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Abstract

This paper focuses on robust fault residual generation for Uncertain Unknown
Inputs Linear Parameter Varying (U -LPV) systems. Firstly, the problem is
addressed for standard LPV systems based on the adaptation of parity-space
approach. The main objective of this approach is to design a scheduled par-
ity matrix according to the scheduling parameters. It results a perfectly
decoupled parity matrix face to the system states. Then, the major contri-
bution of this paper relies in the extension to U -LPV systems. Since most
of models which represent practical/real systems are subject to parameters
variation, unmodeled dynamics and unknown inputs, the approach is clearly
justified. The residual synthesis is rewritten in terms of a new optimization
problem and solved using Linear Matrix Inequalities (LMIs) techniques. An
applicative illustration is proposed and rests on a vehicle lateral dynamics
system.
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1. Introduction

The issue of Fault Detection (FD) in dynamic systems has received con-
siderable attention in both research and application domains since the last
two decades. Among all concrete systems, cars represent a wide field of inter-
est in terms of diagnosis. In effect, it has been noticed the emergence of new
safety systems for vehicles such as anti-lock braking (ABS), adaptive cruise
control (ACC), electronic stability control (ESC) which are incontrovertible
products on modern cars. Those electronic/mechanical systems which are de-
signed to enhance the security in vehicles might lead to extremely dangerous
situations in case of failures.

Facing this reality, researchers and engineers are working on solutions to
strengthen the reliability by adding supplementary fault detection layers on
their equipments. However, most of modern process are complexe systems
and the synthesis of such fault detection procedure is extremely difficult
to perform. In this field, many model-based fault detection and isolation
(FDI) procedures has been carried out by researchers. It can be cited, for
instance, analytical redundancy-based methods as proposed in [9] and well
recalled in [13], some statistical and geometrical methods in [5, 11, 7, 4], and
some observer-based approaches as in [10, 8, 21]. More recently, researchers
focused on optimization-based techniques for fault detection (e.g. H∞-based
approaches) as proposed in [25, 26, 16] and references therein.

Within the same creative impulse than [2], many works has been carried
out about Linear Parameter Varying (LPV) systems. Such models have
received many attention as long as they can be used to represent nonlinear
systems. Moreover, vehicle systems which are strongly nonlinear systems are
often modeled as LPV systems. This motivates some researchers from the FD
community to develop model-based methods using LPV models [3, 4, 6, 24,
15]. There are two commonly used approaches. First the fault estimation
methods where the estimated fault is used as the fault indicating signal.
Secondly, residual generation methods where the residuals are synthesized in
order to be robust against modeling errors and unknown inputs.

In this paper, the contribution relies in the design of fault indicators for
a general class of Uncertain, Unknown Inputs non-linear system which can
be written as LPV Uncertain systems subject to Unknown Inputs, namely
U -LPV systems for simplicity. The approach is based on the synthesis of
a residual which provides the information on the faultiness of the system.
First, the objectives are expressed for LPV systems. Here, the proposed
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approach is similar to that presented by the authors in [22], but extended
from LTI parity-space approach. In this case, the parity matrix is computed
depending of the scheduling parameters of the system, to guarantee a perfect
decoupling face to system dynamics. The parity-matrix evaluation involves
symbolic computation and matrix inversions.

Furthermore, the major contribution concerns the robustness against un-
certainties and parameter variation. The synthesis of the parity matrix is
handled by expressing the objectives as an optimization problem. The aim
is classical : minimize the residual sensitivity with respect to uncertainties
and disturbances and maximize its sensitivity face to faults. The approach
of the generalized eigenvalues/eigenvectors - as a generalization of the ap-
proach expressed in [10] - is very hard to implement in this application. Its
computation involving symbolic computation is not applicable in this case.
Facing this difficulty, the optimization problem is finally rewritten in terms
of an LMI optimization problem.

The paper is organized as follows : Section 2 presents the modeling of
uncertain LPV systems subject to unknown inputs. Then, Section 3 presents
the parity-space based fault detection approach expressed for LPV system.
Thus, the main contribution is exposed in Section 4 where the approach is
extended to uncertain LPV systems. Finally, an applicative example based
on a vehicle lateral dynamic system is handled in Section 5 where the aim is
to detect a fault (generally sensor bias) on a lateral acceleration sensor. The
performances and improvements of the proposed approach are discussed in
the last section.
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2. Uncertain LPV modeling

This section settles the system under consideration used for residual syn-
thesis. The system is an Uncertain Unknown Inputs LPV (U -LPV) system.
The difference between the scheduling parameters for LPV definition and
uncertain parameters is very important and is highlighted in the next sub-
sections.

2.1. System definition

Consider the U -LPV system Σ∆ defined by :

Σ∆ :

{
xk+1 = A(ρk)xk +B(ρk)uk +Bd(ρk)dk +Bf (ρk)fk
yk = C(ρk)xk +D(ρk)uk +Dd(ρk)dk +Df (ρk)fk

(1)

where x ∈ R
n denotes the state vector of the system, y ∈ R

m the output
vector, u ∈ R

l the input vector, d ∈ R
ld some unknown inputs and f ∈ R

lf

some faults affecting both the state and output vectors of the system. In
this representation, matrices X stand for uncertain matrices, presented in
the following section.

