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Abstract

In this work we consider numerical implementation of the mod ed version of a
coupled rate dependent damage-plasticity concrete modelrst proposed in [8]. We
developed an explicit-implicit integration scheme, implanented it in LS-DYNA -
nite element code, with explicit part dealing with large global problem of equations
of motion and implicit part treating local evolution equati ons. We also provide a
detailed consideration of the numerical stability of this kind of scheme for rate-
dependent damage model. Several numerical tests, both singones and a complex
problem of the large aircraft impact on a large concrete slabdemonstrate the e -
ciency of the proposed numerical implementation. Comparien between simulations
of impact of equivalent aircraft engine missiles and the tets carried out in Sandia
laboratory [25] also demonstrates its e ciency.

Key words: Concrete constitutive model; damage; plasticity; high-rde dynamic;
impact

1 Introduction

Transient high rate dynamic behavior of concrete is a very iportant to take

into account for design concrete structures in the case of migmic loading con-
ditions, such as an impact on the structure. This impact loaidg can be due to
explosion, mind blast or an accidental collision of cars,dins or airplanes with
the structure. In particular for structures that involve public safety, they have
to be design to resist not only the static loading but also thelynamic loading
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produced extreme conditions. In order to perform a 3D nondear analysis
with a wide variety of damage mechanism in concrete we need adel su -
ciently robust and capable of providing a reliable represtations for di erent
loading path. But we also need to have a numerical implemertan of this
model rmly under control in order to ensure a robust comput#ion. In fact,
the complexity of any practically interesting model is suchthat a fully im-
plicit schemes are excluded. In other words, for the numealksimulations of
fast transient dynamic, such as an impact on concrete strugtes, one uses an
explicit time integration scheme. The computer program afgtecture can thus
be simpli ed accordingly, in order to provide a solution forvery complex in-
dustrial application; with the code as LS-DYNA as one of the mogrominent
examples, which is also used herein.

The outline of the paper is as follow. In the next section we &y review the
salient feature on the coupled damage plasticity model foidgh rate dynamics
of concrete, adapted to our cases of interest. Then the peréint details of the
chosen scheme for the numerical implementation is presetitdn Section 4
we brie y discuss the proposed procedure for model parametadenti cation.
Then the stability of the numerical scheme for a rate dependedamage model
is discuss in Section 5. Section 6 provides several illugtve@ example to show
the model performance in representing di erent inelastic wdes of damage in
dynamics. Closing remarks and conclusions are given in Sent6.

2 Coupled rate dependant damage-plasticity constitutive m odel
for concrete

This model is rst proposed by Gatuingt [8] to simulate explgion in contact or

impact of hard projectiles at velocity less than 350 m/s. Fothis kind of loading

three failure mechanisms have to be described. First one whiis observed
under the impact is a decrease of the material porosity. Thighenomenon is
represented with homogenization technics by consideringrcrete as a matrix
(cement paste and aggregates) with pores. To model the peraion of a hard

striker introducing a large deviatoric strain, a plastic malel based on modi ed
Gurson's yield function (to take into account porosity evaltion) is used. The

third and nal mechanism is supplied to handle the case whetbe compressive
wave can re ect on a free surface producing a traction statd etress which is
represented with a damage model.

These mechanical e ects are combined in the relationshipshieh relate the
stresses to the elastic strains:

h 1 i
i =(1 D) K" j +2G("§ éuﬁk i) (1)



where the shearG and bulk moduli K of the coupled model are de ned by
Mori-Tanaka's expressions:

KuGu(l f) Gu(l f)
K= . G= n 2
4Gy + 3Ky f 1+ 7%';':/' +182§h:/|f (2)

with Ky and Gy, respectively the bulk and shear moduli of the matrix mate-
rial without pores . In the case of a smooth impact (such as inagt by cars or
airplanes), we can consider that the porosity will not decese enough under
the projectile to induce a variation of the concrete moduliFor the study of
these kind of problems we will consider in this paper thak and G remain
constant.
The phenomenon of microcracking, in uniaxial tension and ogpression, is
captured with a rate dependent damage model [5]. Accountingrfrate e ects
is necessary in order to represent the type of response onalsnin dynamic
experiments, mostly dynamic tensile tests [15]). In addibn, the added bene t
of the rate dependency is to preserve the well-posedness loé equations of
motion when strain softening occurs [18], [24]. The extensi program of ex-
periments carried out within the French research network G& showed that
there was a marked dependence between the loading rate ane tturve re-
lating the volumetric strain to the hydrostatic stress [7].The latter is thus
captured by implementing a viscoplasticity model. Within he classical frame-
work of small strain cinematics, we use the basic assumptiohadditive strain
decomposition:

W= (3)
where"; is the total strain rate, "¢, the elastic one and";® the viscoplastic
strain rate.

