Perturbation of $\ell_1$-copies in Preduals of JBW$^*$-triples

Abstract : Two normal functionals on a JBW$^*$-triple are known to be orthogonal if and only if they are $L$-orthogonal (meaning that they span an isometric copy of $\ell_1(2)$). This is shown to be stable under small norm perturbations in the following sense: if the linear span of the two functionals is isometric up to $\delta>0$ to $\ell_1(2)$, then the functionals are less far (in norm) than $\eps>0$ from two orthogonal functionals, where $\eps\to0$ as $\delta\to0$. Analogous statements for finitely and even infinitely many functionals hold as well. And so does a corresponding statement for non-normal functionals. Our results have been known for C$^*$-algebras.
Type de document :
Article dans une revue
Journal of Mathematical Analysis and Applications, Elsevier, 2016, 434 (1), pp.149-170
Liste complète des métadonnées

Littérature citée [39 références]  Voir  Masquer  Télécharger
Contributeur : Hermann Pfitzner <>
Soumis le : mercredi 21 mai 2014 - 11:51:04
Dernière modification le : mardi 18 décembre 2018 - 10:54:05
Document(s) archivé(s) le : jeudi 21 août 2014 - 10:47:12


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00993502, version 1
  • ARXIV : 1405.5414



Antonio Peralta, Hermann Pfitzner. Perturbation of $\ell_1$-copies in Preduals of JBW$^*$-triples. Journal of Mathematical Analysis and Applications, Elsevier, 2016, 434 (1), pp.149-170. 〈hal-00993502〉



Consultations de la notice


Téléchargements de fichiers