The vector ρk =
[
ρ1k ρ2k · · · ρMk

]
defines the vector of the scheduling

parameters ρik, which are known at each sample time.

2.2. Uncertainties modeling

Uncertain matrices are considered in the following additive form :

X(ρk) = X0(ρk) +
N∑

i=1

X̃i(ρk)δik (2)

where X̃i(ρk) are known LPV matrices and δi are unknown scalars.

Remark 1. In the case of many uncertainties δi, the matrix X̃ will be very
large, roughly full of zeros. Therefore, a change of basis inspired from a
singular value decomposition in matrix X̃ should reduce the complexity of the
presented methodology as proposed in [14].
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2.3. Scheduling parameters

In the modeling of the system (equation (1)), matrices might depend of
the vector ρk =

[
ρ1k ρ2k · · · ρMk

]
. The structure of such matrices is

considered as an Affine-LPV form such as :

Z(ρk) = Z0 + ρ1kZ1 + · · ·+ ρMkZM (3)

In this modeling, each scalar ρi is an unknown scalar. However, the main
difference between δi and ρi relies in the fact that scheduling parameters ρi
can be measured at each sample time while δi remain unknown.

2.4. Faults and unknown inputs

In the modeling presented in (1), it has been differentiated unknown
inputs dk from faults fk. This distinction is particularly relevant since the
residual has only to inform on the faultiness of the system. In this case,
unknown inputs will not affect the residual status.

On the other hand, it is sometimes required (for fault isolation) that the
fault detector should only be sensitive to a certain class of faults f1k ⊂ fk
and insensitive to another class f2k ⊂ fk. This requirement can easily be
handled be splitting both matrices Bf and Df in (1) with respect to f1k and
f2k as :

Bffk =
[
Bf1 Bf2

] [f1k
f2k

]
(4)

and creating the new matrices B∗
f = Bf2 and B∗

d =
[
Bd Bf1

]
(idem for

matrices Df and Dd). Subscripts
∗ stand for the newly defined matrix.

Finally, the residual will be sensitive to faults f1k and insensitive to the
others f2k.

2.5. Observability assumption

In the sequel, it is assumed that the pair
(
A(ρk), C(ρk)

)
is always observ-

able for any combination of δ̃ and ρ. As a consequence, the nominal pair
(A0(ρk), C0(ρk)) is still observable (case δ̃ = ON×1).
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2.6. U-LPV system

Finally, the U -LPV system given in (1) can be rewritten in the following
form :

Σ∆ :





xk+1 = A0(ρk)xk +
N∑
i=1

Ãi(ρk)δikxk

+B(ρk)uk +Bd(ρk)dk +Bf (ρk)fk

yk = C0(ρk)xk +
N∑
i=1

C̃i(ρk)δikxk

+D(ρk)uk +Dd(ρk)dk +Df (ρk)fk

(5)

where it is separated the completely known part of the system from the
uncertain one.

For the sake of residual generation for system Σ∆, it has been considered
to decompose the further study in 2 cases :

• Case of LPV system : A solution for residual generation for LPV
systems is firstly proposed. The involved methodology is inspired from
the classical parity-space approach. The scheduling parameters are
taken into account to generate a scheduled residual.

• Extension to U-LPV systems : Then, the previously exposed method-
ology is used to tackle the scheduling parameters. An LMI formulation
is finally proposed to handle uncertainties and unknown inputs within
residual generation.

Both approaches are finally compared in a practical situation in the last
section 5.
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3. Fault detection for LPV systems

In this section, it is proposed to design a fault indicator for LPV systems.
The fault detection principle is based on the parity space methodology, in-
spired from the LTI approach (see [9, 13]), but adapted for LPV ones.

The depicted methodology is necessary for the establishment of the final
residual for U -LPV systems presented in section 4. Comparison between
both approaches is presented in the applicative section 5.

3.1. Principle of the approach

In this section, only the following LPV system ΣLPV , without uncertain-
ties nor unknown inputs is considered :

ΣLPV :

{
xk+1 = A(ρk)xk +B(ρk)uk
yk = C(ρk)xk +D(ρk)uk

(6)

where x ∈ R
n represents the state of the system, u ∈ R

l the controlled input,
y ∈ R

m its output and ρk the scheduling parameters.
Diagnosis based on the parity-space approach is generated via linear com-

binations of measurements (sensors) and applied inputs (actuators) taken
over a finite window. By making use of known data, it is generated analyti-
cal relationships that hold in absence of failures. A fault is so detected when
equations are no longer verified.

The key of the approach is to express the output and its time shifted over
a horizon s as :




y(k)
y(k + 1)

...
y(k + s)




︸ ︷︷ ︸
Ys

=




C(ρk)
C(ρk+1)A(ρk)

...

C(ρk+s)
s−1∏
i=1

A(ρk+s−i−1)




︸ ︷︷ ︸
Hos(ρk)

x(k) +Hus(ρk)




u(k)
u(k + 1)

...
u(k + s)




︸ ︷︷ ︸
Us

(7)

with
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Hus(ρk) =




D(ρk) 0 · · ·
C(ρk+1)B(ρk) · · ·

C(ρk+2)A(ρk+1)B(ρk) C(ρk+1)B(ρk) · · ·
...

