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Abstract—This paper proposes a new algorithm for image
recognition, which consists of (i) modeling categories as a set of
distinctive parts that are discovered automatically, (ii) aligning
them across images while learning their visual model, and, finally
(iii) encode images as sets of part descriptors. The so-obtained
parts are free of any appearance constraint and are optimized to
allow the distinction between the categories to be recognized.
The algorithm starts by extracting a set of random regions
from the images of different classes, and, using a softassign-
like matching algorithm, simultaneously learns the model of each
part and assigns image regions to the model’s parts. Once the
model of the category is trained, it can be used to classify new
images by first finding image’s regions similar to learned parts
and encoding them by the fisher-on-parts encoding, which is
another contribution of this paper. The proposed framework is
experimentally validated on two publicly available datasets, on
which state-of-the-art performance is obtained.

I. INTRODUCTION

This paper addresses the task of image classification, which
consists in predicting whether an image contains an object
(or a visual concept) based on the content of the image. This
topic has received a lot of attention from the computer vision
community since the pioneering work of [1]. The successful
approaches rely on the popular bag-of-word model e.g. [1],
[2], [3] or its variants such as the Fisher vectors [4].

One key issue raised by image classification is how to
efficiently use geometric information. While the first works
were building on the pure bag-of-words model e.g. [1], which
consists of pooling the visual features without using their
spatial coordinates in any way, it has been shown later (e.g.
by [3]) that performance can be significantly improved by
encoding separately a set of multiple (possibly overlapping)
regions, which constitutes a first step toward the use of
geometry. Using fixed regions (usually image quad-trees) is
obviously limited as the corresponding implicit segmentations
of the image is not adapted to the image’s content. Several
recent works such as [2], [5] have introduced more flexibility
by adapting the shape/position of the regions, but the layout
was still supposed to be fixed, for a given category.

Observing that images within a category might have very
different layouts (i.e. spatial organization), it has been shown
that categories can be efficiently represented by a set of
distinctive regions called parts or fragments [6], [7], [8], [9].
For example, if ‘car’ images can be recognized because of the
joint presence of ‘wheel’, ‘road’ or ‘window’-like parts, the
position of these regions can be any as long as they are in the
image. This idea of introducing some invariance (or alignment)
with respect to the position of the parts have been used

Fig. 1. On this figure, 2 images from the ‘riding cycle’ class of the Willow
actions dataset are represented with four learned parts

successfully in the Deformable Part Model of [10]. However, in
the case of image classification the relative position of the parts
is much less constrained than in the case of object detection.
The motivation of our work is precisely to propose a new
way to describe images by a set of parts that are aligned
across images by construction, without using strong geometric
constraints between them. This is achieved by proposing a new
model for categories, which states that (i) a category is defined
by a set of K parts (ii) these parts are distinctive in the sense
that they occur more frequently in the image of the category
than in those from other categories (iii) the presence of regions
visually similar to the model’s part is expected in the image
category. These constraints are implemented into an objective
function which is optimized during learning. The objective
function relies on a match function which links model’s parts
with image regions. Training can be achieved from a set
of images describing the category to be recognized, without
having to provide any extra annotations. During training, a
part classifier is learned simultaneously with the matching of
parts and image regions. In a second time, these classifiers
can be used to build a visual descriptor of images, also called
image signatures: we introduce in this paper the fisher-on-part
descriptor, consisting in aligning the model on the image and
in computing the Fisher vectors of the image regions matched
with model parts.

To summarize, the motivation of this paper is to introduce
a new framework allowing to automatically discover, learn and
align distinctive parts representative of a category, as well as to
encode images into a descriptor containing the Fisher vectors
of image regions matched with category’s parts. The proposed
approach is validated on two datasets for which state-of-the-
art performance is obtained. The rest of the paper is organized
as follows. Related work is presented in section II. Section III
provides details on the proposed system that learns, aligns, and
encodes distinctive parts. Finally, the experimental validation
is given Section IV, before concluding the paper.



