

2. A > 0

3. h
A
∂A
∂h = µh, and it has the sign of µ

4. σ
A
∂A
∂σ = − σ2

√

(µ− 1
2
σ2)

2
+2ρσ2

< 0

5. µ
A
∂A
∂µ = µh+ 1

2
µ
ρ−µ



1 − µ+ 1
2
σ2

√

(µ− 1
2
σ2)

2
+2ρσ2



, and it has the sign of µ

6. ρ
A
∂A
∂ρ = 1

2

ρσ2+µ2− 1
2
µσ2−µ

√

(µ− 1
2
σ2)

2
+2ρσ2

(ρ−µ)

√

(µ− 1
2
σ2)

2
+2ρσ2

> 0

Proof. Properties 1, 3, and 4 are immediate.
The other properties involve the same square root for the denominator. The signs

are determined in all of the cases by showing that the numerators can be rearranged and
simplified to show that their signs depend only on the sign of ρ(ρ − µ), which is positive
given (44). These determinations ensure that the terms have the same sign for all of the
relevant parameters.

Property 2 says that the investment is responsive to the current demand. Property 3
shows the importance of µ: when, e.g., µ > 0, a longer delay means above all a higher
future demand, hence a higher investment. Property 4 confirms that more uncertainty
makes the investor more cautious. A similar logic explains property 5.
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If the focus is on the precautionary bias only, then

bσ(d) =
1

2

eµh

ρ− µ

(√
(

µ− 1
2σ

2
)2

+ 2ρσ2 −
(

µ+ 1
2σ

2
)
)

d > 0. (52)

But,

µ

bσ(d)

∂bσ(d)

∂µ
= µ



h− 1

2

1

ρ− µ

2ρ−µ+ 1
2
σ2−

√

(µ− 1
2
σ2)

2
+2ρσ2

√

(µ− 1
2
σ2)

2
+2ρσ2



 . (53)

In the second factor, the first term is positive and the second one is negative. We take
µ > 0 for the discussion. The overall sign of the elasticity depends, for example, on h: if h
is small, then the elasticity is negative (the precautionary bias decreases as µ increases);
if h is big, then the elasticity is positive (the precautionary bias increases).

Property 6 shows that the discount rate has two clear antagonistic effects: the discount-
ing bias increases in absolute value with respect to ρ because the benefits of investment
are discounted, and the precautionary bias decreases in absolute value because the future
costs are discounted. Thus,

ρ

bσ(d)

∂bσ(d)

∂ρ
=

1

2

ρ

ρ− µ

µ+ 1
2
σ2−

√

(µ− 1
2
σ2)

2
+2ρσ2

√

(µ− 1
2
σ2)

2
+2ρσ2

< 0. (54)

4.3 Simulations

If ρ = 0.08, µ = 0.03, and σ = 0.1, then the elasticity of A w.r.t. to h is 3% at h = 1 and
24% at h = 8. The elasticity of A w.r.t. σ is −21% whatever the h. The elasticity of bσ(d)
w.r.t. to h is 3% for h = 1 and 24% for h = 8. The elasticity of bσ(d) w.r.t. σ is 153%
whatever the h.

Figure 2 shows a trajectory of demand for h = 8 and σ = 0.06 with a starting point
of d = 103. The committed capacity stops growing during the episode where demand is
(fortuitously) stabilized. Given the long delay, the committed capacity is almost always
ahead of the demand.
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Figure 2: Demand, committed, and installed capacity behavior in the geometric case for
h = 8 years and when σ = 0.06.
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5 CIR model

5.1 The boundary

For the case where the demand follows a Cox-Ingersoll-Ross model:

dDt = γ(δ −Dt)dt+ σ
√

DtdWt, γ, δ, σ > 0, (55)

then, under the assumption 2γδ ≥ σ2, we have O = (0,+∞). We suppose that this
assumption is true. Also in this case (13) is verified with κ1 = ε for any ε > 0. Therefore,
according to (25), we assume that ρ > 0.

