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Abstract. The electromagnetic wave propagation in a nonlinear medium is described by the Kerr model in
the case of an instantaneous response of the material, or by the Kerr-Debye model if the material exhibits
a finite response time. Both models are quasilinear hyperbolic and are endowed with a dissipative entropy.
The initial-boundary value problem with a maximal-dissipative impedance boundary condition is considered
here. When the response time is fixed, in both the one-dimensional and two-dimensional transverse electric
cases, the global existence of smooth solutions for the Kerr-Debye system is established. When the response
time tends to zero, the convergence of the Kerr-Debye model to the Kerr model is established in the general
case, i.e. the Kerr model is the zero relaxation limit of the Kerr-Debye model.
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1 Introduction.

Nonlinear Maxwell equations are used for modelling nonlinear optical phenomena and electromagnetic wave
propagation is described by

∂tD − curl H = 0,
∂tB + curl E = 0,
div D = div B = 0.

The field quantities E and H represent the electric and magnetic fields, respectively, while D and B are the
electric and magnetic displacements. The constitutive relations are given by

B = µ0H,

D = ε0E + P,

where P is the polarization.
We consider here a homogeneous isotropic nonlinear medium (a crystal, for instance), so that the polarization
is nonlinear. The Kerr model describes an instantaneous response of the medium and, in this case, P is
given by

P = PK = ε0εr|E|2E.
If the medium exhibits a finite response time τ , one should use the Kerr-Debye model for which

P = PKD = ε0χE,

where

∂tχ+
1

τ
χ =

1

τ
εr|E|2.

(For further details we refer the reader to, for example, [17] or [20].)

The Kerr-Debye model is a relaxation approximation of the Kerr model where τ is regarded as the relaxation
parameter. (For a general discussion of relaxation problems, see [15].) Formally, when τ tends to 0, χ
converges to εr|E|2 and PKD converges to PK .
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To cope with a physically realistic situation, we need to cover the initial-boundary value problem (IBVP),
although in the rather simple geometry. We assume that the nonlinear material is confined in the region
{x1 ≥ 0}, and we set Ω =]0,+∞[×IR2, Γ = {0} × IR2 denoting its boundary. We consider the Kerr and the
Kerr-Debye models in the domain IR+

t ×Ω = [0,+∞[×Ω with the impedance boundary condition on IR+
t ×Γ

and with zero initial data.
Once non-dimensionalized, the initial and boundary value problem (IBVP) for the Kerr model takes the
following form (for (t, x) ∈ IR+ × Ω):

∂tD − curl H = 0,
∂tH + curl E = 0,

with the constitutive relation
D = (1 + |E|2)E. (1.1)

We suppose that the initial data vanish:

D(0, x) = H(0, x) = 0 for x ∈ Ω,

so that the divergence relations hold

div D = div H = 0 for t ≥ 0.

We denote by n = t(−1, 0, 0) the outer unit normal along Γ and we consider the impedance boundary
condition

H × n+ a((E × n) × n) = ϕ for (t, x) ∈ IR+ × Γ, (1.2)

where a is a positive linear map on Γ. If a = Id, (1.2) is the classical ingoing wave condition. If a = 0, (1.2)
is a Dirichlet boundary condition. The system is at rest for t ≤ 0. It is only excited by the source term ϕ

which is localized in the variable (t, x2, x3) and takes its values in Γ.

In the same fashion, the IBVP for the Kerr-Debye model (in which τ is replaced by ε) writes (for (t, x) ∈
IR+ × Ω)

∂tDε − curl Hε = 0,

∂tHε + curl Eε = 0,

∂tχε =
1

ε
(|Eε|2 − χε),

(1.3)

with the constitutive relation
Dε = (1 + χε)Eε. (1.4)

We suppose that the initial data vanish:

Dε(0, x) = Hε(0, x) = 0, χε(0, x) = 0 for x ∈ Ω,

and we have also
div Dε = div Hε = 0 for t > 0.

In addition we suppose that we have the same impedance boundary condition

Hε × n+ a((Eε × n) × n) = ϕ for (t, x) ∈ IR+ × Γ.

Two-dimensional models.