II. RELATED WORK

Image classification has been vastly studied in the recent
computer vision literature (e.g. see the abundant literature
related to the Pascal VOC challenge [11]). Most of the modern
approaches build on the bag-of-word model [1], following
a 4 step pipeline: 1) extraction of local image features, 2)
encoding of local image descriptors, 3) pooling of encoded
descriptors into a global image descriptor, 4) training and
classification of pooled image descriptors for the purpose of
object recognition. Several studies evaluate the performance of
the first step of the pipeline, namely the low level features e.g.
gradient, shape, color, and texture descriptors, such as [12],
while other propose combining different levels (low - mid -
high) of information [13]. Regarding the second step (image
encoding) Fisher vectors [4] are considered as achieving state-
of-the-art performance at the moment. The (third) pooling step
is also shown to provide improvements, and spatial and feature
space pooling techniques have been widely investigated [14],
[3]. Moreover, [2], [5] have recently proposed two different
strategies for embedding spatial information into the bag-of-
words framework. Regarding the final step of the pipeline,
discriminative classifiers like SVM are widely accepted as the
reference in terms of classification performance.

Several authors have shown the importance of adding an
intermediate representation [15] – often referred as the mid-
level features – for leveraging the performance. We observe
three mains trends on mid-level description in the recent liter-
ature: hand crafted, learned, and unsupervised features. Hand
crafted mid-level features aim at encapsulating information on
groups of pixel such as superpixels [16], [17], patches [18] or
segments [19]. These descriptors are computed similarly for
any given image and do not require any learning. On the other
hand, a large variety of learned mid-level features have been
proposed. One of the first one was the Deformable Part Model,
proposed by [10]. Improvement have been further achieved by
using appearance based clustering and sub-categories [20] and
by enforcing steerability and separability of the features [21].
Similarly, semantic attributes [22], [23] have received a lot
of interest. Within the learned mid-level features techniques,
we observe a large variety in the nature of the learning data.
While some feature are based on extra training data such
as labeled fragments [24], sketch tokens [25] or pre-trained
object detectors [26], most methods use a standard split of
training and testing data to learn the distinctive features, as
the structural element patch model [27] or the blocks that
shout [8]. Finally, regarding unsupervised mid-level features,
the work of [28] aims at detecting distinctive patches in an
image dataset without any label information.

Our work aims at learning distinctive parts without extra
annotations. Therefore, closely related work includes the De-
formable Part Model (DPM) [10]. The DPM models categories
by using a mixture of parts and classify image regions as object
vs non object regions. Classifiers are applied to a representation
in which the parts are aligned, by shifting the parts with
respect to the root filter. However, for image classification, the
variability part positions as well as the variation of appearance
within a category makes the problem different.

Our work also bears similarities with [6], which tries to
discover the fragments that maximize the mutual information
between the category and the presence of the fragment in the

image. However, [6] suffers from that (i) contrarily to [10], part
are just image patches and not discriminative classifiers (ii) the
decision is made by verifying the presence of the fragments
in the image, instead of training a classifier taking fragment
descriptors as input. Our approach takes the advantages of both
approaches without having their drawbacks.

More recently, [7] proposes a learning framework for the
automatic discovery of image’s parts, assuming that partial
correspondence between instances of a category are available.
These partial correspondences allow the training of part detec-
tors, used in a first time to extract candidates regions. While
we share the same motivations, our approach does not require
any supervision. In addition, it is worth mentioning [8] and
[9] which both propose algorithms for learning parts that are
good representatives of a given category. Our work follows the
same objectives, without the localization constraints imposed
by [9] and the large computation requirement and unoptimized
encoding of [8].

This work finally shows the importance of mid-level infor-
mation and justifies its use to improve recognition capabilities.

III. PROPOSED METHOD

As explained in the introduction, the proposed method aims
at automatically discovering model parts and aligning them
with images regions, as well building a description of images
based on the so-aligned regions. This section first presents
the category model and its associated cost function, which is
to be optimized during learning. Secondly, we explain how
the parameters of the model can be learned using an iterative
framework inspired from the softassign algorithm. Then, more
details are given on the algorithm initialization step. Finally,
we explain how image signatures can be computed using the
learnt model.