This case has

β0(d) = e−γhd+ (1 − e−γh)δ and β(d) = e−γh d− δ

ρ+ γ
+
δ

ρ
. (56)

Moreover,

[Lφ](d) = ρφ(d) − γ(δ − d)φ′(d) − 1

2
σ2dφ′′(d), φ ∈ C2(O;R), (57)

and the increasing fundamental solution to Lφ = 0 is

ψ(d) = M(ρ/γ, 2γδ/σ2, 2γd/σ2), (58)

where M is the confluent hypergeometric function of the first type.7

Hence,

ĉ(d) =e−γhd+ (1 − e−γh)δ − q0ρe
ρh − 1

2
σ2 e

−γh

ρ+ γ

ψ′′(d)

ψ′(d)
(59)

=δ + e−γh(d− δ) − q0ρe
ρh − e−γh σ2

2γδ + σ2

M
(

2 + ρ
γ , 2 + 2γδ

σ2 ,
2dγ
σ2

)

M
(

1 + ρ
γ , 1 + 2γδ

σ2 ,
2dγ
σ2

) d. (60)

5.2 Comparative statics

The analysis is done with a stylized version of the boundary based on the following results.

Proposition 4. The boundary in the CIR model verifies:

1. Tangent at d = 0:

Tangent(d) =
γδ

γδ + σ2

2

e−γhd+
(

1 − e−hγ
)

δ − q0ρe
hρ (61)

2. Asymptote when d → ∞:

Asymptote(d) =
ρ

ρ+ γ
e−γhd+

(

1 − ρ

ρ+ γ
e−γh

)

δ − σ2

2γ

ρ

ρ+ γ
e−γh − q0ρe

ρh (62)

3. The intersection between the two lines above is
(

δ +
σ2

2γ
, δ − q0ρe

ρh

)

(63)

7See Abramowitz and Stegun [1965].
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Proof. The calculation of the tangent is immediately given by the series expansion of M :

M(a, b, z) =
∞∑

s=0

(a)s
(b)s s!

zs = 1 +
a

b
z +

a(a+ 1)

b(b+ 1)2!
z2 + · · · (64)

To calculate the asymptote, we start from (34). Let M(a, b; z) be the confluent hyper-
geometric function of the first type with parameters a, b. Then

(i) zM ′(a, b; z) = a(M(a+ 1, b; z) −M(a, b; z)) (here M ′ is the derivative w.r.t. z)

(ii) M(a, b; z) ∼ Γ(b)
Γ(a)e

zza−b, when z → ∞

Using (i),

M(a, b; z)

zM ′(a, b; z)
=

M(a, b; z)

zM ′(a, b; z)
=

M(a, b; z)

a(M(a+ 1, b; z) −M(a, b; z))
=

1

a
(
M(a+1,b;z)
M(a,b;z) − 1

) , (65)

and using (ii), we get

lim
z→∞

M(a, b, z)

zM ′(a, b; z)
= 0. (66)

Thus, the slope of the asymptote of ĉ is

α := lim
d→∞

ĉ(d)

d
= lim

d→∞

ρβ(d)

d
=

ρ

ρ+ γ
e−γh. (67)

The calculation is:

κ := lim
d→∞

ĉ(d) − αd. (68)

Therefore,

κ = δ

(

1 − ρ

ρ+ γ
e−γh

)

− κ1
ρ

ρ+ γ
e−γh − q0ρe

ρh, (69)

where

κ1 := lim
d→∞

ψ(d)

ψ′(d)
. (70)

To compute the latter, (i) is used to get

M(a, b; z)

M ′(a, b; z)
=

z

a
(
M(a+1,b;z)
M(a,b;z) − 1

) . (71)

Then, the use of (ii) and aΓ(a) = Γ(a+ 1) gets

lim
z→∞

M(a, b; z)

M ′(a, b; z)
= lim

z→∞

z

z − a
= 1. (72)

Thus, given the function of interest M(ρ/γ, 2γδ/σ2, 2γd/σ2), κ1 = σ2

2γ is obtained. The
expression of the asymptote follows.

The expression of the intersection is a direct implication of points 1. and 2. of this
Proposition.
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For the economic interpretations, ĉ(d) has the stylized expression:

min {Tangent(d),Asymptote(d)} . (73)

The kink point
(

δ + σ2

2γ , δ − q0ρe
ρh
)

is close to (δ, δ) if the uncertainty is small compared

to the convergence speed.
When h and σ are small, the tangent is the 45 degree line minus the discounting bias:

committed capacity follows demand. The asymptote is conservative because the capacity
increases by only ρ

ρ+γ for each unit increase of demand.

With a large convergence speed compared to the volatility (a small σ2/γ), the uncer-
tainty has a negligible impact on the boundary.

The tangent and the asymptote become flatter and flatter as h increases: current
conditions as measured by d matter less when the delay is longer. The flattening effect is
exponential. Reversion to the mean implies that as the delay increases, the current demand
progressively loses relevance for the prediction of the future demand. No precautionary
bias is needed at the limit for the large delays.