Following [19] we can also introduce the two-dimensional transverse magnetic (TM) and transverse electric
(TE) models, as follows. For the transverse magnetic case we assume that

H(x1, x2, x3) = t(0, H2(x1, x3), 0),
E(x1, x2, x3) = t(E1(x1, x3), 0, E3(x1, x3)),
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in the domain (x1, x3) ∈ {x1 > 0} × IR. The Maxwell system becomes







∂tD1 + ∂3H2 = 0,
∂tD3 − ∂1H2 = 0,
∂tH2 + ∂3E1 − ∂1E3 = 0,

while the divergence-free condition reads

∂1D1 + ∂3D3 = 0.

(In this case the divergence condition for H is irrelevant.) The impedance boundary condition reads

H2 − aE3 = ϕ with a ≥ 0.

The above system is coupled with either (1.1) (in the Kerr model), or (1.4) and the third equation in (1.3)
(in the Kerr-Debye model).

In the transverse electric case, we assume that

E(x1, x2, x3) = t(0, E2(x1, x3), 0),
H(x1, x2, x3) = t(H1(x1, x3), 0, H3(x1, x3)),

and we obtain






∂tD2 − ∂3H1 + ∂1H3 = 0,
∂tH1 − ∂3E2 = 0,
∂tH3 + ∂1E2 = 0,

(1.5)

with the divergence-free condition
∂1H1 + ∂3H3 = 0. (1.6)

The impedance boundary condition becomes

H3 + aE2 = ϕ with a ≥ 0. (1.7)

For the Kerr model, (1.5)-(1.7) is coupled with

D2 = (1 + (E2)
2),

and for the Kerr-Debye model, (1.5)-(1.7) is coupled with

D2,ε = (1 + χε)E2,ε,

∂tχε =
1

ε
((E2,ε)

2 − χε).

In the case of a fixed finite response time, numerical simulations are presented for these two-dimensional
models by finite-difference methods in [19] and by finite-element methods in [13].

One-dimensional model.

In [3], the following one-dimensional model is introduced:

E(x1, x2, x3) = t(0, e(x1), 0),
H(x1, x2, x3) = t(0, 0, h(x1)).

In this case, the IBVP for the Kerr model reads

∂td+ ∂1h = 0,
∂th+ ∂1e = 0,
d = (1 + e2)e,

(1.8)
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with the impedance boundary condition

h(t, 0) + ae(t, 0) = ϕ(t), t ≥ 0,where a ≥ 0, (1.9)

and the zero initial data
e(0, x1) = h(0, x1) = 0, x1 ≥ 0. (1.10)

The one-dimensional IBVP for the Kerr-Debye model is

∂tdε + ∂1hε = 0,
∂thε + ∂1eε = 0,

∂tχε =
1

ε
((eε)

2 − χε),

dε = (1 + χε)eε,

(1.11)

with the impedance boundary condition

hε(t, 0) + aeε(t, 0) = ϕ(t), t ≥ 0,where a ≥ 0, (1.12)

and the null initial data
eε(0, x1) = hε(0, x1) = χε(0, x1) = 0, x1 ≥ 0. (1.13)

We can also remark that the divergence conditions on h and d are irrelevant for both models.

Mathematical properties and main results.

Since both Kerr and Kerr-Debye models are endowed with strictly convex entropies, the associated systems
are symmetrizable hyperbolic. Furthermore the boundary is characteristic of constant multiplicity (except
for the system (1.8)) and the boundary conditions are maximal dissipative. So the general results in [10]
ensure the local existence of smooth solutions for smooth data. For the Kerr model a better local existence
result is proved in [16]. A similar result for the Kerr-Debye model is established in the Appendix.

We denote by T ∗ and T ∗
ε the lifespan of such smooth solutions for the Kerr and the Kerr-Debye IBVP,

respectively. Since the Kerr model is a homogeneous quasilinear hyperbolic system, shock waves can appear
at T ∗. In particular, for the one-dimensional case, we can rewrite (1.8) as a p-system which is genuinely
nonlinear for d 6= 0. In this case, using the results of [14], we can exhibit initial data such that the lifespan
T ∗ is finite with formation of shock waves (see also [4]). On the other hand the Kerr-Debye model is a
quasilinear hyperbolic system with source term and it is totally linearly degenerate, i.e. each characteristic
field is linearly degenerate. So we can expect that, if the lifespan T ∗

ε is finite, the behavior of the smooth
solution is analogous to the semilinear case. Indeed we obtained this result in the 1-d case in [5]: if T ∗

ε is
finite then the solution and its gradient explode, i.e. shock formation never occurs. In fact, using stronger
dissipative properties for the Kerr-Debye model we proved in [7] that T ∗

ε = +∞ for the one-dimensional
Cauchy problem. This global existence result should be also established for the Cauchy problem in the 2-d
TE case. In the present paper we choose to prove the same result for the impedance IBVP in the 1-d and
2-d TE cases (see Theorem 1 below). In the proofs we must take into account a new difficulty which does
not appear for the Cauchy problem: the boundary Γ of the domain Ω is characteristic.