A. Category model and objective function

Let us first introduce some notations. We assume having
a set of images belonging to the category to be modeled,
considered as positive training images and denoted as I+.
|I+| represents the number of positive images. In the same
way, I− is the set of (negative) images belonging to other
categories. The whole training set is denoted as I = I+

⋃

I−

and contains |I| images. From each image I ∈ I, we extract a
dense random set of image regions denoted as RI . Each region
r is represented by its signatures xr, which is, in practice, the
bag-of-word representation of the region. The model of the
category includes a set of parts denoted as P . The number of
parts, K = |P|, is fixed. In the following, p ∈ P denotes one
of these parts.

The model relies on two assumptions: first, it is expected
that each part of the model is present in each positive image.
Second, parts should be representatives of the category, which
means that they should occur more frequently in positive
images than in negative ones.

We implement the first constraint by introducing the match
function m(r, p) associating model parts and image regions,
and by imposing that ∀I ∈ I+ and ∀p ∈ P ,

∑

r∈I m(r, p) =
1. The match function is defined as:



m(r, p) =

{

1 if region r is assigned to part model p

0 otherwise
(1)

In practice, the match function can be seen as a binary
matrix with one row per part and one column per image region.
We add another constraint ensuring that an image region can
be assigned to at most one part, which is written as: ∀I ∈ I+,
∀r ∈ I ,

∑

p∈P m(r, p) ≤ 1.

Regarding the second assumption, which states that regions
should be discriminative, one way to achieve this would be to
measure to which extent each part can be matched with regions
from the negative set, and promote those occurring more on
positive images. However, such process would be very costly.
Therefore, as suggested by [8], we use the LDA technique of
[29], which consists in learning once and for all a universal
model of negative patches. In practice, the parameter vector
w of a part classifier, corresponding to the part p, is defined
simply as:

w(p,m) = Σ−1

(

∑

r∈I,∀I∈I+ m(r, p)× xr

|r ∈ I, ∀I ∈ I+|
−

∑

r∈I,∀I∈I xr

|r ∈ I, ∀I ∈ I|

)

(2)
where Σ is the covariance matrix obtained by taking the whole
set of regions from both positive and negative images. Con-
sequently, the part models w(p,m) are fully defined once the
match function is defined. In addition, the similarity between
a region r and a part p of the model can by computed as
wT (p,m)× xr.

The model is thus fully defined by giving the match
function m(r, p). Following the afore mentioned constraints,
we define the optimal match function, denoted as m̂, as the
one maximizing:











m̂ = argmax
m

∑

p∈P

∑

I∈I+

∑

r∈I m(r, p)× wT (p,m)× xr

s.t. ∀I ∈ I+, ∀p ∈ P ,
∑

r∈I m̂(r, p) = 1

s.t. ∀I ∈ I+, ∀r ∈ I,
∑

p∈P m(r, p) ≤ 1
(3)

Learning this model therefore consists in the (combina-
toric) optimization of Eq. (3). Finding the global optimum is
not computationally feasible, nevertheless we propose to adapt
the point matching algorithm of [30] to obtain an approximate
solution, as explained in the following section. This algorithm
was first introduced to solves simultaneously the correspon-
dence problem as well as the pose estimation of 3D and 2D
data. In [30], two sets of points Xj and Yk are related by a
geometric transformation. Both sets can contain outliers. The
match matrix mjk is defined as the correspondence matrix
such that mjk = 1 if point Xj corresponds to point Yk and
0 otherwise. The problem is further presented as finding the
pose (i.e. the geometric transformation) and the corresponding
match matrix mjk that best relates the two sets of points.
These two problems are finally solved simultaneously using
an iterative process aiming at minimizing an energy function.

B. Learning the match function using softassign

Our main goal is now to efficiently find a good (sub-
optimal) solution of the objective function given by Eq. (3).

If we ignore, for the moment, the inequality constraint (last
constraint of Eq. 3), then the match matrix m can be seen
a permutation matrix. We use the deterministic annealing
method of [31] to turn our combinatoric problem into a
continuous one, making the optimization simpler and more
efficient. The key idea is to minimize a sequence of objective
functions controlled by a parameter β representing the inverse
temperature of the system. By increasing the parameter, the
objective functions leans towards the discrete function.

