Integrating Tensile Parameters in Hexahedral Mass-Spring System for Simulation
Vincent Baudet, Michaël Beuve, Fabrice Jaillet, Behzad Shariat, Florence Zara

To cite this version:
Integrating Tensile Parameters in Hexahedral Mass-Spring System for Simulation

V. Baudet, M. Beuve, F. Jaille, B. Shariat, F. Zara
Université de Lyon, CNRS
Université Lyon 1,
LIRIS, SAARA team, UMR5205,
F-69622, Villeurbanne, France
firstname.name@liris.cnrs.fr

ABSTRACT

Besides finite element method, mass-spring systems are widely used in Computer Graphics. It is indubitably the simplest and most intuitive deformable model. This discrete model allows to perform interactive deformations with ease and to handle complex interactions. Thus, it is perfectly adapted to generate visually plausible animations. However, a drawback of this simple formulation is the relative difficulty to control efficiently physically realistic behaviors. Indeed, none of the existing models has succeeded in dealing with this satisfyingly. We demonstrate that this restriction cannot be over-passed with the classical mass-spring model, and we propose a new general 3D formulation that reconstructs the geometrical model as an assembly of elementary hexahedral "bricks". Each brick (or element) is then transformed into a mass-spring system. Edges are replaced by springs that connect masses representing the vertices. The key point of our approach is the determination of the stiffness springs to reproduce the correct mechanical properties (Young’s modulus and Poisson’s ratio) of the reconstructed object. We validate our methodology by performing some numerical experiments. Finally, we evaluate the accuracy of our approach, by comparing our results with the deformation obtained by finite element method.

Keywords
Discrete Modeling, Physical Simulation, Mass-Spring System, Rheological Parameters.

1 INTRODUCTION

Finite elements methods (FEM) are generally used to accurately simulate the behavior of 3D deformable objects. They require a rigorous description of the boundary conditions. The amplitudes of the applied strains and stresses must be well defined in advance to choose either a small - with Cauchy’s description - or a large deformation context - with St Venant Kirchoff’s description. Indeed, the accuracy of each context is optimized within its domain of deformation.

Mass-spring systems (MSS) have largely been used in animation, because of their simple implementation and their possible applications for a large panel of deformations. They consist in describing a surface or a volume with a mesh in which the global mass is uniformly distributed over the mesh nodes. The tensile behavior of the object is simulated by the action of springs, connecting the mesh nodes. Then, Newton’s laws govern the dynamics of the model, and the system can be solved by solving Ordinary Differential Equations (ODEs) via numerical integration over time. In computer graphics, MSS based animations are generally proposed to deal with interactive applications and to allow unpredictable interactions. They are adapted to virtual reality environments where many unpredicted collisions may occur and objects can undergo deformations and/or mesh topology changes. Medical or surgery simulators present another example of their possible applications. Nevertheless these models generally fail to represent accurately the behavior of real objects, characterized by Young’s modulus and Poisson’s ratio (parameterization problem).

In this paper, our aim is not a comparative study of MSS and FEM models. The goal is to propose a new solution to enhance the MSS, making them more compatible with the requirements of physical realism. Section 2 presents a state of the art of mass-spring systems and particularly their parameterization. Moreover, in
this section, we present published solutions allowing the
determination of springs constant to obtain a realistic
behavior of the simulated object. Section 3 presents
our approach to calculate stiffness constants of springs
according to tensile parameters of the simulated object.
Section 4 presents some experimental results. Finally,
some concluding remarks and perspectives are given in
section 5. Then, Appendix A provides a more detailed
explanation of some results presented in section 3.2.

2 RELATED WORK

Mass-spring systems have been used to model tex
tiles [KEH04, LJF+91, Pro95], long animals such as
snakes, or soft organic tissues, such as muscles, face or
abdomen, where the cutting of tissue can be simulated
[MLM+05, MC97, NT98, Pal03]. Moreover, these sys
tems have been used to describe a wide range of differ
tent elastic behaviors such as anisotropy [Bou03], het
erogeneity [TW90], non linearity [Bou00] and also in
compressibility [PB96].