The Kerr-Debye model is a relaxation approximation of the Kerr model in the sense developed in [8] . The
stability conditions in [8] and [18] are satisfied so it is natural to study the behavior of the smooth solutions
to the Kerr-Debye model as the relaxation coefficient ε tends to zero. Concerning the Cauchy problem with
initial data (D0, H0, χ0) satisfying div D0 = div H0 = 0, χ0 ≥ 0, the convergence for the smooth solutions
is proved in [11] using the results of [18]. Generally a boundary layer in time appears because of the non
compatibility of the initial data with the equilibrium condition χ = |E|2. We study here the convergence for
the impedance IBVP. In this case no boundary layer appears, neither in the time variable (since the zero
initial data fit the equilibrium condition) nor in the space variables (since the boundary condition is the
same for both IBVP). In the one-dimensional case, we presented in [3] a first convergence result. In fact we
obtained the convergence of (1.11)-(1.12)-(1.13) to (1.8)-(1.9)-(1.10) on some interval [0, T̃ ] ⊂ [0, T ∗[. The
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same kind of convergence result is announced for the 3-d case in [6]. Here we improve these results in all
cases since the convergence is obtained on each interval [0, T ] ⊂ [0, T ∗[.

Our paper is organized as follows. In Section 2 we exhibit general properties of the Kerr and the Kerr-Debye
models. For a fixed ε we establish the global existence result of the solutions to the Kerr Debye 2-d TE
model. Section 3 is devoted to convergence results when the relaxation parameter tends to zero.

2 General Properties.

2.1 Properties of the Kerr model.

We recall the initial-boundary value problem for the general Kerr model:







∂tD − curl H = 0,
∂tH + curl E = 0,
D = (1 + |E|2)E,

(2.1)

for (t, x) ∈ IR+ × Ω together with the initial and boundary conditions

D(t = 0) = H(t = 0) = 0 for x ∈ Ω, (2.2)

H × n+ a((E × n) × n) = ϕ for (t, x) ∈ IR+ × Γ. (2.3)

The energy density given by

EK(D,H) =
1

2
(|E|2 + |H |2 +

3

2
|E|4)

is a strictly convex entropy (with associated flux function E × H), so (2.1) is a quasilinear hyperbolic
symmetrizable system.
In the three-dimensional case, the eigenvalues are (for ξ 6= 0)

λ1(E, ξ) ≤ λ2(E, ξ) < λ3 = λ4 = 0 < λ5 = −λ2 ≤ λ6 = −λ1,

so the boundary IR+ × Γ is characteristic of constant multiplicity two. By direct calculations we obtain

λ1(E, ξ) = −(1 + |E|2)− 1
2 |ξ|,

λ2(E, ξ) = −(1 + |E|2)− 1
2 (1 + 3|E|2)− 1

2 ((1 + |E|2)|ξ|2 + 2(E · ξ)2) 1
2 .

In the two-dimensional cases, TM and TE, the eigenvalues are of the form:

λ1(E, ξ) < λ2 = 0 < λ3 = −λ1,

so the boundary IR+ × Γ is characteristic of constant multiplicity one. By direct calculations we obtain for
the TM model:

λTM
1 (E, ξ) = −(1 + |E|2)− 1

2 (1 + 3|E|2)− 1
2 ((1 + |E|2)|ξ|2 + 2(E · ξ)2) 1

2 ,

and for the TE model:
λTE

1 (E, ξ) = −(1 + 3|E2|2)−
1
2 |ξ|.

In the one-dimensional case, the system is strictly hyperbolic and the boundary is non characteristic. We
have

λ1(E) < 0 < λ2 = −λ1,

with
λ1(E) = −(1 + 3e2)−

1
2 .