The viscoplastic strain rates are obtained following Perna's approach:

nvp _ @'ﬁT
S @

(4)

The viscoplastic multiplier —is de ned with the power law which also takes
into account the porosityf

_ f FNT Nvp
@ f) my

(5)

where m, and n,, are material parameters. The porosity evolution is con-
trolled by the irreversible volumetric strain only accordng to:

df = k@ f)f d'f (6)

where parametelk is introduced in equation (6) in order to be able to calibrate
the velocity with which voids are closed.



In equation above,Fyt is the modi ed Gurson's yield function proposed by
Needleman and Tvergaard [17]:

Fntoogs wmsf ::%+2q1f cosh @ 1+(f )2 =0 (7)

I

M 2 M
wherel; = Tr( ), the rst invariant of stress tensor, J, = kde\ )k, the
second invariant of the deviatoric part, y is the stress in concrete matrix
without voids and ¢, g, g are scalars parameters. The model of this kind
treats the concrete as a porous material. This porosity hasgreat importance
on the material behavior when the hydrostatic stress contsution is not neg-
ligible. Indeed, this model improves upon the Drucker-Pragg [4] yield surface
which is often used for concrete with consequences that theatarial remains
elastic for triaxial compression, which is in contradictio with the compaction
experimentally observed [3]. The main interest in the moded Gurson's yield
function is to be closed for a hydrostatic state of stress artd provide a kind
of CAP model [9], [10] or [11].

The constitutive response in tension and compression is ¢ailed by the
damage evolution law governed by a rate dependent model givby :

(1=h)
O<'Le " 1 D > " Mo
a

D=@ A (8)

f = ue (9)

P . 2. : , : _
where "€ = i H'fi* s the elastic equivalent strain for quasi-brittle ma-

terials [19]. In Equation (8) abovemp, np are material parameters which
control the rate e ect, a, b are material parameters which govern the growth
of damage in gquasistatic tension and compression afgg is the initial value
of damage threshold.

Figure 1 shows the coupled plasticity-damage model respenfor the hydro-
static stress state for a loading/unloading cycle. We can sehat the model
captures both strain hardening e ect with concrete compaan and the irre-
versible plastic residual strain upon unloading.
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Fig. 1. Hydrostatic response of the model used

3 Numerical implementation

Given the complexity of the constitutive relations and the main application

domain which pertains to concrete in fast transient dynamg; the model has
been implemented in the explicit nite element code LS-DYNA [2]. The ob-
jective of the numerical implementation of the model is to bable to calculate
the new state of stress at timet + t knowing the increment of strain "

and the state of strain at timet. In this computational process, the evolution
of the damage and viscoplastic strain are totally decoupleith order to pre-

serve the computational e ciency. We refer to Figure 2 for tle ow-chart of

the implemented computational procedure, which providedie summary of all
di erent cases.

In a rst time, we assume that all the strain increment are elatic and we
compute the equivalent elastic strain:

i
St ty= |, HS(t+ bit

ne (t + t) = r"ij (t + t) "?j/p(t)

(10)

Furthermore, we assume that all internal variables remain xed with their
rates f—,  and D) equal to zero, so that we can compute the corresponding
stress rate in the elastic predictor:



F.E. imput| &j(t+D1) = & (1) + dejj|

Elastic equivalent strajrj(t+Dt) = ejj (t+Dr) - jj(t)

L

Elastic predictor| sij(t+D)= sij(t) + Sij =Dt |

Case 1

Case 1

Case 2 g NO Case 3
€ <g), Case 3

Case 4

Fig. 2. Numerical integration scheme

Tt t)=1-§-1(t+ )+ 1P+ =5t )

= — i

_=(1 D) K'g(t+ )5 +26(" (t+ t) w(t+ t)y) (A1)
"+ )=0; f-(t+ t)=0; _m(t+ t)=0

In order to verify if the correction is needed to obtain the ral state of stress,
we test the positivity of the elastic equivalent strain prectted. If this strain is
negative, we deal with a loading path mainly in triaxial compession and the
damage variableD will never evolve. We are thus concerned with either the
case 1 (elasticity) or with the case 3 (only plasticity) as stwn in Figure 2. In
case 2 we only have a damage evolution with no plasticity. Féine "coupled"”
case 4, we have evolutions of the damage variable and of thaggic strain. In
this case, we rst compute the new state of damage and we useadtcompute
the plastic correction without any subsequent iteration.