. . . · · ·

C(ρk+s)
s−1∏
i=1

A(ρk+s−i)B(ρk) C(ρk+s−1)
s−1∏
i=2

A(ρk+s−i)B(ρk) · · ·

· · · · · · 0
0 · · · 0

D(ρk)
. . .

...
. . .

. . . 0
· · · C(ρk+1)B(ρk) D(ρk)




(8)

In equation (7), Ys is built from sensor measurements and Us results of
the applied inputs. Those data are perfectly known. However, the state x(k)
is - a priori - unknown.

The parity-space methodology manages to make the term Hos(ρk)x(k)
vanish. Left multiplying equation (7) by the so called parity matrix W (ρk),
the residual r(k) is finally given by :

r(k) = W (ρk)
T (Ys −Hus(ρk)Us) (9)

where the parity matrix W (ρk) is selected from the parity space P defined
by

P , {W (ρk) s.t. W (ρk)
THos(ρk) = 0}

Thus in absence of failures, the residual is null.
Moreover, for fault isolation, the usual DOS (dedicated observer scheme)

or GOS (generalized observer scheme) schemes [12] can be applied.

3.2. Parity matrix synthesis

Now, the main objective consists in finding the parity matrixW (ρk) which
has to be orthogonal to the matrix Hos(ρk), i.e. W (ρk) ·Hos(ρk) = 0.

First, the matrix Hos(ρk) can always be split into two sub-matrices as
follows :

Hos(ρk) =

[
Hos1(ρk)
Hos2(ρk)

]
(10)

where the matrix Hos1(ρk) is regular and so invertible.
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Remark 2. By assumption, the system (6) is observable and so the observ-
ability matrix O(A(ρk), C(ρk)) is full rank. As a consequence, for a horizon
s chosen s ≥ E( n

m
) (where E(·) represents the superior integer part), it is

always possible to choose the matrix Hos1(ρk) as the regular part of the observ-
ability matrix of the nominal system, i.e. Hos1(ρk) = reg

(
O(A(ρk), C(ρk))

)
.

So for a SISO system, s1 can be chosen as s1 = n.

Thus, by defining W (ρk)
T =

[
W1(ρk)

T W2(ρk)
T
]T
, the null equality

W (ρk)
T ·Hos(ρk) = 0 can be expressed as :

W (ρk)
THos(ρk) = 0 ⇔

[
W1(ρk)

T W2(ρk)
T
] [Hos1(ρk)
Hos2(ρk)

]
= 0

⇔ W1(ρk)
T = −W2(ρk)

THos2(ρk)Hos1(ρk)
−1 (11)

Finally, the matrix W (ρk)
T can be rewritten as :

W (ρk)
T =

[
W1(ρk)

T W2(ρk)
T
]T

=
[
−W2(ρk)

THos2(ρk)Hos1(ρk)
−1 W2(ρk)

T
]

= W2(ρk)
T
[
−Hos2(ρk)Hos1(ρk)

−1
Iq

]
︸ ︷︷ ︸

P (ρk)

W (ρk)
T = W2(ρk)

TP (ρk) (12)

According to those algebraic manipulations, the parity matrix W (ρk) is
built from the knowledge of matrices A(ρk) and C(ρk). The left hand side
matrixW2(ρk) stands as an extra degree of freedom. It can be chosen unitary
for the purpose of this section.

Nevertheless, the matrix W2 can be used in order to increase the robust-
ness of the system face to uncertainties, as used in the next section.

3.3. Choice of the horizon s

According to the depicted methodology, the horizon s in (7) affects the
definition of the residual r(k). Indeed, thanks to equation (10) and remark
2, the horizon has to be chosen at least larger than the size of the observabil-
ity matrix O(A(ρk), C(ρk)). The leading Hos1(ρk) matrix will be invertible.
Moreover, the matrix Hos2(ρk) defines supplementary rows in the Hos matrix.
Those redundant rows are constructing new residuals in the vector r(k).

To sum up, it is required that the horizon s guarantees the definition
of the observability matrix, so using the definition in equation (6), s ≥ n

m
,
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plus the number of desired residuals. For the sake of this section, where one
residual is required, the horizon can be chosen as recalled in [22]:

s = E
( n
m

)
(13)

where E(·) represents the superior integer part.
To conclude, the choice of the horizon for residual generation has to be

done respecting equation (13), but might be increased to enhance redundant
information within the residual.

On the other hand, the residual synthesis involves inversion of a symbolic
matrix Hos1(ρk) according to the scheduling parameters ρk see equations (9)
and (12). This symbolic inversion is not restrictive as it can easily be handled
via symbolic software.
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4. Fault detection for U-LPV systems

Since a fault detection procedure has been proposed for LPV system, it is
now extended to U -LPV ones. Direct extension from the previous approach
eliminating all the terms subject to uncertainties and unknown inputs is not
available. The further subsection justifies this statement. So, an optimization
procedure based on an LMI formulation of the problem is proposed. The
aim is to synthesize a residual mainly sensitive to the faults while being
non-receptive to uncertainties nor unknown inputs whatever the scheduling
parameters are.