However, where FEMs are built upon elasticity the
ory, mass-spring models are generally far from accurate.
Indeed, springs stiffness constants are generally empirically set and consequently, it is difficult to repro
duce, with these models, the true behavior of a given material. Thus, if the MSS have allowed convincing
animations for visualization purposes, their drawbacks
refrain the generalization of their use when greater reso
nution is required, like for mechanical or medical simu
lators. An extensive review can be found in [NMK+06].

The graphics community has proposed solu
tions based on simulated annealing algo
rithms [DKT95, LPC95] to estimate spring stiffness
constants to mimic correctly material properties. Usu
ally, these solutions consist in applying random values to
different springs constants and in comparing the
behavior of the obtained model with some mechanical
experiments in which results are either well known analytically or can be obtained numerically. Then, the
stiffness constants of the springs that induce the greatest error are corrected to minimize the discrepancies.
More recently, Bianchi et al. [BSSH04] proposed a similar approach based on genetic algorithms using
reference deformations simulated with finite element
methods. However, the efficiency of these approaches
depends on the number of springs and is based on
numerous mechanical tests leading to a quite expensive
computation. Moreover, the process should be repeated
after any mesh alteration and the lack of a reference
solution is an obstacle to the generalization of the
method to other cases.

Instead of a trial-and-error process, a formal solution
that parameterizes the springs should save computer
resources. In this context, two approaches were ex
plored. The Mass-Tensor approach [CDA99, PDA03]
aims at simplifying finite element method theory by a
discretization of the constitutive equations on each ele
ment. Despite of its interest, this approach requires pre
computations and the storage of an extensive amount
of information for each mesh component (vertex, edge,
face, element).

The second approach has been proposed by
Van Gelder [Van98] and has been referenced in [Bou03, BO02, Deb00, MBT03, Pal03, WV97]. In this
approach, Van Gelder proposes a new formulation for triangular meshes, allowing the calculation of
springs stiffness constant according to elastic parameters
of the object to simulate (Young’s modulus E, and
Poisson’s ratio ν). This approach combines the
advantages of an accurate mechanical parameterization
with a hyper-elastic model, enabling either small or
large deformations. However, numerical simulations
completed by an Lagrangian analysis exhibited the
incompatibility of the proposal with the physical
reality [BBJ+07, Bau06]. Indeed, the Van Gelder’s
approach is restricted to $\nu = 0$. An extension of
Van Gelder’s method has been recently presented in
[LSH07] for tetrahedra, hexahedra and some other
common shapes, but still remains limited to $\nu = 0.3$
that prevents their use when accurate material proper
tries are required. Finally Delingette [Del08] proposed
a formal connection between springs parameters
and continuum mechanics for the membranes. He
succeeded to simulate realistically the behavior of a
membrane for the specific case of the Poisson’s ration
$\nu = 0.3$ with regular MSS. The extension of this
approach to 3D is not yet available.

3 OUR PARAMETERIZATION AP
PROACH

Our approach is based on hexahedral mesh, as currently
used with the FEM. To better demonstrate the basis of
our solution, we begin with the parameterization of a
2D rectangular mass-spring systems (MSS). Indeed, as
in FEM, any complexes object can be obtained by the
assembly of these 2D elements [Bau06]. Then, we ex
tend our solution to 3D elements.

3.1 Case of a 2D element

At rest, the dimension of a given 2D rectangular ele
ment of our mesh is $h_0 \times h_0$. This element is composed
of four edge springs with two diagonal edge springs to
integrate the role of the Poisson’s ratio. This configu
ration implies the same stiffness constant for the both
diagonal springs (k_d) and an equal stiffness constant
for springs laying on two parallel edges (k_e and k_e).
With such boundary conditions, the elastic parameters
(Young’s modulus E and Poisson’s ratio ν) of the bar
elongated by a force F, generating a stretch η and a
For each experiment, we define the Lagrangian
\[\mathcal{L} = \frac{2\delta}{l_0} \eta / h_0, \quad E = F / l_0 \eta / h_0 \] (1)

Then, we solve the whole system.

First, we begin the parameterization with the shearing experiment. Indeed, only the diagonal springs are stressed in this experiment. Thus, the Lagrangian equation defining this characteristic depends only on \(k_d \).

