J. Pech, E. Purgatto, C. Girardi, C. Rombaldi, and A. Latché, Current challenges in postharvest biology of fruit ripening, Current Agriculture Science and Technology, vol.2013
URL : https://hal.archives-ouvertes.fr/hal-00985018

O. Jaillon, J. Aury, B. Noel, A. Policriti, C. Clepet et al., The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla, Nature, vol.147, issue.7161, pp.463-468, 2007.
DOI : 10.1038/nature06148

URL : https://hal.archives-ouvertes.fr/inria-00180136

R. Velasco, A. Zharkikh, M. Troggio, D. Cartwright, A. Cestaro et al., A High Quality Draft Consensus Sequence of the Genome of a Heterozygous Grapevine Variety, PLoS ONE, vol.14, issue.12, pp.1326-1336, 2007.
DOI : 10.1371/journal.pone.0001326.s019

R. Ming, S. Hou, Y. Feng, Q. Yu, A. Dionne-laporte et al., The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus), Nature, vol.22, issue.7190, pp.991-966, 2008.
DOI : 10.1038/nature06856

M. Metzker, Sequencing technologies ??? the next generation, Nature Reviews Genetics, vol.37, issue.1, pp.31-46, 2010.
DOI : 10.1038/nrg2626

M. Bolger, B. Weisshaar, U. Scholz, N. Stein, B. Usadel et al., Plant genome sequencing ??? applications for crop improvement, Current Opinion in Biotechnology, vol.26, pp.31-37, 2014.
DOI : 10.1016/j.copbio.2013.08.019

V. Shulaev, D. Sargent, R. Crowhurst, T. Mockler, O. Folkerts et al., The genome of woodland strawberry (Fragariavesca) Nature Genetics The banana (Musa acuminata) genome and the evolution of monocotyledonous plants, Nature, vol.43, issue.488, pp.109-116213, 2011.

J. Garcia-mas, A. Benjak, W. Sanseverino, M. Bourgeois, G. Mir et al., The genome of melon (Cucumis melo L.), Proceedings of the National Academy of Sciences, pp.11872-11877, 2012.
DOI : 10.1073/pnas.1205415109

Q. Xu, L. Chen, X. Ruan, D. Chen, A. Zhu et al., The draft genome of sweet orange (Citrus sinensis), Nature Genetics, vol.809, issue.1, pp.59-68, 2013.
DOI : 10.1093/bioinformatics/bti191

S. Guo, J. Zhang, H. Sun, J. Salse, W. Lucas et al., The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions, Nature Genetics, vol.57, issue.1, pp.51-60, 2013.
DOI : 10.1186/gb-2010-11-10-r106

URL : https://hal.archives-ouvertes.fr/hal-01190670

J. Wu, Z. Wang, Z. Shi, S. Zhang, R. Ming et al., The genome of the pear (Pyrus bretschneideri Rehd.), Genome Research, vol.23, issue.2, pp.396-408, 2013.
DOI : 10.1101/gr.144311.112

R. Velasco, A. Zharkikh, J. Affourtit, A. Dhingra, A. Cestaro et al., The genome of the domesticated apple (Malus ?? domestica Borkh.), Nature Genetics, vol.1, issue.10, pp.833-839, 2010.
DOI : 10.1086/319501

G. 16-tomato and . Consortium, The tomato genome sequence provides insights into fleshy fruit evolution, Nature, vol.2012, issue.485, pp.635-641

H. Sonah, R. Deshmukh, V. Singh, D. Gupta, N. Singh et al., Genomic resources in horticultural crops: Status, utility and challenges, Biotechnology Advances, vol.29, issue.2, pp.199-209, 2011.
DOI : 10.1016/j.biotechadv.2010.11.002

Z. Wang, M. Gerstein, and M. Snyder, RNA-Seq: a revolutionary tool for transcriptomics, Nature Reviews Genetics, vol.328, issue.1, pp.57-63, 2009.
DOI : 10.1038/nrg2484