4.1. Extension of the LPV approach

Now, the system under consideration is the U -LPV system (5). Similarly
than section 3.1, expressing the output yk along the horizon s yields :

Ys(k)−HusUs(k) = Hosx(k) +
∑

i

(
ζk(i)H̃os,i

)
x(k)

+
∑

i

(
ζk(i)H̃us,i

)
Us(k) +HdsUds(k)

+
∑

i

(
ζk(i)H̃ds,i

)
Us(k) +HfsFs(k) (14)

where ζk is constructed with δk, the powers of its elements and multiple inner
products in the form :

ζ̃Tk =
[
δ1k · · · δNk δ21k δ1kδ2k · · · δ1k

p δ1k
p−1δ2k · · · δNk

s+1
]T

where δik
q = δikδik · · · δik︸ ︷︷ ︸

q products

.

The (trivial) classical parity space approach would consist in finding a
scheduled parity matrix W (ρk) ensuring W (ρk)

THos(ρk) = 0. It leads to a
residual sensitive to the unknown inputs dk, the uncertainties δik and to the
faults fk. This conspicuous solution is not acceptable for our problem.

Otherwise, it may sometimes be found a parity matrix W (ρk) satisfying

W (ρk)
T
[
Hos(ρk) H̃os(ρk) H̃us(ρk) Hds(ρk) H̃ds(ρk)

]
= 0 (15)

where H̃os(ρk) =
[
H̃os,1(ρk) · · · H̃os,z(ρk)

]
.
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First, note that the existence of such a matrix is not guaranteed since the

rowrank of the matrix
[
Hos(ρk) H̃os(ρk) H̃us(ρk) Hds(ρk) H̃ds(ρk)

]
is not

necessarily degenerated. Nevertheless, in the case of existence, the horizon
should be high, leading to hard computations and a long fault detection time,
as the residual will be sensitive to faults during all the horizon s.

As a consequence, the perfect decoupling is not suitable for on-line compu-
tation. A non-perfect parity matrixW (ρk) will be sought via an optimization
procedure, as introduced in the problem formulation (17).

4.2. Optimization procedure

The aim of the problem is to find a residual r(k) only designed from
known data as :

r(k) = W (ρk)
T (Ys(k)−Hus(ρk)Us(k)) (16)

which has to be sensitive to faults fk and insensitive to uncertainties δi and
to unknown input dk. Those objectives can be expressed in the following
optimization problem in the variable W (ρk) :

find W (ρk) s.t. :





W (ρk)
THos = 0

max
W

∥∥W (ρk)
THfs(ρk)

∥∥2

min
W

∥∥∥W (ρk)
T H̃os(ρk)

∥∥∥
2

min
W

∥∥∥W (ρk)
T H̃us(ρk)

∥∥∥
2

min
W

∥∥W (ρk)
THds(ρk)

∥∥2

min
W

∥∥∥W (ρk)
T H̃ds(ρk)

∥∥∥
2

(17)

This problem (17) can be written as a constrained optimization problem
[10, 23], as follows:

P1 :





W (ρk)
THos = 0

min
W

∥∥W (ρk)
TG(ρk)

∥∥2

‖W (ρk)THfs(ρk)‖
2

(18)

where G(ρk) =
[
H̃os(ρk) H̃us(ρk) Hds(ρk) H̃ds(ρk)

]
.
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Following the methodology proposed in section 3.2, this constrained op-
timization problem can be turned into a classical unconstrained one.

The constraint W (ρk)
THos = 0 is guaranteed by considering W (ρk) as in

(12). Therefore, the optimization problem (18) becomes an unconstrained
optimization problem in the variable W2(ρk) as :

P1 : min
W2

∥∥W2(ρk)
TP (ρk)G(ρk)

∥∥2

∥∥∥W2(ρk)
T
P (ρk)Hfs(ρk)

∥∥∥
2 (19)

which is equivalent to :

P1 : min
W2

W2(ρk)
T

Γ1(ρk)︷ ︸︸ ︷
P (ρk)G(ρk)G(ρk)

TP (ρk)
T W2(ρk)

W2(ρk)T P (ρk)Hfs(ρk)Hfs(ρk)
T
P (ρk)

T

︸ ︷︷ ︸
Γ2(ρk)

W2(ρk)

= min
W2

W2(ρk)
TΓ1(ρk)W2(ρk)

W2(ρk)TΓ2(ρk)W2(ρk)
(20)

where Γ1(ρk) and Γ2(ρk) are symmetric matrices.
Now, problem P1 stands as an unconstrained quadratic optimization

problem in the variable W2(ρk), but scheduled by parameter ρk. In the
next sections, it is proposed a theorem that symbolically solves (20) depend-
ing of the scheduling parameters. Thus a new polytopic/LMI formulation is
studied to avoid symbolic computations.

4.3. Resolution by eigenvalue assignment

The following theorem and its associated proof gives one solution to prob-
lem P1.

Theorem 1 (See [10] for the proof.)

Given an optimization problem of the form :

γ∗ = min
X

XTAX

XTBX
(21)

where A and B are symmetric matrices, the minimum γ corresponding

to the criterion given in (21) is reached by X∗ such that :

X∗ = ϑλq(A,B) (22)
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where λq(A,B) stands for the lowest generalized eigenvalue of the pair

(A,B), and ϑλq(A,B) its associated eigenvector. The minimum γ∗ is given

by γ∗ = λq(A,B).