This means that the diagonal springs are totally correlated to the shear modulus and that their stiffness constant can be calculated independently of the two others spring coefficients. The deformation of the diagonal springs is defined by:
\[\delta_d = \sqrt{(l_0^2 + \eta^2) - \sqrt{l_0^2 + h_0^2}} \sim \frac{\pm \eta l_0}{\sqrt{l_0^2 + h_0^2}} + O(n^2) \]

Thus, the Lagrangian equation for the shearing is defined by:
\[L = F_0 - k_d \eta^2 l_0^2 \]

Then the minimization of the energy is done for:
\[\frac{\partial L}{\partial \eta} = \frac{F - k_d 2\eta l_0^2}{l_0^2 + h_0^2} \]

So we obtain:
\[\eta = \frac{F(l_0^2 + h_0^2)}{2k_d l_0^2} \]

Finally, using the definition of the shearing and its link with \(E \) and \(\nu \) for isotropic and homogeneous materials, we obtain the following relation:
\[k_d = \frac{E(l_0^2 + h_0^2)}{4l_0^2 h_0 (1 + \nu)} \]

Note that, for a square mesh element, we obtain:
\[k_d = \frac{E}{2(1 + \nu)} = G. \]

Then, we continue the parameterization to find \(k_{b_0} \) and \(k_{h_0} \) by doing two elongation experimentations in lateral and longitudinal direction. We obtain four equations with two equations from each elongation experiment [Bau06]. This over-constrained system admits one solution for \(\nu = 0.3 \), as stated by Lloyd et al. [LSH07] and Delingette [Del08]. This result is not satisfactory because we wish to simulate the behavior of any real material. Consequently, we have to add two degrees of freedom to solve this problem.

We note that the Poisson’s ratio defines the thinning at a given elongation, i.e., it determines the forces orthogonal to the elongation direction. Thus, we introduced for each direction a new variable that represents this orthogonal force. The force orthogonal to \(h_0 \) (resp. \(l_0 \)) is noted \(F_{\perp h_0} \) (resp. \(F_{\perp l_0} \)) (see Fig. 3). Thus, the addition of these 2 new variables leads to a system of 4
equations with 4 unknowns. Note that this kind of correction is equivalent to the reciprocity principle used in finite elements methods [Fey64].

For a constraint \(F_{ho} \) according to \(h_0 \), we obtain the following Lagrangian equation:

\[
L = F_{ho} \eta - 4F_{ho} (2 \delta) - 4k_{ho} \delta^2 - k_{ho} \eta^2 - k_d \left(\frac{h_0 \eta - 2l_0 \delta}{\sqrt{h_0^2 + l_0^2}} \right)^2.
\]

By following the same line as for the shearing Lagrangian, we find the expressions of \(\eta \) and \(\delta \). Then, using the definitions of the Young modulus and the Poisson’s ratio, we obtain \(k_{ho} \) and \(k_{ho} \), but according to this new potential. By setting the symmetry of \(k_{ho} \) with \(k_{ho} \), we can restrain \(F_{ho} \) and obtain the relations for \(k_{ho} \) and \(F_{ho} \). Note that, the experimentation according to \(l_0 \) permits to obtain the same stiffness constants and formulation for the corrective force. Finally, the solution of the new system is (with \((i, j) \in \{l_0, h_0\}^2 \) with \(i \neq j \)):

\[
k_i = \frac{E (j^2 (3 + 2) - i^2)}{4 l_0 h_0 (1 + v)} , \quad F_{li} = \frac{i F_i (1 - 3v)}{8 j}.
\]

As said before, the symmetry involves that the 6 springs of each element are only defined by three spring coefficients and the elongation/compression correction forces.

3.2 Generalisation to 3D elements

Our 3D model is the generalization of our 2D approach, by the use of parallelepiped elements. Let’s consider this element with rest dimensions \(x_0 \times y_0 \times z_0 \). As in 2D, to ensure homogeneous behavior, springs laying on parallel edges need to have the same stiffness constant. Thus, we have to determine only 3 stiffness coefficients for these edges: \(k_{x0} \), \(k_{y0} \) and \(k_{z0} \). In addition, some diagonal springs are necessary to reproduce the thinning induced by the elongation. Fig.4 displays three possible configurations for these diagonal links:

- diagonal springs located on all the faces \((M1)\),
- only the inner diagonals \((M2)\),
- the combination of both inner and face diagonals \((M3)\).