5.3 Simulations

The CIR model provides a rich setting to analyze the effects of the time-to-build, of the
volatility, and of different convergence rates.

The following reference parameters are: the initial value demand is 10, the discount
rate is ρ = 0.08, the long-term demand is δ = 20, and the demand approaches this limit
at a speed γ = 0.8,

The alternative scenarios consider the four cases where the delay h = 1 or 8, and the
demand volatility σ = 0.1 or 0.05. Figure 3 (Left) gives the four boundaries. However,
the two boundaries with h = 8 are almost completely flat and confounded. The other two
have very close tangents and asymptotes and are hard to discern visually. The 45 degree
line is also drawn.

Figure 3 (Right) shows a trajectory for h = 8 and σ = 0.2. The committed capacity is
immediately at the maximum and then varies very little except when the demand becomes
exceptionally high for the first time.
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Figure 3: (Left) Investment boundaries. (Right) Demand, committed and installed ca-
pacity behavior with the CIR model for an eight-year delay and a large mean-reversion
(γ = 0.8).

Figure 4 (Left) shows four boundaries with the same parameters as in Figure 3 except
that γ = 0.08. The boundaries have a less marked kink than with a faster convergence
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rate: boundaries are more like the 45 degree line because the demand evolves much more
slowly, and they are much more alike in terms of positions and slopes.

Figure 4 (Right) shows a trajectory for h = 8 and σ = 0.2. The committed capacity is
more responsive to the current conditions because they are better predictors of the future
demand than when γ is large. This effect plays for demand levels below 20 or above.
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Figure 4: (Left) Investment boundaries. (Right) Demand, committed and installed capac-
ity behavior in the CIR case for an eight-year delay and a small mean-reversion (γ = 0.08).

6 Conclusion

Electricity demand has a random part and is price sensitive. Our minimization of an
expected quadratic loss is founded on microeconomic theory, and our optimal solution
can be implemented as a competitive equilibrium. In this paper where the delay between
the investment decision and activation of the new capacity is accounted for, we have
characterized the explicit decision rules for important classes of demand processes.

The benefits of closed-form solutions cannot be overstated, because we can show the
interaction, in investors decisions, between the time-to-build and the uncertainty. In
particular, we identify the base rule and the two corrective terms: the investor should
invest if his or her committed capacity (i.e., the capacity in the pipeline) is below the
best linear estimate of the future demand, the given demand today, and the delay minus
a discounting bias and a precautionary bias determined by uncertainty and global risk
aversion. The latter term varies substantially with the demand model.

In the arithmetic Brownian motion, the delay and the uncertainty have additive sep-
arate effects. In the geometric Brownian motion, the shocks are amplified exponentially
so that with a longer delay, restricting the future capacity becomes more costly. On the
other hand, the discounting bias is accentuated by the delay. The question of which of
these opposite effects dominates the other as the delay increases can be addressed with
our explicit expressions. In the CIR case, reversion to the mean implies that as the delay
increases, the current demand progressively loses relevance for the prediction of the future
demand. No precautionary bias is needed at the limit for the large delays.

A Arithmetic Brownian Motion

A.1 The Frontier

With an arithmetic Brownian model of demand, our model is a particular case of Bar-Ilan
et al. [2002], where the fixed investment cost is null. The optimal strategy is simpler. The
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demand dynamics are:

dDt = µdt+ σdWt, µ ∈ R, σ > 0, (74)

then O = R and (13) is verified with κ1 = ε for each ε > 0. Therefore, according to (25),
we assume that ρ > 0. Thus,

[Lφ](d) = ρφ(d) − µφ′(d) − 1

2
σ2φ′′(d), φ ∈ C2(O). (75)

The increasing fundamental solution to Lφ = 0 is ψ(d) = eλd where λ is the positive
solution to

ρ− µλ− 1

2
σ2λ2 = 0. (76)

Because, in this case,

β0(d) = d+ µh and β(d) =
µh

ρ
+
d

ρ
+
µ

ρ2
. (77)

Due to Theorem 1, ĉ is affine:

ĉ(d) = d+ µh− q0ρe
ρh −

√

µ2 + 2ρσ2 − µ

2ρ
. (78)

A.2 Comparative statics

Consider that

∂2ĉ(d)

∂h∂σ
= 0. (79)

Whatever the time to build h, the investment is retarded in the same way by an increase
in σ, and conversely. This additive separability makes it difficult to find the cross effects
between the uncertainty and the delay with this model, contrary to Bar-Ilan et al. [2002].