K. Shirasawa and H. Hirakawa, DNA marker applications to molecular genetics and genomics in tomato, Breeding Science, vol.63, issue.1, pp.21-30, 2013.
DOI : 10.1270/jsbbs.63.21

P. Martínez-garcía, D. Parfitt, E. Ogundiwin, J. Fass, H. Chan et al., High density SNP mapping and QTL analysis for fruit quality characteristics in peach (Prunuspersica L.), Tree Genetics & Genomes, vol.2013, issue.9, pp.19-36

R. Harel-beja, G. Tzuri, V. Portnoy, M. Lotan-pompan, S. Lev et al., A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes, Theoretical and Applied Genetics, vol.111, issue.3, pp.511-533, 2010.
DOI : 10.1007/s00122-010-1327-4

A. Pérez-de-castro, S. Vilanova, J. Cañizares, L. Pascual, J. Blanca et al., Application of Genomic Tools in Plant Breeding, Current Genomics, vol.13, issue.3, pp.179-195, 2012.
DOI : 10.2174/138920212800543084

*. Matsuba, Y. Nguyen, T. Wiegert, K. Falara, V. Gonzales-vigil et al., Evolution of a Complex Locus for Terpene Biosynthesis in Solanum, The Plant Cell, vol.25, issue.6, pp.2022-2036, 2013.
DOI : 10.1105/tpc.113.111013

C. Goulet, M. Mageroy, N. Lam, A. Floystad, D. Tieman et al., Role of an esterase in flavor volatile variation within the tomato clade, Proceedings of the National Academy of Sciences, pp.19009-19014, 2012.
DOI : 10.1073/pnas.1216515109

J. Giovannoni, Fruit ripening mutants yield insights into ripening control, Current Opinion in Plant Biology, vol.10, issue.3, pp.283-289, 2007.
DOI : 10.1016/j.pbi.2007.04.008

URL : https://naldc.nal.usda.gov/naldc/download.xhtml?id=9190&content=PDF

J. Vrebalov, D. Ruezinsky, V. Padmanabhan, R. White, D. Medrano et al., A MADS-Box Gene Necessary for Fruit Ripening at the Tomato Ripening-Inhibitor (Rin) Locus, Science, vol.296, issue.5566, pp.343-346, 2002.
DOI : 10.1126/science.1068181

M. Fujisawa, T. Nakano, and Y. Ito, Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation, BMC Plant Biology, vol.11, issue.1, pp.11-26, 2011.
DOI : 10.1186/1471-2229-11-26

Y. Ito, M. Kitagawa, N. Ihashi, K. Yabe, J. Kimbara et al., DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruitripening regulator RIN. The Plant Journal, pp.212-223, 2008.

C. Martel, J. Vrebalov, P. Tafelmeyer, and J. Giovannoni, The Tomato MADS-Box Transcription Factor RIPENING INHIBITOR Interacts with Promoters Involved in Numerous Ripening Processes in a COLORLESS NONRIPENING-Dependent Manner, PLANT PHYSIOLOGY, vol.157, issue.3, pp.1568-1579, 2011.
DOI : 10.1104/pp.111.181107

G. , W. Y. Cao, B. Wang, W. Tian, and S. , Unraveling the regulatory network of the MADS box transcription factor RIN in fruit ripening, The Plant Journal, vol.2012, issue.70, pp.243-255

M. Fujisawa, T. Nakano, Y. Shima, and Y. Ito, A Large-Scale Identification of Direct Targets of the Tomato MADS Box Transcription Factor RIPENING INHIBITOR Reveals the Regulation of Fruit Ripening, The Plant Cell, vol.25, issue.2, pp.371-386, 2013.
DOI : 10.1105/tpc.112.108118