We remark that the impedance boundary condition (2.3) is maximal dissipative. Generally speaking local
existence results of smooth solutions to IBVP for quasilinear hyperbolic systems with characteristic boundary
are available in [10]. For the Kerr system (2.1)-(2.2)-(2.3) we can also apply a more adapted result in [16].
We assume that the source term ϕ is compactly supported in IR+×Γ. We denote by Hs the classical Sobolev
spaces and we suppose that ϕ belongs to Hs(IRt × Γ) for s great enough. So the boundary condition (2.3)
and the initial data (2.2) are compatible and by [16] we obtain smooth local solutions.
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Proposition 1 Let ϕ ∈ H3(IR × Γ) compactly supported in IR+ × Γ. Then there exists a maximal smooth
solution (D,H) to the IBVP (2.1)-(2.2)-(2.3) which lifespan is denoted by T ∗ and such that

∂i
t(D,H) ∈ C0([0, T ∗[;H3−i(Ω)) for i = 0, 1, 2, 3.

Remark 1 In the third part we need more regular solutions. In fact, using [10] we obtain the following
result: for all k ∈ IN , there exists s0(k) such that if ϕ ∈ Hs0(k)(IR × Γ) then

∂i
t(D,H) ∈ C0([0, T ∗[;Hk−i(Ω)) for i = 0, . . . , k.

For example, for k = 7, using theorem 2 in [10] we obtain that s0(7) = 18.

The previous existence result is stated in the three-dimensional case. Analogous results can be obtained for
both the two-dimensional and the one-dimensional cases.

2.2 Properties of the Kerr-Debye models.

Consider for a fixed ε > 0 the Kerr-Debye model











































∂tDε − curl Hε = 0,

∂tHε + curl Eε = 0,

∂tχε =
1

ε
(|Eε|2 − χε),

Dε = (1 + χε)Eε.

(2.4)

for (t, x) ∈ IR+ × Ω together with the initial and boundary conditions

Dε(0, x) = Hε(0, x) = 0, χε(0, x) = 0 for x ∈ Ω, (2.5)

Hε × n+ a((Eε × n) × n) = ϕ for (t, x) ∈ IR+ × Γ. (2.6)

The divergence free conditions are preserved by the system:

div Hε = div (1 + χε)Eε = 0. (2.7)

By the third equation in (2.4) we observe that we have

χε ≥ 0.

The energy density given by

EKD(D,H, χ) =
1

2
(1 + χ)−1|D|2 +

1

2
|H |2 +

1

4
χ2 (2.8)

is a strictly convex entropy in the domain {χ ≥ 0} (with associated flux function E×H = (1+χ)−1D×H).
So (2.4) is a quasilinear symmetrizable hyperbolic system.

In the three-dimensional case the eigenvalues are, for ξ 6= 0,

µ1(χ, ξ) = µ2 < µ3 = µ4 = µ5 = 0 < µ6 = µ7 = −µ1,

where µ1 = −(1 + χ)−
1
2 |ξ|. So the boundary is characteristic of constant multiplicity three.

In the two-dimensional cases we obtain

µ1(χ, ξ) < µ2 = µ3 = 0 < µ4 = −µ1,
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where µ1 = −(1 + χ)−
1
2 |ξ|. So the boundary is characteristic of constant multiplicity two.

In the one-dimensional case, the system is strictly hyperbolic and the boundary is characteristic of constant
multiplicity one. The eigenvalues are

µ1(χ) < µ2 = 0 < µ3 = −µ1,

where µ1 = −(1 + χ)−
1
2 .

We remark that each characteristic field of the quasilinear hyperbolic system (2.4) is linearly degenerate. It

suffices to prove this property for the eigenvalue µ1(χ, ξ) = −(1 + χ)−
1
2 |ξ| for which the last component of

the corresponding eigenvector vanishes, so we have

∇µ1 · r1 ≡ 0.

In the 3-d case this property is also obtained by a general result in [2].

Using the special structure of the Kerr-Debye model, we prove in the Appendix the following existence result.

Proposition 2 Let ϕ ∈ H5(IR × Γ) compactly supported in IR+ × Γ. Then there exists a maximal smooth
solution (Dε, Hε, χε) to the IBVP (2.4)-(2.5)-(2.6) which lifespan is denoted by T ∗

ε and such that

∂i
t(Dε, Hε, χε) ∈ C0([0, T ∗

ε [;H3−i(Ω)) for i = 0, 1, 2, 3.

