On the empirical status of the matching law: Comment on McDowell (2013)

Pier-Olivier Caron

To cite this version:


HAL Id: hal-00995868

https://hal.archives-ouvertes.fr/hal-00995868

Submitted on 24 May 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ON THE EMPIRICAL STATUS OF THE MATCHING LAW :

COMMENT ON MCDOWELL (2013)1

Pier-Olivier Caron2

Laboratoire des Sciences Appliquées du Comportement, Département de Psychologie,
Université du Québec à Montréal, Montréal, Canada


2 Corresponding author: Pier-Olivier Caron, Université du Québec à Montréal, Département de Psychologie, C.P. 8888 succursale Centre-ville, Montréal (Québec, Canada) H3C 3P8 (e-mail : pocaron19@gmail.com)
Abstract

The matching law, regardless of the version, is a mathematical model that accounts for an organism’s response rate as a function of the reinforcer rate. McDowell (2012) investigated to which extent a combined version of the quantitative law of effect (Herrnstein, 1970) and the generalized matching law (Baum, 1974) accounts for a substantial amount of the variance through several data sets. Even if I agree with most points raised by McDowell, there are two important issues within his reanalysis. Two out of six studies relied on pooled-subject data that are inappropriate for an investigation of the matching law (Caron, 2013). Moreover, the combined equation was not systemically investigated through all data sets. The current study casts some doubt on the empirical status of modern matching equations and thus shows they still deserve extensive attention.

*Keywords:* choice, matching law, pooled data, within-subject variance
ON THE EMPIRICAL STATUS OF THE MATCHING LAW:

COMMENT ON MCDOWELL (2013)

The matching law is a quantitative model that describes the response allocation of an organism according to the relative reinforcer ratio (Herrnstein, 1961). The model evolved into two different equations; the quantitative law of effect proposed by Herrnstein (1970) and the generalized matching law proposed by Baum (1974). The quantitative law of effect conceptualizes the absolute response rate as a hyperbolic function of the absolute reinforcer rate, respectively $B_s$ and $r_s$ in equation 1.

$$B = \frac{kr}{r + r_e} \quad (1)$$

Theoretically, the parameter $k$ corresponds to absolute response rate and $r_e$ corresponds to extraneous reinforcers. Herrnstein's (1970) conceptualization implies a constant absolute quantity of behavior and that extraneous reinforcers are constant within an experimental condition. Thus, the quantitative law of effect is more a theory than a purely descriptive equation such as the generalized matching law,

$$\frac{B_1}{B_2} = b(\frac{r_1}{r_2})^a \quad (2)$$

where $B_s$ and $r_s$ are the same as equation 1. The generalized matching law conceptualizes response ratios and reinforcer ratios as a power function. The exponent $a$ is referred to as sensitivity and the coefficient $b$ is referred to as bias. The power function is also known in its logarithmic form.

$$\log\left(\frac{B_1}{B_2}\right) = a \log\left(\frac{R_1}{R_2}\right) + \log b \quad (3)$$
Every parameter, $a$, $b$, $r_e$, $k$ and the explained variance from each equation are obtained via an ordinary least-squares regression where parameters are generally free to vary, even though fewer studies imposed constraints on the parameters.

McDowell (2012) attempted to unify both equations into a single framework. He evaluated through extensive data sets to which extent the modern matching equations (equations 6, 7, 8 and 9 from the target article) can account for a substantial quantity of the variance and whether residual appeared systematically correlated. However, McDowell did not systematically investigate equation 6’ from target article and numbered alike here. Moreover, McDowell used two conceptually inappropriate data sets out of six sets. Instead of analyzing the matching law from single-subject data, he conducted analyses on pooled-subject data. Therefore, his analyses violate a simple assumption of matching theory, e.g., the matching law describes individual choices.