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb of unknown for shearing</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Nb of unknown for elongation</td>
<td>3+3(3)</td>
<td>3+1(1)</td>
<td>3+4(4)</td>
</tr>
<tr>
<td>Total nb of unknown stiffness cst.</td>
<td>6</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Nb of equations for elongation</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Nb of equations for shearing</td>
<td>6</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Total number of equations</td>
<td>15</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 1: Number of equations and unknowns according to the chosen geometry.

Prior to the above configuration choice, let’s present our springs parameterization approach. As in 2D, we propose a methodology within the Lagrangian framework, and according to the following procedure. For each experiment that defines an elastic characteristic:

1. We build the Lagrangian as the sum of the potential of the external forces, since kinetic term is null.

2. We establish a Taylor’s expansion of the Lagrangian to the second order in deformations and apply the principle of least action. It reads linear equations.

3. We obtain a set of equations, since the mechanical characteristics are input parameters. We solve this system to get stiffness coefficients.

To solve the system, the number of unknowns has to be equal to the number of equations (constraints). Three equations result from each elongation experiment (one for the Young’s modulus and one for the Poisson’s ratio along each direction orthogonal to the elongation). Thus, we obtain 9 equations for all the elongation directions. Moreover, 6 more equations have to be added to take into account the shear modulus (6 experiments).

Three degrees of freedom stem from the parallel edge \((k_{x0}, k_{y0}, k_{z0})\), but the total number of freedom degrees depends on the diagonal spring configuration. Note that, for small shearing \((\theta \approx 0)\), only diagonal springs are stressed. Thus, the Lagrangian equation defining this characteristic depends only on the stiffness constants \(k_d\) of the different diagonals. This means that the diagonal springs constant can be determined independently of the other stiffness coefficients.

We summarize the number of degrees of freedom and the number of equations in Table 1 according to the possible configurations of the system. We observe
that all the geometrical configurations bring to an over-constraint system. Nevertheless, the configuration (M2) is less constrained than the others. Thus, we chose this configuration which corresponds to the model with only the inner diagonals in which the 4 diagonal springs have the same stiffness constant noted \(k_d \).

Like in 2D, we begin the parameterization with the shearing experiment. As mentioned above, the inner diagonals fully define the shearing modulus. The problem is that there is only 1 diagonal spring variable for 3 shearing equations (see Table 1). Each equation, corresponding to one particular direction \(i (i \in \{ x_0, y_0, z_0 \}) \), leads to a different solution (using the same reasoning as in 2D):

\[
\begin{align*}
\frac{d_k}{d} &= \frac{E i \sum_{i \in \{x_0, y_0, z_0\} \pi (x_0, y_0, z_0)} j^2}{8(1 + \nu)\Pi_{(x_0, y_0, z_0)} j^2}.
\end{align*}
\]

However an unique solution can be obtained for a cubic element (i.e. with \(x_0 = y_0 = z_0 \)). In this case \(k_d \) is well defined proportionally to \(G \), with:

\[
\frac{d_k}{d} = \frac{3E x_0}{8(1 + \nu)}. (2)
\]

Thus, we constrain the mesh element to a cube and we continue our parameterization with the elongation experimentations to obtain the stiffness constants of the others edge springs. The non-diagonal edges are identical and their spring stiffness constant is noted \(k_i \). This stiffness coefficient has to satisfy two relations (\(E \) and \(\nu \)). One solution can be found for the Poisson’s ratio \(\nu = 0.25 \) but this is not a versatile solution, thus unsatisfying (a complete demonstration can be found in Appendix A).

Since the number of equations is greater than the number of degrees of freedom, we introduce as in 2D, correction forces. Thus, two new forces induced by the elongation are added. For the sake of symmetry, the amplitude of the forces is identical in both directions. This amplitude \(F_{\bot} \) is the new degree of freedom (see Fig. 3).

