C. Dumas, R. Basséguy, and A. Bergel, Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes, Electrochimica Acta, vol.53, issue.16, pp.5235-5241, 2008.
DOI : 10.1016/j.electacta.2008.02.056

URL : https://hal.archives-ouvertes.fr/hal-00475979

L. Pons, M. Delia, and A. Bergel, Effect of surface roughness, biofilm coverage and biofilm structure on the electrochemical efficiency of microbial cathodes, Bioresource Technology, vol.102, issue.3, pp.2678-2683, 2011.
DOI : 10.1016/j.biortech.2010.10.138

L. Pons, M. Delia, R. Basseguy, and A. Bergel, Effect of the semi-conductive properties of the passive layer on the current provided by stainless steel microbial cathodes, Electrochimica Acta, vol.56, issue.6, pp.2682-2688, 2011.
DOI : 10.1016/j.electacta.2010.12.039

A. Bergel, D. Féron, and A. Mollica, Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm, Electrochemistry Communications, vol.7, issue.9, pp.900-904, 2005.
DOI : 10.1016/j.elecom.2005.06.006

B. Erable and A. Bergel, First air-tolerant effective stainless steel microbial anode obtained from a natural marine biofilm, Bioresource Technology, vol.100, issue.13, pp.3302-3307, 2009.
DOI : 10.1016/j.biortech.2009.02.025

C. Dumas, R. Basséguy, and A. Bergel, Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes, Electrochimica Acta, vol.53, issue.5, pp.2494-2500, 2008.
DOI : 10.1016/j.electacta.2007.10.018

URL : https://hal.archives-ouvertes.fr/hal-00467125

S. Chen, Y. Chen, G. He, S. He, U. Schröder et al., Stainless steel mesh supported nitrogen-doped carbon nanofibers for binder-free cathode in microbial fuel cells, Biosensors and Bioelectronics, vol.34, issue.1, pp.282-285, 2012.
DOI : 10.1016/j.bios.2011.10.049

Y. Zhang, J. Sun, Y. Hu, S. Li, and Q. Xu, Bio-cathode materials evaluation in microbial fuel cells: A comparison of graphite felt, carbon paper and stainless steel mesh materials, International Journal of Hydrogen Energy, vol.37, issue.22, pp.16935-16942, 2012.
DOI : 10.1016/j.ijhydene.2012.08.064

S. Chen, H. Hou, F. Harnish, A. S. Patil, A. Carmona-martinez et al., Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells, Energy & Environmental Science, vol.46, issue.4, pp.1417-1421, 2011.
DOI : 10.1039/c0ee00605j

M. Zhou, M. Chi, J. Luo, H. He, and T. Jin, An overview of electrode materials in microbial fuel cells, Journal of Power Sources, vol.196, issue.10, pp.4427-4435, 2011.
DOI : 10.1016/j.jpowsour.2011.01.012

S. Chen, G. He, X. Hu, M. Xie, S. Wang et al., A Three-Dimensionally Ordered Macroporous Carbon Derived From a Natural Resource as Anode for Microbial Bioelectrochemical Systems, ChemSusChem, vol.24, issue.6, pp.1059-1063, 2012.
DOI : 10.1002/cssc.201100783

R. Rousseau, X. Dominguez-benetton, M. Délia, and A. Bergel, Microbial bioanodes with high salinity tolerance for microbial fuel cells and microbial electrolysis cells, Electrochemistry Communications, vol.33, pp.1-4, 2013.
DOI : 10.1016/j.elecom.2013.04.002

URL : https://hal.archives-ouvertes.fr/hal-00875612

D. A. Finkelstein, L. M. Tender, and J. G. Zeikus, Effect of Electrode Potential on Electrode-Reducing Microbiota, Environmental Science & Technology, vol.40, issue.22, pp.6990-6995, 2006.
DOI : 10.1021/es061146m

S. Chen, G. He, Q. Liu, F. Harnish, Y. Zhou et al., Layered corrugated electrode macrostructures boost microbial bioelectrocatalysis, Energy & Environmental Science, vol.102, issue.12, pp.9769-9772, 2012.
DOI : 10.1039/c2ee23344d

X. Xie, M. Ye, L. Hu, N. Liu, J. R. Mcdonough et al., Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes, Energy Environ. Sci., vol.43, issue.1, pp.5265-5270, 2012.
DOI : 10.1039/C1EE02122B

X. Zhang, M. Epifanio, and E. Marsili, Electrochemical characteristics of Shewanella loihica on carbon nanotubes-modified graphite surfaces, Electrochimica Acta, vol.102, pp.252-258, 2013.
DOI : 10.1016/j.electacta.2013.04.039

B. Cercado, N. Byrne, M. Bertrand, D. Pocaznoi, M. Rimboud et al., Garden compost inoculum leads to microbial bioanodes with potential-independent characteristics, Bioresource Technology, vol.134, pp.276-284, 2013.
DOI : 10.1016/j.biortech.2013.01.123

URL : https://hal.archives-ouvertes.fr/hal-00878185