The constraints are then relaxed from a permutation matrix
constraints to doubly stochastic matrix constraints, meaning
that every row and column of the matrix should sum up to 1
(see [30] for more explanations). Therefore, the computation
of the match function can be achieved iteratively using the
softmax formulation:

∀I ∈ I+, ∀r ∈ I, m(r, p) =
exp(β × wT (p,m∗)× xr)

∑

r∈I exp(β × wT (p,m∗)× xr)
(4)

Where w(p,m∗)T × xr is the score function relating the
similarity between the part p and the region r of the image
I , using the match function m∗ computed at the previous
iteration. Such a formulation does produce values in the
interval [0, 1], which is expected. Furthermore, when β →∞,
there will be one region per image for which m(r, p) = 1,
while for the other ones m(r, p) = 0, therefore satisfying the
first constraint.

In practice, we experimentally observed that the previous
formulation tends to favor parts converging to the same ‘mean
part’ for small values of β. Therefore, we utilized the fol-
lowing formulation, which leads to better performance as it
encourages sparser representations. ∀I ∈ I+ and ∀r ∈ I ,

m†(r, p) = exp

(

β

(

(wT (p,m∗)× xr)−max
∀r∈I

(wT (p,m∗)× xr)

))

(5)

In addition, the match matrix m has to satisfy the doubly
stochastic constraints. This can be achieved by using Sinkhorn
(see more details in [30]), by iteratively normalizing rows and
columns, see Algorithm 1.

Up to this point, we ignored the inequality constraint
stating that ∀I ∈ I+ and ∀r ∈ I ,

∑

p∈P m(r, p) ≤ 1. We
address it by turning the inequality constraint into an equality
constraint by adding a slack variable [32], which can be seen as
an additional part (the K +1-th part of the model) denoted as
ps, with the specificity that this extra part can be matched with
several image regions (contrarily to regular parts). Most image
regions do not match any part of the model and are therefore
matched with this slack part. The constraint becomes: ∀I ∈ I+

and ∀r ∈ I ,
∑

p∈P
⋃
{ps}

m(r, p) = 1. This constraint is then

satisfied by doing a column normalization of m, which is to
say that ∀I ∈ I+ and ∀r ∈ I ,

m(r, p) =
m†(r, p)

∑

∀p∈P
⋃
{ps}

m†(r, p)
(6)

Please note that at the initial values of m†(r, ps) are arbitrarily
set to 1/K. The resulting algorithm is Algorithm 1.



C. Initialization of the match function

As the match function m is refined iteratively, initial values
of m are required at the beginning. The convergence of the
algorithm is shown to be better if parts are initialized to some
discriminative regions. To select distinctive initial regions, we
first extract the signatures xr of the regions sampled from
positive training images. These signatures are then clustered,
using K-means. Here again we use the LDA acceleration of
[29], which means that for each cluster, the classifier w is
defined as w = Σ−1(x̄ − µ0) where x̄ is the average of the
signatures within the cluster and µ0 and Σ the overall mean
and covariance matrix.

These classifiers are further applied on the regions of the
training images. Maximum responses to the classifiers are then
selected per image and averaged over positive and negative
subsets, giving us the two scores s+ and s−, for a given cluster
j, defined as:

s+j = 1
|I+|

∑

r∗∈I+ wT
j xr∗

s−j = 1
|I−|

∑

r∗∈I− wT
j xr∗

(7)

Where ∀I ∈ I+, r∗ = argmax
r∈I

(wT
j xr). Then, we denote

as Cp the K clusters having the largest s+j /s
−
j ratios, which

are selected as initial regions. These initial regions are further
used to compute the initial part classifier w(p,m0) as :
w(p) ← Σ−1(Cp − µ0), used to compute the initial match
matrix m0(r, p).

D. Computing image signatures

Once the model is trained, images can be represented by
their signatures. Let us denote as I an image to be encoded.
We first extract a set of regions r ∈ I and compute their
corresponding descriptors xr. We can measure to which extend
each region is similar to one of the model parts by using the
scoring function defined previously by Eq. (2) as wT (p,m)×
xr, where m is the match function learned during training.

Then, we want to pool the per part similarities to produce a
signature of the image. We propose two different strategies: the
bag-of-parts inspired from [8] and a novel approach so-called
the fisher-on-parts.