This new additional variable leads to a system of 2 equations with 2 unknowns. After resolution, we obtain the following relations for \(i \in \{ x_0, y_0, z_0 \} \) (using the same reasoning as in 2D):

\[
\begin{align*}
\frac{d_k}{d} &= \frac{E x_0 (4\nu + 1)}{8(1 + \nu)}; F_{\bot} &= -\frac{F_i (4\nu - 1)}{16}.
\end{align*}
\]

Since all the stiffness coefficients and the added compressive forces are now determined for a mesh element, we can tackle the simulation of any object composed of mesh elements. Then, the simulation of an object results from the simulation of the deformation of each single element that constitutes the object. For this, we need to:

1. Compute all the forces applied to an element. These forces can be (i) internal, including forces due to springs and correction forces, or (ii) external, like gravity or reaction forces due to neighborhood.

2. Calculate accelerations and velocities according to a numerical integration scheme such as explicit or implicit Euler scheme, Verlet method,

3. Displace each mesh node consequently.

Note that, to compute the correction forces applied to a mesh element face, we need to compute the elongation force. This elongation force is the component of the sum of all applied forces to a face, in the direction of face normal vector.

The next section will describe numerical experimentations.

4 EVALUATION OF THE 3D MODEL

We propose now to qualify the mechanical properties of our system. For this, we have carried out several tests. Note that, we do not provide some performance results, because the main advantage of our method is to propose a solution that do not add any cost in a classical animation.

Deflection experiment

The deflection experience (construction or structural element bends under a load) is recommended to validate mechanical models. It constitutes a relevant test to evaluate (a) the mass repartition, and (b) the behavior in case of large deformations (inducing large rotations, especially close to the fixation area).

This test consists in observing the deformation of a beam anchored at one end to a support. At equilibrium, under gravity loads, the top of the beam is under tension while the bottom is under compression, leaving the middle line of the beam relatively stress-free. The length of the zero stress line remains unchanged (see Fig. 5).

In case of a null Poisson’s ratio, the load induced deviation of the neutral axis is given by:

\[
y(x) = \frac{\rho g}{24 EI} (6Lx^2 - 4Lx^3 + x^4) (3)
\]

for a parallelepiped beam of inertia moment \(I = TH^3/12 \), and with linear density \(\rho = M/L \).

We notice that results are dependent of the sampling resolution, as for any other numerical method, however the fiber axis profile keeps close to the profile given by equation (3). Figure 5 displays some results for a cantilever beam of dimensions 400×100×100 mm, with Young’ modulus equals to 1000 Pa, Poisson’s ratio to 0.3 and a mass of 0.0125 Kg.m⁻³. By looking at the displacement errors at each mesh node, we observe that the error is decreasing when the sampling is improved.
the maximum error in the sampling $4 \times 1 \times 1$ is about 45% while it is about 5% compared to a FEM reference result, for a resolution of $16 \times 4 \times 4$, proving again the convergent behavior of our technique.

(b) $4 \times 1 \times 1$: $M=16.31\%$, $SD=2.83\%$, $MAX=38\%$.
(c) $8 \times 2 \times 2$: $M=7.08\%$, $SD=0.58\%$, $MAX=16.7\%$.
(d) $16 \times 4 \times 4$: $M=0.68\%$, $SD=0.03\%$, $MAX=4.05\%$.

Figure 5: Deflection experiment: (a) Cantilever neutral axis deviation, (b-d) the reference FEM solution (in color gradation) with superimposition of various simulations performed for different sampling resolutions (wire mesh).

Shearing experiment: Illustration on a non-symmetric composition

For the shearing experiment, we have chosen a L-like object fixed at its base. We apply a constant force to the edges orthogonal to the base. Figure 6 shows our results superimposed to the FEM solution, with a map of error in displacement. The object dimensions are $4000 \times 4000 \times 4000$mm. The mechanical characteristics are: Young’s modulus of 1kPa, Poisson’s ratio of 0.3 and an applied force of 0.3GN. In this experiment, we have neglected the mass. Again we clearly observe that our model behaves as expected: better mesh resolution leads to better results. Moreover, the dissymmetry of the geometry does not influence the accuracy of the results.