An increase in uncertainty always retards investment:

∂ĉ(d)/∂σ = − σ
√

µ2 + 2ρσ2
< 0. (80)

The variation of ĉ(d) with respect to the time-to-build h is

∂ĉ(d)/∂h = µ− q0ρ
2eρh. (81)

The effect is to hasten investment if µ is relatively large. If h is relatively large, then
the cost of investment appears large compared to the future discounted damage, and
investment is retarded. We retrieve the effects encountered in the case of the geometric
Brownian motion.

Furthermore,

∂ĉ(d)/∂µ = h+
1

2ρ

(

1 − µ√
µ2+2ρσ2

)

> 0, (82)

and

∂ĉ(d)/∂ρ = −q0(1 + hρ)eρh +
1

2

(

µ2 + ρσ2 − µ
√

µ2 + 2ρσ2

ρ2
√

µ2 + 2ρσ2

)

. (83)

In the latter expression, the first term is negative (the discounting bias is reinforced),
whereas the second term is positive (the precautionary bias is attenuated). Thus, we get
the same effects encountered in the case of the geometric Brownian motion.
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A.3 Simulations

On Figure 5 (Left), b := ĉ(d) − d is given as a function of σ, for two contrasted values of
h (1 and 8 years). The other parameters are: ρ = 0.08, µ = 300, with an initial demand
of 10,000 MW and demand, committed capacity, and installed capacity all equal at date
0 (D0 = C0 = K0).

Figure 5 (Left) shows that the impact of the time-to-build with these values is much
more important than the impact of uncertainty. Indeed, numerically, ∂ĉ(d)/∂h is of the
order of 300 whereas ∂ĉ(d)/∂σ is of the order of −1. The first effect largely dominates.

By and large, this result is in line with Bar-Ilan et al. [2002]. In their setting, increasing
the time-to-build from one year to eight years reverses the relation between uncertainty
and investment, which is possible only because they are not separable. Specifically, for a
long delay, an increase in uncertainty hastens investments but decreases their level. But,
these effects are very small (Bar-Ilan et al. [2002, pp. 85, Figure 2]).

The excess of committed capacity does not imply that the system will hold an excess
of installed capacity. In fact, the reverse is observed in Figure 5 (Right). In the case of
a delay of eight years, an excess of committed capacity as measured by the value of b is
1,873 MW. But in eight years, the demand will grow on average 2,400 MW, which clearly
indicates that the optimal strategy is to avoid excess installed capacity.
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Figure 5: (Left) ĉ(d) − d as a function of σ for two values of the time-to-build, h = 1
(blue crosses) and h = 8 (red circles). (Right) Demand, committed and installed capacity
behavior for an eight-year delay, σ = 600 MW·year1/2.

B Proof of Proposition 2

Let (c, d) ∈ S. We prove first that

vc(c, d) =E

[∫ +∞

0
e−ρtgc(C

c,∗
t , Dd

t )dt

]

, (84)

where C∗ is the optimal state process associated to the optimal control I∗ provided by
Theorem 1. Let I∗ ∈ I be optimal for (c, d). Therefore,

G(c+ ε, d; I∗) −G(c, d; I∗)

ε
≥ v(c+ ε, d) − v(c, d)

ε
. (85)

On the other hand,

G(c+ ε, d; I∗) −G(c, d : I∗)

ε
= E

[
∫ +∞

0
e−ρt g(Cc,I

∗

t + ε,Dd
t ) − g(Cc,I

∗

t , Dd
t )

ε
dt

]

. (86)
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Taking the limsup in (85) and taking into account (86), we get

lim sup
ε↓0

v(c+ ε, d) − v(c, d)

ε
≤ E

[∫ ∞

0
e−ρtgc(C

c,∗
t , Dd

t )dt

]

. (87)

On the other hand, arguing symmetrically with c− ε, we get

lim inf
ε↓0

v(c, d) − v(c− ε, d)

ε
≥ E

[∫ +∞

0
e−ρtgc(C

c,∗
t , Dd

t )dt

]

. (88)

Therefore, (87) and (88) assert (84).
Because of equation (84), vc ≥ −q0, the definition of A, and because of

gc(C
c,∗
t , Dd

t ) = e−ρh
E

[

c−Dd
h

]

; (89)

the quadratic surplus application based on equation (1) as an expected discounted revenue
(price minus marginal cost) yields the result.
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