Thanks to Theorem 1, problem P1 (20) can be solved by :

P1 : W2(ρk)
T = ϑλq(Γ1(ρk),Γ2(ρk))(ρk) (23)

Then, it is easy to recover the parity vector W (ρk) thanks to equation (12).
This theorem clearly solves problem P1. It has to be pointed out that

its resolution involves to compute generalized eigenvalues and eigenvectors,
depending on the parameter ρk. As each ρi belongs in an infinite dimension
set (ρi ∈

[
ρmin ρmax

]
), the resolution of infinite dimension is impossible.

On the other hand, in the case of smart and small dimension systems, where
it has been considered few uncertainties, this computation can be handled
symbolically. However, most of systems are complex, the resolution involves
very hard computation and consequently hard implementation.

Facing this reality, this symbolic resolution has been given up making use
of a polytopic approach. Then the optimization problem is rewritten in a
new polytopic form, where each vertex represents constant sub-optimization
problems. In this way, instead of considering the scheduling parameter within
the resolution, computations are made at each vertex of the polytope, syn-
thesizing as many parity vectors Wi as polytope vertices. Thus the parity
vector W (ρk) is built from the linear combination of each Wi.

4.4. LMI optimization formulation

The problem P1 can be rewritten as the problem P2 [10]:

P2 :

{
γ2(ρk) = min

W2

W2(ρk)
T
(
Γ1(ρk)− κ2Γ2(ρk)

)
W2(ρk) (24)

In effect, the aim is to find a vector W2(ρk) which minimizes the sensibility
of uncertainties and disturbances - here represented by matrix Γ1(ρk) - and
maximizes the effect of faults, represented by matrix Γ2(ρk).

Remark 3. The problems P1 and P2 are not strictly equals. They can be
considered as strictly equals if κ is chosen as the lowest eigenvalue of the pair
(Γ1,Γ2). However, in our case, κ is just chosen as an extra degree of freedom
to fulfill the further constraints. Nevertheless, even if both problems are not
strictly equals, they traduce the same objective : minimize the effect of the
disturbances (Γ1) and maximize the effect of the fault (Γ2).
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To better understand the process formulation, the problem is firstly ad-
dressed for LTI systems (section 4.4.1) and secondly for LPV systems (section
4.5).

4.4.1. Case of LTI systems

Consider the optimization problem for classical LTI matrices Γi=1,2. The
aim of the problem is to find a vector W2 s.t. :

γ = min
W2

W2
T (Γ1 − κ2Γ2)︸ ︷︷ ︸

Γκ

W2 (25)

It can be rewritten as a BMI problem :

{
minimize

W2

γ

subject to W2
TΓκW2 ≺ γ

(26)

which can be expressed as an LMI thanks to the Schur Lemma on equation
(26) : 




minimize
W2

γ

subject to

[
Γκ

−1 W2

W2
T γ

]
≻ 0

(27)

where Γκ has to guarantee Γκ ≻ 0.

Remark 4. The constraint Γκ ≻ 0 has to be guaranteed due to the Schur
Lemma. This condition is guaranteed by choosing properly the scalar κ. For
the sequel, it is considered that κ is properly defined so the constraint is no
more a part of the problem.

From the problem given in (26), a trivial solution consists in choosing
W2 as a null matrix. This solution is not allowable for our problem. So an
additional constraint is added in order to tackle this problem :

W2 6= O1×m·s (28)

This constraint cannot be directly implemented as an LMI since the vector
W2 is not a symmetric square matrix. As a consequence, it is considered a
new diagonal matrix Y , defined by :

Y = diag(W2) (29)
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which from it can be derived the following constraint :

trace(|Y |) ≻ ǫ ǫ > 0 (30)

Finally, the optimization problem can be rewritten in terms of LMI opti-
mization as :





minimize
W2

γ

subject to





[
Γκ

−1 W2

W2
T γ

]
≻ 0

trace(|Y |)− ǫ ≻ 0 ǫ > 0

(31)

This LMI formulation allows to solve the problem P2 for LTI matrices.
The next section presents a way to extend the results to LPV systems.

4.5. Extension to LPV systems

Applying directly the results of the proposed approach for LPV systems
is not allowable as it involves infinite LMI resolution among all the param-
eter set. However, the matrix Γκ(ρk) (built from Γ1(ρk) and Γ2(ρk)) can be
rewritten in a polytopic form as

Γκ(ρk) =

q∑

i=1

αi(ρk)Γki (32)

The aim of working in the polytopic framework relies in the fact that the
study can be applied to each subsystems at each vertex of the polytope.

However, by extension of (31), it has to be computed the inverse of the
matrix Γκ(ρk). So considering directly the polytopic formulation of the ma-
trix Γk(ρk) is not useful since it should not preserve the linearity in the
parameters αi. Nevertheless, the interest relies in the polytopic formulation
of its inverse Γ−1

k (ρk) which can be expressed as :

Γ−1
κ (ρk) = α0(ρk)

r∑

i=1

α̃i(ρk)Γ̃ri (33)

where the term α0(k) stands for the inverse of the determinant of matrix
Γκ(ρk). Moreover, as the matrix Γκ(ρk) has to be positive definite for all
parameters ρk, its associated determinant is also positive.
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Remark 5. According to the polytopic formulation of the system, each α̃i

are positive. So, positive definiteness of the product α̃iΓ̃ri is only affected by
Γ̃ri.

