Random Measurable Sets and Covariogram Realisability Problems

Abstract : We provide a characterization of the realisable set covariograms, bringing a rigorous yet abstract solution to the $S_2$ problem in materials science. Our method is based on the covariogram functional for random mesurable sets (RAMS) and on a result about the representation of positive operators in a locally compact space. RAMS are an alternative to the classical random closed sets in stochastic geometry and geostatistics, they provide a weaker framework allowing to manipulate more irregular functionals, such as the perimeter. We therefore use the illustration provided by the $S_{2}$ problem to advocate the use of RAMS for solving theoretical problems of geometric nature. Along the way, we extend the theory of random measurable sets, and in particular the local approximation of the perimeter by local covariograms.
Type de document :
Article dans une revue
Advances in Applied Probability, Applied Probability Trust, 2015, 47 (3), pp.611-639. <http://projecteuclid.org/current/euclid.aap>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00995853
Contributeur : Raphael Lachieze-Rey <>
Soumis le : samedi 28 février 2015 - 02:09:05
Dernière modification le : mardi 11 octobre 2016 - 13:28:46
Document(s) archivé(s) le : vendredi 29 mai 2015 - 10:06:57

Fichiers

reaper_final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00995853, version 3
  • ARXIV : 1405.6333

Collections

Citation

Bruno Galerne, Raphaël Lachièze-Rey. Random Measurable Sets and Covariogram Realisability Problems. Advances in Applied Probability, Applied Probability Trust, 2015, 47 (3), pp.611-639. <http://projecteuclid.org/current/euclid.aap>. <hal-00995853v3>

Partager

Métriques

Consultations de
la notice

175

Téléchargements du document

76