Encoding images with bag-of-parts: To compute the
bag-of-parts (BOP), the per parts scores are computed for each
extracted region on an image. The signature of the image is
then given by aggregating, for each part of the model, the
average and the maximum of the region scores. Namely, if pj
is one of the K parts of our model, the signature of the image
I will be represented by the two following components:

∑

r∈I w
T (pj ,m)× xr

|r ∈ It|
and max

r∈It
wT (pj ,m)× xr (8)

When the problem is a multi-class problem, we do the same
for each class and aggregate the results. Therefore, we obtain
a 2 ×K × C-dimensional descriptor, where C is the number
of classes.

Initialization: w(p)← Σ−1(Cp − µ0)
while β ≤ βf do

while m† not converged or # of iteration ≤ I0 do
update match matrix by softassign
Compute m†(r, p), based on Eq. 5
while m̂† not converged or # of iteration ≤ I1
do

∀I ∈ I+

Update m̂ by normalizing rows

m̂†
1(r, p)←

m̂
†
0
(r,p)

∑
r∈I

m̂
†
0
(r,p)

Update m̂ by normalizing columns

m̂†
0(r, p)←

m̂
†
1
(r,p)

∑
p∈P

⋃
{ps} m̂

†
1
(r,p)

end
update parts using LDA

Compute w(p,m†
0), based on Eq. 2.

end
β ← βrβ

end
Algorithm 1: Algorithm for learning the mach function.

Encoding images with Fisher-on-parts: Fisher-on-parts
(FOP) aims at encoding together the maximum response of
each parts in an image It. As in BOP, scores are computed
for each region. Then, instead of aggregating average and
maximum scores as for the BOP, the maximum scoring region
r∗ for the part p is selected, as follows:

r∗ = argmax
r∈I

wT (p,m)× xr (9)

Finally, a Fisher vector is computed on the area of the image
covered by the K selected regions r∗. Therefore, the final FOP
descriptors is 2×G×D×C-dimensional vector, where G is
the number of Gaussian in the mixture model of the Fisher
vector, D is the dimensionality of SIFT descriptors and C the
number of categories.

IV. EXPERIMENTS

A. Datasets

Three classification datasets are utilized to experimentally
validate the proposed approach. The Willow dataset [33] aims
at classifying 7 human actions in still images. The Boats
Datasets goal is to classify several types of boats, while the
MIT 67 dataset [34] contains images of 67 types of scenes, to
be recognized.

The Willow actions dataset [33] is a database for action
classification on unconstrained consumer images from the
Internet. The dataset contains 911 images split into 7 classes
of common human actions, e.g. ‘running’, ‘riding cycle’ etc.
There are at least 108 images per actions, with 70 images
used as training and the rest as testing images. We note that the
dataset also offers bounding boxes fitted on humans performing
the actions. In our case, we perform the test without using
those bounding boxes, as we want to detect parts automatically
without any prior knowledge on the scenes.

The MIT 67 scenes dataset [34] is composed of 67 cate-
gories of indoor scenes. These categories include stores (e.g.
bakery, toy store), home (e.g. kitchen, bedroom), public spaces



(e.g. library, subway), leisure (e.g. restaurant, concert hall),
and work (e.g. hospital, TV studio). Some scenes can be best
characterized by their global layout (corridor), or by the objects
they contain (bookshop). Each category has around 80 images
for training and 20 for testing.

The RECONSURVE Boats Classification Dataset1 is com-
posed of 2877 images divided in 5 categories of boats (e.g.
boating, fishing, merchant ship, tanker, passenger).

B. Classification pipeline

Extraction of initial regions: for each image, a set
of initial regions is generated by randomly sampling 2,000
regions over the entire image.

Regions descriptors: to obtain region descriptors, dense
SIFT points are first extracted on each image using VLFEAT
[35] (we use the default 4 scales and sample points every
3 pixels). The SIFT points are further square-rooted to get
rootSIFT and the feature dimension is reduced to 80 using
PCA [36]. Then each region is characterized using a 1,000-
dimensional bag-of-word.

Parameters of the learning algorithm: regarding the
learning algorithm, we empirically set the parameters follow-
ing the choices of [30]: β = 0.41, βr = 1.245, βf = 1.2,
I0 = 4, I1 = 30 (see Algorithm 1 for the definition of these
parameters). The algorithm iterates over the estimation of m
until the sum over m of the absolute difference between two
iterations is smaller than ǫ = 0.005.