The LMI optimization problem can be written as :

{
minimize

W2

γ

subject to γ −W2
TΓκ(ρk)W2 ≻ 0

(34)

where the constraint can be developed as :

γ −W2
TΓκ(ρk)W2 ≻ 0

⇔ γ −W2
T

[
α0(ρk)

r∑

i=1

α̃i(ρk)Γ̃ri

]−1

W2 ≻ 0

⇔ γ −
1

α0(ρk)
W2

T

[
r∑

i=1

α̃i(ρk)Γ̃ri

]−1

W2 ≻ 0 1

⇔ γα0(ρk)︸ ︷︷ ︸
γ′(ρk)

−W2
T

[
r∑

i=1

α̃i(ρk)Γ̃ri

]−1

W2 ≻ 0

⇔ γ′(ρk)−W2
T

[
r∑

i=1

α̃i(ρk)Γ̃ri

]−1

W2 ≻ 0 (35)

Applying the Schur complement on (35) yields the LMI constraint :




r∑

i=1

α̃i(ρk)Γ̃ri W2

W2
T γ′


 ≻ 0 (36)

Choosing the vector W2 in the polytopic form :

W2 =
r∑

i=1

α̃i(ρk)Wi (37)

1α0(ρk) 6= 0 as Γκ(ρk) is positive definite
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and the same structure for γ′(ρk) allows to solve r LMIs :

r∑

i=1

α̃i(ρk)

[
Γ̃ri W2i

W2
T
i γ′

]
≻ 0 (38)

which is guaranteed by
[
Γ̃ri W2i

W2
T
i γ′

]
≻ 0 ∀i ∈ J1 : rK (39)

Adapting equation (31) with the LPV constraint (39), the problem P2 is
obtained by the following optimization problem :





minimize
W2

γ′

subject to





[
Γ̃ri W2i

W2
T
i γ′

]
≻ 0

trace(|Yi|)− ǫ ≻ 0 ǫ > 0

∀i ∈ J1 : rK
(40)

where each Yi are defined by extension of the LTI case as Yi = diag(Xi).

Remark 6. It this formulation, it has been omitted the fact that each matri-
ces Γ̃ri - defining the polytopic formulation of the problem - has to be positive
definite. In effect, the initial matrix Γκ(ρk) has been constructed in order to

be positive definite. However, nothing guarantees that each sub-matrices Γ̃ri

are positive definite (as they can represent systems with no physical meaning),
except for ones which really belong to the parameter definition.

Case of non positive definite matrices. In agreement with remark 6, some
matrices written Γ̃−

ri might not be positive definite, and can be decomposed
via a singular value decomposition as :

Γ̃−
ri = Vn ·

[
Dn1 > 0 O

O Dn2 < 0

]

︸ ︷︷ ︸
Dn

·Vn
T (41)

where Vn corresponds to the eigenvectors of Γ̃−
ri and Dn the matrix of its

eigenvalues. Matrix Dn1 represents the positive eigenvalues of matrix Dn

while Dn2 the negative ones.
In order to avoid the problem of non positive definiteness, the sub-matrice

Dn2 is replaced by a matrix D+
n2 with positive values, large enough in order

not to affect the result of the optimization. In effect, it is known that the
optimum rise to the lowest eigenvalue of the system (see Theorem 1).
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Remark 7. The best solution is given by the eigenvector associated to the
lowest eigenvalue of the inverse of Γ̃−

ri. The eigenvalues D+
n2 are said to be

“large enough” in order not to affect the result of the optimization. Large
enough refers to “at least larger than the other ones”. In this case, the
optimum reached by the optimization procedure will not be affected.

It is finally considered the matrix Γ̆ri instead of Γ̃−
ri for the optimization

process defined by :

Γ̆ri = Vn ·

[
Dn1 O

O D+
n2

]

︸ ︷︷ ︸
Dn

·Vn
T (42)

Let’s just note that the transformation from Γ̃−
ri to Γ̆ri does not restrict

the problem solutions. It is just a way to avoid unavailable solutions.

4.6. Interest of small time varying parameters

In the past section, it has been highlight the interest of the polytopic
formulation of the matrix Γ−1

k (ρk). The main drawbacks of such approach
is that it leads to a more conservative solution set and foremost a large
number of subsystems Γ̃ri, 2

N where N stands for the number of individual
scheduling parameters defining the matrix Γ−1

κ (ρk). The following presents
tricks to reduce the polytope size and so the complexity of the solution.

4.6.1. Taylor approximation

It is known the following equality as the Taylor development of a function
f :

f(x) =
+∞∑

n=0

f (n)(a)

n!
(x− a)n (43)

where f (n) denotes the nth derivative of function (43) at the point a.
According to this property, the expression of the scheduling parameters

and their time shift can be expressed as :

ρ(k + τ) = ρ(k) + τ · ρ′(k)︸︷︷︸
≤Mρ

+
+∞∑

n=2

ρ(n)(k)

n!
(τ)n (44)

ρ(k + τ) ≃ ρ(k) + τMρ (45)

where Mρ represents the maximum variation of parameter ρ.
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This simplification (if it can be assumed) is very useful as it allows to
simplify the problem. If the scheduling parameters can be considered con-
stant within the time horizon s, it will lead to a residual constructed with
only the knowledge of ρk instead of ρk−s:k. Finally, the inner products of
time shifts are only constructed with the knowledge of the scheduling pa-
rameter ρk. Thanks to this simplification, the further polytope reduction
can be adopted.