S. Longhi, M. Moretto, R. Viola, R. Velasco, and C. F. , Comprehensive QTL mapping survey dissects the complex fruit texture physiology in apple (Malus x domestica Borkh.)., Journal of Experimental Botany, vol.63, issue.3, pp.1107-1121
DOI : 10.1093/jxb/err326

A. Brand, Y. Borovsky, S. Meir, and I. Rogachev, Aharoni A and Paran I. pc8.1, a major QTL for pigment content in pepper fruit, is associated with variation in plastid compartment size, Planta, vol.2012, issue.235, pp.579-588

J. Pereira-da-costa, G. Rodriguez, G. Pratta, L. Picardi, and R. Zorzoli, QTL detection for fruit shelf life and quality traits across segregating populations of tomato, Scientia Horticulturae, vol.156, pp.47-53, 2013.
DOI : 10.1016/j.scienta.2013.03.015

N. Chapman, J. Bonnet, L. Grivet, J. Lynn, N. Graham et al., High-Resolution Mapping of a Fruit Firmness-Related Quantitative Trait Locus in Tomato Reveals Epistatic Interactions Associated with a Complex Combinatorial Locus, PLANT PHYSIOLOGY, vol.159, issue.4, pp.1644-1657, 2012.
DOI : 10.1104/pp.112.200634

J. Vegas, J. Garcia-mas, and A. Monforte, Interaction between QTLs induces an advance in ethylene biosynthesis during melon fruit ripening, Theoretical and Applied Genetics, vol.136, issue.Suppl, pp.1531-1544
DOI : 10.1007/s00122-013-2071-3

L. Liu, J. Wei, M. Zhang, L. Zhang, C. Li et al., Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates, Journal of Experimental Botany, vol.63, issue.16, pp.5751-5761
DOI : 10.1093/jxb/ers224

E. Fridman, Y. Liu, L. Carmel-goren, A. Gur, M. Shoresh et al., Two tightly linked QTLs modify tomato sugar content via different physiological pathways, Molecular Genetics and Genomics, vol.266, pp.821-826, 2002.

A. Powell, C. Nguyen, T. Hill, K. Cheng, R. Figueroa-balderas et al., Uniform ripening Encodes a Golden 2-like Transcription Factor Regulating Tomato Fruit Chloroplast Development, Science, vol.336, issue.6089, pp.1711-1715
DOI : 10.1126/science.1222218

T. Harada, T. Sunako, Y. Wakasa, J. Soejima, T. Satoh et al., An allele of the 1-aminocyclopropane-1-carboxylate synthase gene ( Md-ACS1 ) accounts for the low level of ethylene production in climacteric fruits of some apple cultivars, TAG Theoretical and Applied Genetics, vol.101, issue.5-6, pp.742-746, 2000.
DOI : 10.1007/s001220051539

A. Wang, J. Yamakake, H. Kudo, Y. Wakasa, Y. Hatsuyama et al., Null Mutation of the MdACS3 Gene, Coding for a Ripening-Specific 1-Aminocyclopropane-1-Carboxylate Synthase, Leads to Long Shelf Life in Apple Fruit, PLANT PHYSIOLOGY, vol.151, issue.1, pp.391-399, 2009.
DOI : 10.1104/pp.109.135822

S. Bai, A. Wang, M. Igarashi, T. Kon, T. Fukasawa-akada et al., Distribution of MdACS3 null alleles in apple (Malus ?? domestica Borkh.) and its relevance to the fruit ripening characters, Breeding Science, vol.62, issue.1, pp.46-52, 2012.
DOI : 10.1270/jsbbs.62.46

A. Dagar, A. Weksler, H. Friedman, E. Ogundiwin, C. Cristosto et al., Comparing ripening and storage characteristics of ???Oded??? peach and its nectarine mutant ???Yuval???, Postharvest Biology and Technology, vol.60, issue.1, pp.1-6, 2011.
DOI : 10.1016/j.postharvbio.2010.11.002