For the plastic correction we use the return mapping algorim [20] for the
plastic part of the model assuming that the damag® is known at the state
t+ t. The latter is computed rst from the evolution of the damageduring
the incremental process, by using an explicit scheme due tbet formulation
of the damage growth (see equation 8). We can then write:



it =g e+ P+ 1)=0 :) "e(t+ )= "Pl+ )
h
i = (1 D(t+ 1) K"_KE j +ZG("Vp ..vp u)

3—kk
nvp _ _@ ET
B @j
_=k@ f)f "P=k@ f)f @k
@
I = @Rt
ST fyw @ !
(12)
Substituting equation (12) into equation (12) we obtain:
h @Rt @kt 1@kt
i = 1 D(t+ 1)K i +2G = i 13
L7 A1 Dt ) KGHE #2065 ey (19
with —= (1ff );NT (see equation (2)) for linear viscoplasticity f,, = 1) and

where plastic loading Ext > 0) is implicitly assumed.

The rate of change of the yield function during the relaxatio process can be
written as follows (see Figure 3):

@fr. , @Fr . , @Fr

e, b er T ey

(14)

Substituting j;, f— and _y with their evolutions in equation (12), de ned
as a function of the plastic multiplier , we obtain an ordinary di erential
equation to solve:

8

#
_ Fnr  f < @R @Rt @kr 1@kt
Frr = mp 1 f ° @; @ D)K @u +26( @j 3 @« i)
@R~ QR
k(o f)f
¥ @f ( ) @ ¢
N @R~ E: @Rt ~
@u @1 f)wm @; "
(15)

This kind of problem has been solved by Ortiz and Simo [20] mtducing the
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equation (15) reduces to :
F t
Fygr = 7,;:”- :) In(FNT) = T (17)

The following algorithm is then applied: the elastic predior is computed.
The return path can then reach a suitably updated yield surfee by means of
a sequence of straight segment't (see gure 3) which is the instantaneous
relaxation time of the linear di erential equation.
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L1 ()Y " <@kt @Fr' @kr' 1@kt
b= My f () L @i DK @ +26( @j 3 @
@Fr' @kt
@i k(@ f (t')f (t) .
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@u @ f ) wt) @ " ().

(18)

To update the variable j, f and y during the return mapping iterative
process, we use:

i (ti_ﬂ) = (ti) + _j (ti)' it_
M) = wt)+ _m(t) 't (19)
f "y =1f (t")+ f_(t) 't

We can thus computeFyt *1 as well as the new values of the internal variables.
The total relaxation time is obtained with the following equation:

: F
t*l =t + tlog T (20)

i+1

We obtain the exact plastic correction forFyt = 0 which is obtained when
the total relaxing time is equal to the real time increment t [20].

During this internal variable computation and in particular for the elastic pre-
diction, we can obtain numerical problem to compute the modid Gurson's
yield function (see eq. (7)). This is due to the high numeridazalues obtained
with the cosh function when the term q2'1 becomes large enough. This phe-
nomenon is represented in Figure 4. We follow Mahnken [16] wiproposed to
modify the expression of the hyperbolic cosine with the powseries develop-
ment around a critical point. We choose for critical valuezq% = X.=30and
we obtain the expression:

Gl 1 Gl 1
> y X¢:FnT cosh — 2.,
l1 . | 1
% > X ¢ : Fnr cosh(X() + smh(XC)(E X¢) + =cosh(X Xo)?
2 M 2 M 2
(21)

This method ensures continuity under the critical point andimits the growth
up of this term whenX > X .

#
i)
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10



Figure 5 shows the response of the model for a hydrostatic cprassion (where
only the plastic criterion is activated) for di erent strain increment but with
the same strain rate. We can notice that the model response ®w totally
independent of the strain increment. This is due to the imptit integration
scheme used for the plasticity.

4 Parameters identi cation

The main goal of this section is to give a systematic procedziin order to
calibrate and choose the model parameters. We saw in Sect@that the con-
stitutive equations are governing with two inelastic threkold functions. The
rst one is based on Mazars's work and concerns the damage kxmn. The
second one is the modi ed Gurson's yield function for the elation of the
plastic strain. It is important to note that, the Mazars's threshold function is
activated in traction before the Gurson's yield function, neans that only the
damage constitutive law is used see Figure 6. The represdiaa of the yield
functions was generated with MatSGen software developed BMT{Cachan
by Frarcois [6]. So if we want to calibrate the model damagegpameters we
have to perform a traction test in statics and in dynamics. Inaddition, for a
triaxial compression load path, only the Gurson's yield fuction is activated
which means that we will use only the viscoplastic constitite law. To cali-
brate the model parameters for the viscoplastic strain ewvation, we have to
perform the hydrostatic compression test in statics and inyhamics. On the
other hand, if we are in a load path in simple compression wittow con ne-
ment, we activate the two thresholds and we will have a cougleresponse of
the constitutive equation. Nevertheless, if we choose appiate parameters,
we can obtain a simple compression depending only on the dagadaw which
will permit to calibrate the damage parameters in compressn.