4.6.2. Polytope reduction

In the case of small time varying parameters, the scheduling parameters
can be considered as constant within the time window defined by the horizon.

Thus, it will only remain in the matrix Γ−1
k the term ρk and its powers in

the form Γ−1
κ (ρk, ρ

2
k, · · · , ρ

N
k ). The classical polytopic modeling will need to

define P = 2r vertices of the polytope.
However, the relation between each parameters is not taken into account.

For instance, in the case of two scheduling parameters (as illustrated in figure
1), the vertex ω4 = (ρ

1
, ρ̄2) is not required since the 3 other vertices are

sufficient to characterize the parameter definition.

Figure 1: Illustration of the polytope reduction

This reductive approach can be generalized to polytopes of dimension N
since the minimal value of the scheduling parameter is null (as presented in
[20]) :

Property 1

A vertex ωj = (ν1, ν2, · · · , νN) - where each coordinate νi is defined as

νi = {ρmin = 0, ρmax} - is an admissible vertex if its coordinates verify
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the following property :

νn+1 ≤ ρmaxνn (46)

Therefore, as a simplification, only N + 1 vertices are finally useful

instead of 2N . �

Thanks to those presented tricks, the computations are simplified which
allow for implementation on a real vehicle, as presented in the following
section.
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5. Application on a vehicle lateral dynamics system

The previous depicted theory has been applied on a vehicle lateral dy-
namics system. Some experimental data has been taken from a real vehicle
”Renault Scenic” (figure 2). Data have been provided by the French labora-
tory MIPS2 (Modélisation, Intelligence, Processus et Systèmes), a partner in
the framework of the French ANR project INOVE.

Figure 2: Photo of the Renault Scenic used

5.1. Modeling of the system

The aim of this applicative study is to detect a fault on a lateral acceler-
ation sensor. The system under consideration is the whole lateral dynamics
system illustrated in figure 3.

The modeling of the system rests on the bicycle model as presented in
[19, 17, 1], where the dynamics is given by :

[
β̇(t)
ṙ(t)

]
=

[
− cαV +cαH

mv(t)
lHcαH−lV cαV

mv(t)2
− 1

lHcαH−lV cαV

Iz

l2V cαV +l2HcαH

Izv(t)

] [
β(t)
r(t)

]
+

[
cαV

mv(t)
lV cαV

Iz

]
uL(t)

[
ay(t)
r(t)

]
=

[
− cαV +cαH

m
lHcαH−lV cαV

mv(t)2

0 1

] [
β(t)
r(t)

]
+

[
cαV

m

0

]
uL(t)

(47)

2http://www.mips.uha.fr/
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uL

r

ay

v

β

Figure 3: Illustration of the vehicle lateral dynamics

where β denotes the side slip angle, r the yaw rate, ay the lateral acceleration,
uL the relative steering wheel angle and v(t) the speed of the vehicle. This
model represents the nominal behavior of the system.

The numerical values and the description of the parameters are given in
the following table :

Variable Value Unit Comments
g 9.80665 m.s−2 gravity acceleration constant
m 1621 kg vehicle total mass
lV 1.15 m distance from C.G. to front axle
lH 1.38 m distance from C.G. to rear axle
Iz 1975 kg.m2 moment of inertia about the z-axis
cαV 57117 N.rad−1 front axle tire cornering stiffness
cαH 81396 N.rad−1 rear axle tire cornering stiffness
v m.s−1 vehicle longitudinal velocity
β rad vehicle side slip angle

ψ̇(t) rad.s−1 vehicle raw rate
ay m.s−2 vehicle lateral acceleration
uL rad vehicle steering angle

As presented in [18], several discretization techniques for LPV state space
models are available. Here the rectangular discretization is chosen as it pro-
vides a low computational load, and preserves the linearity in the parameters.
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The discrete matrices are given by :

A0(ρ(k)) = In + TdA(ρ(kTd))
B0(ρ(k)) = TdB(ρ(kTd))
C0(ρ(k)) = C(ρ(kTd))
D0(ρ(k)) = D(ρ(kTd))

where Td is the sampling period. Thus, the nominal discrete LPV matrices
(as in (5)) corresponding to the state space model is given in (48) :

A0(ρk) =

[
1 −Td

Td
lHcαH−lV cαV

Iz
1

]
+

1

v(kTd)︸ ︷︷ ︸
ρ1k

[
−Td

cαV +cαH

m
0

0 −Td
l2vcαV +l2HcαH

Iz

]

+
1

v(kTd)2︸ ︷︷ ︸
ρ2k

[
0 Td

lHcαH−lvcαV

m

0 0

]
(48a)

B0(ρk) =

[
0

Td
lV cαV

Iz

]
+ ρ1k

[
Td

cαV

m

0

]
(48b)

C0(ρk) =

[
− cαV +cαH

m
0

0 1

]
+ ρ1k

[
0 lHcαH−lvcαV

m

0 0

]
(48c)

D0(ρk) =

[
cαV

m

0

]
(48d)

where there are 2 scheduling parameters ρ1k = 1
v(kTd)

and ρ2k = 1
v(kTd)2

.
However, the dependency between parameters ρ1 and ρ2 is clear : ρ2 =
ρ1

2. This relation is taken for further computations. Only one scheduling
parameter ρ1k is finally considered.

Note that those matrices A0(ρk), B0(ρk), C0(ρk) and D0(ρk) represent the
nominal model of the system.