3D deformable object simulation

An example of application is depicted on Fig. 7. By dragging points, we applied some external forces on an initial hexahedral meshing of a puma, leading to produce the head lateral movement. Note that the initial choice of a parallelepiped shape is absolutely not a constraint in most applications. This choice has been motivated by the fact that it is considered by the numerical community as stable and more precise for the same number of elements than a tetrahedral mesh element.

This is to be counterbalanced by the fact that it requires generally more elements to fit a non simple geometry. Anyway, for better visualization or collision detection purposes, it is easy to fit a triangular skin on our hexahedral model, as shown on Fig. 7.

(b) $2 \times 2 \times 2$: $M=6.99\%$, $SD=0.94\%$, $MAX=18\%$.
(c) $4 \times 4 \times 4$: $M=3.37\%$, $SD=0.20\%$, $MAX=7\%$.
(d) $8 \times 8 \times 8$: $M=0.66\%$, $SD=0.01\%$, $MAX=1.6\%$.

Figure 6: Experiment on a non-symmetric object: (a) load scheme, (b-d) the reference FEM solution (in color gradation) with superimposition of various simulations performed for different mesh resolutions.

Figure 7: A complete 3D application: simulation of the head lateral movement at different steps.
5 CONCLUSION AND FUTURE WORK

We proposed a mass-spring model that ensures fast and physically accurate simulation of linear elastic, isotropic and homogeneous material. It consists in meshing any object by a set of cubic mass-spring elements. By construction, our model is well characterized by the Young’s modulus and Poisson’s ratio. The spring coefficients have just to be initialized according to simple analytic expressions. The precision of our model have been given, by comparing our results with those obtained by a finite element method, chosen as reference.

In the future, we are looking to apply the same techniques to other geometrical elements, for example tetrahedron or any polyhedron. This would increase the geometrical reconstruction possibilities and would offer more tools for simulating complex shapes, although in the actual state, the hexahedral shape is not a constraint in many applications ranging from mechanics to medicine. If desired, a triangulation of the surface can be performed with ease and at reduced computational cost.

Mesh optimization or local mesh adaptation would probably improve the efficiency of the model. For example, we can modify the resolution in the vicinity of highly deformed zones, reducing large rotations of elements undergoing heavy load.

We exhibited that our model can support reasonably large deformations. The accuracy increases with the mesh resolution. This is a major improvement relatively to early techniques, as it is generally dependent to the mesh resolution and topology. However, it may be interesting to investigate a procedure to update the spring coefficients and corrective forces when the deformations become too large. In this case, the elastic behaviour will be lost (the initial shape will not be recovered), but this may allow to handle strong topology alteration, even melting.

APPENDIX A

Demonstration: nonexistence of a 3D general solution

Being a cubic element with edge of length x_0. Consequently, face diagonals are of length $d_{face} = \sqrt{2} x_0$, and cube diagonals $d_{cube} = \sqrt{3} x_0$. Spring stiffness are equal along the edges ($K_x = K_y = K_z$), as well for faces: ($K_{xy} = K_{yz} = K_{xz}$, denoted K_{cube}).

By symmetry in the cube, all 6 shearings are equivalent and can be resumed into a single equation. A shear-stress due to a sliding η leads to the deformation of the 4 cube diagonals as well as the 4 diagonals of the 2 lateral faces, respectively Δd_{cube} and Δd_{face}:

\[
\begin{align*}
\Delta d_{cube} &= \sqrt{(x + \eta)^2 + 2(x^2 - \sqrt{3}x)} \sim \sqrt{3} \eta \\
\Delta d_{face} &= \sqrt{(x + \eta)^2 + x^2 - \sqrt{2}x} \sim \sqrt{2} \eta
\end{align*}
\]

The static Lagrangian linked to shearing is reckoned in the following way:

\[
L = F_{cx} \eta - \frac{4Ke + 4K_{cube}}{2} \eta^2 \sim \frac{E}{2(1 + \nu)}
\]

After resolution, they find the equation of shearing in K_{xx} and K_d:

\[
\begin{align*}
4K_d + 6K_{cube} = \frac{E}{3x(1 + \nu)}
\end{align*}
\]