**Unsystematic analyses**

McDowell (2012) investigated to which extent equation 6’ accounted for variances by imposing constraints on the parameters. When fitting equations to data sets, parameters could be unconstrained, free to vary across conditions, or constrained, share across conditions. The equation is repeated below:

$$B = \frac{kr^a}{r^a + c_{1e}} \quad \text{(6')}$$

where:

$$c_{1e} = \frac{r^a}{b_{1e}}$$
or a parameter combining extraneous reinforcer, sensitivity and bias. However, McDowell did not compare systematically the constraints imposed on the parameters of equation 6'. Table 1 shows constraints according to the associated study. Note that $a$ nor $b$ were never shared across conditions, which is theoretically appropriate. However, constraints on parameters $k$ and $r_e$ were varied without much specification. Indeed, these two parameters were free to vary across conditions in two analyses (data sets from Dallery, McDowell & Lancaster, 2000; McDowell & Dallery, 1999), $k$ was constrained and $r_e$ was free in one analysis (averaged data from Dallery et al., 2000) and both were constrained in the last analysis (Soto, McDowell & Dallery 2005). Still, McDowell could have investigated the theoretical equal-$k$ or nonequal-$k$ requirements by systematically analyzing every studies with all possible constraints on parameters $k$ and $r_e$.

Unfortunately, investigations of whether equation 6' accounts for more or less variances across studies are unreliable because they are not subject to the same constraints.

Table 1

<table>
<thead>
<tr>
<th>Experiment</th>
<th>$k$</th>
<th>$r_e$</th>
<th>$a$</th>
<th>$b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dallery et al. (2000)</td>
<td>Constrained</td>
<td>Constrained</td>
<td>Free</td>
<td>Free</td>
</tr>
<tr>
<td>Dallery et al. (2000), averaged</td>
<td>Constrained</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
</tr>
<tr>
<td>Soto et al. (2005)</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
</tr>
</tbody>
</table>

$^a$ reanalyzed by McDowell (2005).

Pooled-subject data
Recently, Caron (2013) argued that parameters from pooled-subject analyses are unrepresentative of within-subject matching. Statistically, when using pooled-subject data, parameters are fitted according to the between-subject variance rather than the within-subject variance. However, matching studies are concerned about describing behavior of a single organism or more specifically, on how it responds to variations in reinforcer rate. Thus, researchers want to explain the within-subject variance.

McDowell’s (2012) conclusions, based on McDowell and Caron’s (2010a, b) data, are then strongly suspected to inadequately describe individual choice, because they are based on between-subject variances. McDowell and Caron investigated whether the generalized matching law describes rule-break and normative talks of delinquent boys. They found via pooled-subject data that modern matching equations described the relation accurately. Moreover, when boys were divided into quartiles according to their level of deviance, results showed that increasing deviance-level increased undermatching ($\alpha < 1$) and decreased bias in favor of normative talk. However, these results are doubtful because there is no measure of matching at an individual-level. In other words, each subject does not have an individual measure of the bias to correlate with his level of deviance. Every subject corresponds to a single data point and as such, individual variance cannot be accounted by a regression. Finally, how boys’ deviance-level influenced their own matching parameters remains unknown.

**Discussion**

The purpose of the current comment was to identify the statistical issue arising from pooled-subject data and unsystematic reanalyses. Nevertheless, I have to agree with most claims raised by McDowell. The strict matching law and the quantitative law of
effect (equations 1, 2, 3 and 4 in the target article) are certainly false (Davison & McCarthy, 1988; McLean, 2006; Warren-Boulton, Silberberg, Gray & Ollom, 1985), regardless of McDowell's analyses. Moreover, modern matching equations, such as the generalized matching law (equation 5 in the target article), are the current trend in the experimental analysis of behavior literature (Cording, McLean & Grace, 2011; Davison & Baum, 2000; McDowell, 2005; Sutton, Grace, McLean & Baum, 2008). I also acknowledge the effort to gather the enormous amount of studies on matching in a single coherent paper. Despite this apparent agreement, McDowell's data analyses are inappropriate to raise the important conclusion of the target article. Future studies should therefore investigate systematically the viability of modern matching equation to individual-subject data. In conclusion, the empirical status of the matching law still deserves extensive attention.
References