Baseline pipeline: Our approach is compared to the
state-of-the-art pipeline [36]. Bag-of-words and Fisher vectors
are computed on the root SIFT of the full image. Fisher vectors
are also computed using the two first layers (i.e. 1×1 and 2×2
segments) of the spatial pyramid.

C. Results

In this section, we first comment on the quantitative results
then show some qualitative results (visualization of learned
parts) in Figures 1 and 2. In the following, the performance
on the three datasets are measured using the mean Average
Precision (MAP).

First, we evaluate the impact of the initialization step in the
part-learning process, on the Willow dataset. The objective is to
measure the contribution of the initialization process described
in section III-C over a simple random initialization of the
parts. If we randomly initialize the match function we observe
a mAP of 46.0% (with the bag-of-parts encoding). Adding
the clustering-based initialization improves the mAP by 5%
(51.0%). In addition, to prove the usefulness of the proposed
algorithm, we evaluated the performance obtained by initial-
izing the match function with the clustering-based approach
and without doing the optimization of m. The performance
drops to 46.7%, proving that the proposed algorithm improves
significantly over discriminative parts learned by clustering.

The bag-of-parts and Fisher-on-parts are then evaluated
on the three datasets (see Table I and Table II). For Willow
actions, the performance of the two baseline algorithms (bag-
of-words and Fisher vectors) are respectively of 50.0% and

1can be downloaded from https://jurie.users.greyc.fr

TABLE I. RESULTS ON WILLOW AND BOATS DATASET. SEE TEXT FOR

DETAILS.

Method Willow (MAP) Boats (MAP)

bag-of-words [36] 0.500 0.673

Fisher vectors [36] 0.581 0.827

bag-of-parts 0.510 0.888

Fisher-on-parts 0.614 0.837

TABLE II. RESULTS ON MIT 67 SCENES DATASET. SEE TEXT FOR

DETAILS.

Method MAP

bag-of-words [36] 0.345

Fisher vectors [36] 0.550

bag-of-parts of [8] 0.373

our bag-of-parts 0.401

Fisher-on-parts 0.545

Fisher-on-parts based combination 0.600

58.1%. One can notes that the bag-of-parts slightly outper-
forms the standard bag-of-word. More interestingly, the pro-
pose Fisher-on-parts representation largely outperforms Fisher
vectors by more than 3%. Please note that the proposed
approach does not use any extra annotations, contrarily to most
of the proposed approaches (e.g. [9] bounding boxes giving). It
explains why we do not provide any comparisons with these
methods, as they would be meaningless. The Boats dataset
also shows improvement on both the bag-of-parts and the
fisher-on-parts. Furthermore, we observe the best performances
for the bag-of-parts with 21% and 6% MAP increase over
BOW and Fisher vectors respectively. Concerning MIT 67,
we first observe that our bag-of-parts encoding offers better
performances than the bag-of-word model as well as the bag-
of-parts proposed in [8]. We also notice that our Fisher-on-
parts improves on the two previous methods. However, we do
not obtain better performance than the Fisher vectors extracted
on the full image. We believe that this result is due to the
fact that the MIT 67 requires a lot of context information to
recognize scenes, while our Fisher-on-parts encoding acts as
a pooling system that encapsulates most information on the
foreground. Combining Fisher-on-parts with Fisher vectors on
the whole image (with SPM) gives a MAP of 60.0%, which
is significantly better than any other approach.

These experiments show that our descriptors, based on
distinctive parts learning, are capable of incorporating mid-
level information that can be combined with the full image
representation to obtain richer representations.

V. CONCLUSIONS

In this paper, we propose a new algorithm for image
recognition by modeling categories as set of distinctive parts
that are discovered automatically and aligned across images,
while learning their visual model. The parts that are discovered
are free of any appearance constraint and allow the distinction
between the categories to be recognized. We show how to use
the softassign matching algorithm, to simultaneously learn the
part models and assign image regions to model’s parts, starting
from an initial set of randomly extracted image regions. We
validated the proposed algorithm on three different datasets on
which state-of-the-art performances are obtained.

https://jurie.users.greyc.fr


Fig. 2. This figure shows the highest scoring regions for a set of parts learned for the riding horse action. Each row correspond to a part
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