In table 1 we present a summary of the parameter values for MB5

5 Stability of the numerical implementation

5.1 Rate dependant damage model

An homogeneous material element at a macroscopic point of wieleforms in a
homogeneous manner if a homogeneous stress is applied dbdsndaries. But
when the strain becomes larger, due to the loading for exanaplconcentration
can occur in one element which lead to localization of strawver more or less
extended area and the deformation of the considered elemergased to be
homogeneous.

11
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Table 1
Model parameters for MB50
Plasticity par. Values Units Damage par. Values Unity
Eo 551000  Pa Eo 35101  Pa
0:2 { 0:2 {
th 1:5 { Do 1:10 4 {
(o7} 0:8 { a 20000 {
¢ 1 { b 1:6 {
Mo 60 MPa Np, 5 {
n 15 { Mp, 0:510 4 {
k 45 { ac 3000 {
Muyp 1:110 2 { Np, 20 {
Nyp 1 { Mp, 0:510 3 {
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A good way for describing localization in terms of continuuntheory is the
strain rate discontinuity [23, 21, 22]. The localization implies a non uniqueness
in the incremental response of a homogeneous, homogenegossiined body
and also implies a vanishing speed of acceleration waves, [12].

The equation of the damage model is:
=(1 D)E" (22)

with the evolution law of the damage governed by a rate depeadt model
(see equation (8)) consideringhp = 1. This is an evolution problem which is
solved by a time integration scheme. This latter provides aiscretized solution
of this evolution problem, which can be written as :

dIV n+1 = O
ne1 = (1 Dns1)B" ne1 = G("n+1;Dnsa) (23)
D =Dnsu Dn= tDni1 = F("n+1;Dnea)

This is a non-linear problem which can be solved by the Newtorcleeme. We
have to ensure that this remains a well-posed problem by v8jing the posi-
tiveness of the consistent tangent operator.

Therefore, we linearize the non-linear evolution laws:

n+1 @n+l . n+l @Dﬂ n+1l (24)
@F @F
Dn+1:@ L n+1+@ml D n+1
n+ +
With the equation (24), we have:
@@F : " n+1
Dni = T—@: (25)
@0y +1
Using this expression ofD ,.; in equation (24) we can write:
n+1 = H . " n+1 (26)
with
@G @F
H = @G + @D|+1 %nﬂ (27)
@n+1 1 @

13



the tangent modulus of the non-linear evolution law. In our &se, we have:

@G
@ =(1 Dnn)E
n+
@G
= E"
@R n
@F - t < "n+1 >+ (28)
@n+1 Mp 1
1 D (1=h)
n+1
@QF _ t a 1 Dnn 3 ot
@R+ mD.bDn+1(1 Dn+1) Mp
Which leads to :
E" L <Tan>e
H=(1 Dya)E + — (29)

In order to solve the problem, we have to verify the equilibum for the lin-
earized problem:

div 1 =0 (30)

which is a well-posed problem under the condition:
detnHNn=0 (31)

With the tangent modulus obtained in equation (29) we obtairfrom the last
expression :

#
(E" n+l < IIn+1 >+)n =0

(32)

t

det (1 D nEn n
(- Pr) Mo i1+ o)

this is veri ed for [1]:

Mp % +1:(1+ 7t)
n : Mo — (< "ps1 >+ NINEN(1 Dps1)g 1(E" ne1)  (33)

5.2 Application to 1D bar in traction

For a 1D bar in traction we can obtain a simple form of the tang& modulus:

t=m
H=(1 Dnu)E E"Mﬁ (34)
Mmp

14
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Fig. 7. Critical time step versus damage

For this simple case, the stability condition isH = 0. With this condition, we
can obtain a stability time step t:
My

= lln+1 :(1 Dn+1) (35)

Figure 7 shows the reduction of the critical time step with tlke damage increase.
This curve has been obtain for model parameters identify famoncrete MB50,
with the values of parameters given in table 1. We can obserteat for these
values, the critical time step is big enough to ensure staliyl of the numerical
scheme even at the end of the damage evolution.