We can consequently incorporate the compressibility law. For this, we apply an uniform pressure to the cube, which generates an uniform distortion η. This deformation leads as well to the (identical) deformation of all the diagonals:

\[
\begin{align*}
\Delta d_{cube} &= \sqrt{3(x + \eta)^2 - \sqrt{3}x} \sim \sqrt{3} \eta \\
\Delta d_{face} &= \sqrt{2(x + \eta)^2 - \sqrt{2}x} \sim \sqrt{2} \eta
\end{align*}
\]

Pressures being applied at each face are equal and this implicates the same surface force F_{face}. The Lagrangian is as follows:

\[
L = 3F_{face} \eta - \frac{12K_x}{2} \eta^2 - \frac{12K_{cube}}{2} \eta^2 - \frac{4K_d}{2} \eta^2
\]

After resolution, compressibility equation is:

\[
K = \frac{-\Delta P}{\Delta V/V_0} \frac{F_{face}/(x + \eta)^2}{((x + \eta)^3 - x^3)/x^3} \sim \frac{F_{face}}{3x\eta}
\]

\[
= \frac{E}{3x(1 - 2\nu)}
\]

Hence,

\[
\frac{4K_x + 8K_{cube} + 4K_d}{3x} = \frac{E}{3(1 - 2\nu)}
\]

We can now deal with equations governing a tensile stress η; by symmetry other directions are compressed of the same value, δ. So, two faces ($face_1$) are shrunk by keeping their square shape, while the other 4 are stretched ($face_2$). Diagonals are deformed in the following way:

\[
\begin{align*}
\Delta d_{cube} &= \sqrt{(x + \eta)^2 + 2(x^2 - 2\delta)} \sim \sqrt{3} \eta - \frac{4\sqrt{3} \delta}{
\frac{\Delta d_{face_1}}{\Delta d_{face_2}} &= \sqrt{(x + \eta)^2 + (x - 2\delta)^2} \sim \sqrt{2} \eta - \frac{\sqrt{2} \delta}{
\frac{\Delta d_{face_2}}{\Delta d_{face_2}} &= \sqrt{2}(x - 2\delta)^2 - \sqrt{2}x \sim -2\sqrt{2} \delta
\end{align*}
\]

\[
\frac{\Delta d_{cube}}{\Delta d_{cube}} = \sqrt{(x + \eta)^2 + 2(x^2 - 2\delta)} \sim \sqrt{3} \eta - \frac{4\sqrt{3} \delta}{
\frac{\Delta d_{face_1}}{\Delta d_{face_2}} = \sqrt{(x + \eta)^2 + (x - 2\delta)^2} \sim \sqrt{2} \eta - \frac{\sqrt{2} \delta}{
\frac{\Delta d_{face_2}}{\Delta d_{face_2}} = \sqrt{2}(x - 2\delta)^2 - \sqrt{2}x \sim -2\sqrt{2} \delta
\]
The Lagrangian associated to the tensile experiment:

\[
L = F\eta - 2K_\eta\eta^2 - 16K_\delta\delta^2 - 16K_\varepsilon\varepsilon^2 - 4K_{\varepsilon\varepsilon}\left(\frac{\sqrt{3}}{2}\eta - \sqrt{3}\delta\right)^2 - 2K_d\left(\frac{\sqrt{3}}{3}\eta - 4\sqrt{3}\delta\right)^2
\]

After resolution, Young modulus and Poisson ratio definitions lead to:

\[
E = \frac{12K_dk_{xx} + 24K_{\varepsilon\varepsilon} + 60K_\varepsilon\eta_{xx} + 24K_\eta\eta_d}{6K_\eta + 9K_{xx} + 4K_d}
\]

\[
\nu = \frac{2K_d + 3K_\varepsilon}{6K_\eta + 9K_{xx} + 4K_d}
\]

These equations (eq. (4), (5) and (6)) cannot be solved (except for \(\nu = 0.25\)), what establish a strong result, since it implies that it is unfortunately not possible to reproduce an elastic homogenous behavior only with this simplistic model. As in 2D corrective forces should be introduced.

Acknowledgements

We thank the ETOILE (Espace de Traitement Oncologique par Ions Légers, http://www.centre-etoile.org/) project for its support.

REFERENCES