M. Rodrigo, J. Marcos, F. Alferez, M. Mallent, and L. Zacarías, Characterization of Pinalate, a novel Citrus sinensis mutant with a fruit-specific alteration that results in yellow pigmentation and decreased ABA content, Journal of Experimental Botany, vol.54, issue.383, pp.727-738, 2003.
DOI : 10.1093/jxb/erg083

G. 45-rios, M. Naranjo, M. Rodrigo, E. Alós, L. Zacarías et al., Identification of a GCC transcription factor responding to fruit colour change events in citrus through the transcriptomic analyses of two mutants, BMC Plant Biology, vol.10, issue.1, p.276, 2010.
DOI : 10.1186/1471-2229-10-276

A. Wang, D. Tan, M. Tatsuki, A. Kasai, T. Li et al., Molecular mechanism of distinct ripening profiles in ???Fuji??? apple fruit and its early maturing sports, Postharvest Biology and Technology, vol.52, issue.1, pp.38-53, 2009.
DOI : 10.1016/j.postharvbio.2008.09.001

E. Eyal and A. Levy, Tomato mutants as tools for functional genomics, Current Opinion in Plant Biology, vol.5, pp.112-117, 2002.

S. Minoia, A. Petrozza, D. Onofrio, O. Piron, F. Mosca et al., A new mutant genetic resource for tomato crop improvement by TILLING technology, BMC Research Notes, vol.3, issue.1, p.69
DOI : 10.1186/1756-0500-3-69

T. Saito, T. Ariizumi, Y. Okabe, E. Asamizu, K. Hiwasa-tanase et al., TOMATOMA: A Novel Tomato Mutant Database Distributing Micro-Tom Mutant Collections, Plant and Cell Physiology, vol.52, issue.2, pp.283-296, 2011.
DOI : 10.1093/pcp/pcr004

F. Dahmani-mardas, C. Troadec, A. Boualem, S. Lévèque, A. Alsadon et al., Engineering Melon Plants with Improved Fruit Shelf Life Using the TILLING Approach, PLoS ONE, vol.27, issue.12
DOI : 10.1371/journal.pone.0015776.s004

M. González, M. Xu, C. Esteras, C. Roig, A. Monforte et al., Towards a TILLING platform for functional genomics in Piel de Sapo melons, BMC Research Notes, vol.4, issue.1, pp.4-289, 2011.
DOI : 10.1104/pp.107.102962

Y. Okabe, E. Asamizu, T. Saito, C. Matsukura, T. Ariizumi et al., Tomato TILLING Technology: Development of a Reverse Genetics Tool for the Efficient Isolation of Mutants from Micro-Tom Mutant Libraries, Plant and Cell Physiology, vol.52, issue.11, pp.1994-2005, 2011.
DOI : 10.1093/pcp/pcr134

M. Jones, F. Piron-prunier, F. Marcel, E. Piednoir-barbeau, A. Alsadon et al., Characterisation of alleles of tomato light signalling genes generated by TILLING, Phytochemistry, vol.79, issue.79, pp.78-86
DOI : 10.1016/j.phytochem.2012.04.005

A. Gady, W. Vriezen, M. Van-de-wal, P. Huang, A. Bovy et al., Induced point mutations in the phytoene synthase 1 gene cause differences in carotenoid content during tomato fruit ripening, Molecular Breeding, vol.31, issue.3, pp.801-812, 2012.
DOI : 10.1007/s11032-011-9591-9

K. Manning, M. Tor, M. Poole, Y. Hong, A. Thompson et al., A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening, Nature Genetics, vol.14, issue.8, pp.948-952, 2006.
DOI : 10.1093/bioinformatics/18.11.1427

S. Zhong, Z. Fei, Y. Chen, Y. Zheng, M. Huang et al., Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening, Nature Biotechnology, vol.57, issue.2, pp.154-159, 2013.
DOI : 10.1186/gb-2008-9-9-r137