6 Numerical simulations

6.1 Patch Test

In order to see if the model was implemented correctly in the = code LS-
DYNA, we decided to test two di erent meshes (one regular and orstistorted
see Figure 8), under a homogeneous stress eld { the class$ipath test (see
[27] carried out in dynamics.

First we carried out traction tests on a regular mesh cube araldistorted mesh
one in order to check if the damage phenomena exhibit mesh @eplency, see

15



Fig. 8. Regular and distorted meshes used for the patch test
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Fig. 9. Patch test in traction

Figure 9.
The stress vs strain diagram clearly indicates no mesh demlmcy as shown
in Figure 10, with two curves which remain in very good accosemhce.

Then we carried out the same kind of tests for an hydrostatidate of stress as
illustrated in Figure 11, with the same purpose to verify thegood accordance
of the model response for di erent meshes. Figure 12 showitige hydrostatic
pressure vs voluminal strain curves for regular and distatd mesh indeed
con rms good accordance in both cases.

6.2 Reinforced concrete slab

Another test of the model capabilities was to carry out a largecale computa-
tion. As it would be dedicated to simulations of soft impact penomena and
especially aircraft impact, we carried out the computatiorof impact between
747 class Boeing like aircraft and a reinforced concrete lsla

The slab was a parallelepiped of 80 by 80 meters large and 8Wtoeeters

16
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thick. The concrete within was a classical one of 25 Mpa ultiate compressive
stress.

The aircraft impacted the slab following a 20 degrees anglat 252 m/s this
means 900 kph the ultimate speed of this kind of aircraft in in a con gura-
tion, as it is shown in gure 16.

The nite element model of the aircraft was constructed by a rash of Belytschko-
Lin-Tsay shell elements, the slab is constituted of undentegrated (one Gauss
point) brick elements . The automatic contact surface to sdiace LS-DYNA
option for contact was used in this simulation.

The reinforcement was represented with beams and a perfeontact between
concrete and steel bar was assumed, by merging nodes betwbeams ele-
ments and 3D elements. Reinforcement ratio was 0.4 % in eadnedtion.

The results presented in gure 17 show the evolutions of theathage on the
impacted face and the opposite one. When damage reaches thaximum
value of 1 the concrete is locally fully destroyed. Thus we raonclude in this

17
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case that a huge crater has occurred on the top face of the slalet we can
assume that the scabbing on the rear face is limited to a 15xh¥eters square
area containing nearly 7 disseminated scabbed discs. Acdagito the 0.25

damage value on the half of the opposite face, we can assumatthalf of rear

face is considerably weakened with the presence of severaktks.
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6.3 Sandia's Laboratory tests simulations

In order to check the relevance of the constitutive relationwe carried out sim-
ulations of impact tests performed in Sandia Laboratory by &ano et al. and
presented in [25] and [26]. Following the test program, wensullate impact of
n aircraft engine equivalent missiles, considering sevesizes. In particular we
carried out simulations of LED, MED and SER missiles which nans, respec-
tively, Large size Equivalent and Deformable missile, Megin size Equivalent
and Deformable missile and Small size Equivalent Rigid miks The details
for the selected three missiles are presented in Figure 18.

The missiles impacted three slabs, with a particular choicgepending on the
kind of missiles. The slabs are presented in gure 19, fromfigo right with
the two slabs placed in a box have been used for small size aadgk size
missile tests.

Among several impact tests, carried out by Sugano et al., wea$e to simulate
impact of those exposed in Table 2.

In our simulations missiles where represented by using thaite element mod-
els constructed with Belytschko-Lin-Tsay shell elementgxcept for SER mis-
sile, whose mesh is built with 3D elements. The concrete pavt the slab was
represented with under-integrated 3D elements, the reinftement was rep-
resented with truss-bars. In each case reinforcement ratwas 04% in each
direction.

Table 2
Simulated tests characteristics
No. Missile type Missile velocity Slab thickness Reinf. rati o Slab type
(m=s) (m)
S10 SER 141 0.15 0.4 Small # 1
S28 SED 196 0.06 0.4 Small # 1
L5 LED 214 1.60 0.4 Large # 3

The qualitative results of numerical simulations, the samas those obtained
in the tests, are presented in Table 3; we note that penetrath means that
the missile penetrated the slab without having gone througit, perforation
means that missile went through, scabbing means that the inagt generated
a scab on the rear face of the slab.

All computations where stopped when the velocity of the midsi stopped de-
creasing, this means when the missile nally got stuck in theoncrete, or
when concrete did not bring any resistance to its penetratip since the slab
was totally damaged. The damage fringes of the simulations #he end of the
computations are exposed in Figures 13, 14 and 15, respeelyy for impact
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