5.2. Data selection

MIPS laboratory provided data of the speed of the vehicle, steering wheel
angle and lateral acceleration. The steering wheel angle and the vehicle lon-
gitudinal speed are respectively presented in figures 4a and 4b. A comparison
between the data from MIPS and the corresponding bicycle model outputs
are illustrated in figure 4c.

In can be observed that the bicycle model fits the real vehicle dynamics.
However, some differences can be noticed especially due to the neglected
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dynamics, the modeling approximations and inaccurate parameters. This
remark emphasis the uncertain characteristic of the method.
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Figure 4: Comparison between MIPS data and the bicycle model

5.3. Fault detection by U-LPV parity space approach

The matrices A1, Bd and Dd has been designed as in (5) to complete the
model which is not perfect. In effect, mostly the stiffness parameters cαV
and cαH are not perfectly known. Consequently, the matrix A1 is chosen as
20% of the nominal state matrix A0, by considering a constant mean speed
of 75km.h−1 ≃ 20.83m.s−1, so ρ∗ = 1

20.83
= 0.048.

A1 = 0.2A0(ρ
∗) = 0.2A0(0.048)
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In addition, one uncertain input is considered with its distribution ma-
trices Bd and Dd given by :

Bd = 0.2B0(0.048) Dd =

[
0

2.064

]

Those matrices allow to encompass the differences observed on figure 4.
At this step, the system formulation has exactly the same structure than in
(5).

The horizon s has been chosen as s = 3 in order to ensure a perfect
decoupling face to the nominal system.

As the scheduling parameter ρ1 is related to the longitudinal speed of the
vehicle, it can be assumed as constant within the horizon of s = 3 samples
(60 ms).

The matrix P (ρk) - which constitute the first step in the computation of
the parity matrix - is built from equation (12). Then matrices Γ1(ρk) and
Γ2(ρk) are constructed. It yields 6 products of the scheduling parameters ρ1k
in their definition.

The constant κ has been chosen as κ = 27 to guarantee the positive defi-
niteness of the matrix Γκ(ρk). Thus, the inverse matrix Γ−1

k (ρk) is computed.
It results 14 products of the scheduling parameter ρ1k.

At this step, for the sake of the polytopic modeling, it should be consid-
ered 214 = 16384 vertices of the polytope, which is technically not available.
It has to be pointed out that in this applicative example, the scheduling
parameter ρ1k is always lower than 1 since the vehicle longitudinal speed is
larger than 3.6 km.h−1. As a first simplification, the terms ρ1k

x lower than
a certain threshold can be omitted. Moreover, thanks to the simplifications
exposed in section 4.6.2, the necessary number of vertices is reduced to 6,
which is far more easy to compute and to implement.

Finally, the LMI optimization process lead to the vector W2(ρk) con-
structed with 6 sub-vectors W2i as :

W2(ρk) =
6∑

i=1

α̃i(ρk)W2i (49)

5.4. Faulty scenario

The data are performed in a healthy measuring system. As a consequence,
the fault has been numerically added in simulation. The considered fault f(k)
has been added from t = 150s to t = 158s to the first system output ay(k).
Its amplitude is +0.5 m.s−2.
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5.5. Residuals

It has been compared both LPV and U -LPV approaches applied in this
application. Both residuals rLPV and rLPV u, respectively representing the
residual of the LPV and U -LPV approach are illustrated in figure 5.
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Figure 5: Comparison between LPV and U -LPV approaches

Remark 8. It has to be recalled that a residual do not have any dimension.
In this case, the comparison between different residuals has been done with
normalized residuals, meaning the mean value of the residual during the faulty
time is one.

In this approach, it can be shown that both approaches lead to effective
fault detection. However, the LPV approach is quite sensitive to the un-
modeled dynamics. In effect, it can be shown that after the fault, when the
residual should be small, it remains some large amplitudes. As an informa-
tion, the min/max ratio representing the minimum value in faulty case face
the maximal value in healthy situation is computed : ̟LPV = 1.39.

On the other hand, the U -LPV approach gives some better results. In
effect, it can be shown that the effect of unmodeled dynamics has been at-
tenuated. In effect, the min/max ratio is in this case ̟LPV u = 4.04. This
result emphasis the uncertain characteristic of the approach.
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6. Conclusion

The problem which is considered in this paper is the design of residuals
for Fault Detection on LPV systems and Uncertain LPV systems subject
to Unknown Inputs. The objectives has been fulfilled by considering the
classical parity-space based fault detection approach, but adressed for sched-
uled matrices. The resulting parity matrices are also parameters dependent.
Thus, the uncertainty has been tackled by synthesizing a parity matrix via
an LMI optimization which is sensitive to the fault and the least receptive
to uncertainties nor disturbances.

The method has been successfully applied with experimental data coming
from the MIPS laboratory on a vehicle ”Renault Scenic”. The final result
compares the single LPV approach face to the U -LPV one. This second
approach show the interest of considering uncertainties within the residual
synthesis.
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