Analogous results can be established in both the 2-d and the 1-d cases.

2.3 Dissipative properties of the Kerr-Debye models.

For the Cauchy problem, it is well known (see [11]) that the Kerr-Debye system is dissipative and we have

d

dt

∫

IR3

EKD(D,H, χ)dx = −ε
2

∫

IR3

|∂tχ|2dx.

We generalize this dissipative formula for the IBVP (2.4)-(2.5)-(2.6). In addition we exhibit another dissipa-
tive property for the time derivatives. To start with we extend the boundary condition (2.6) in the following
way: we replace H2 by H2 + ϕ3(t, x2, x3)η(x1), H3 by H3 − ϕ2(t, x2, x3)η(x1), where η is a cut off function
which is equal to 1 in a neighbourhood of 0, compactly supported in the interval [0, 1[. Furthermore, to
preserve the divergence free condition (2.7) we replace H1 by

H1 + (∂2ϕ3 − ∂3ϕ2)(t, x2, x3)

∫ +∞

x1

η(s)ds

and we denote

R(t, x) =

















(∂2ϕ3 − ∂3ϕ2)(t, x2, x3)

∫ +∞

x1

η(s)ds

ϕ3(t, x2, x3)η(x1)

−ϕ2(t, x2, x3)η(x1)

















.

Then the system (2.4)-(2.7) becomes in the variable V = (U, χ) = (E,H, χ):

(i) (1 + χ)∂tE + (∂tχ)E − curl H = G1,

(ii) ∂tH + curl E = G2,

(iii) ∂tχ =
1

ε
(|E|2 − χ),

(2.9)
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where G1 = curl R and G2 = −∂tR, with the homogeneous initial and boundary conditions:

V (0, x) = 0, x ∈ Ω, (2.10)

H × n+ a((E × n) × n) = 0, (t, x) ∈ IR+ × Γ. (2.11)

The divergence free conditions are preserved:

div H = div ((1 + χ)E) = 0. (2.12)

For the IBVP (2.9)-(2.12) the dissipation properties are described by the following result:

Proposition 3 Let V be the smooth solution to (2.9)-(2.12) given by Proposition 2. We denote ET =
(0, E2, E3). Then, on the interval [0, T ∗

ε [, we have

d

dt

∫

Ω

EKD(D,H, χ)dx+
ε

2

∫

Ω

|∂tχ|2dx+

∫

Γ

a(ET ) ·ET dx2dx3 =

∫

Ω

(G1 · E +G2 ·H)dx, (2.13)

1

2

d

dt

∫

Ω

(

(1 + χ)|∂tE|2 + |∂tH |2 +
1

2
(∂tχ)2

)

dx+
3

2ε

∫

Ω

|E|2|∂tE|2dx+
ε

2

∫

Ω

|∂ttχ|2dx

+

∫

Γ

a(∂tET ) · ∂tET dx2dx3 =
3

2ε

∫

Ω

χ|∂tE|2dx+

∫

Ω

(∂tG1 · ∂tE + ∂tG2 · ∂tH)dx.

(2.14)

Proof. Taking the inner product of (2.9.i) with E and (2.9.ii) with H we obtain
∫

Ω

(1+χ)∂tE ·Edx+

∫

Ω

|E|2∂tχdx−
∫

Ω

curl H ·Edx+

∫

Ω

∂tH ·Hdx+

∫

Ω

curl E ·Hdx =

∫

Ω

(G1 ·E+G2 ·H)dx.

(2.15)
After integrating by parts we obtain

−
∫

Ω

curl H ·Edx +

∫

Ω

curl E ·Hdx =

∫

Γ

(H × n) · Edx2dx3

= −
∫

Γ

a((E × n) × n) ·Edx2dx3

=

∫

Γ

a(ET ) ·ET dx2dx3.

In addition, we have
∫

Ω

(1 + χ)∂tE · Edx =
1

2

d

dt

∫

Ω

(1 + χ)|E|2dx − 1

2

∫

Ω

|E|2∂tχdx.

Using the last equation in (2.9), we obtain

1

2

∫

Ω

|E|2∂tχdx =
1

4

d

dt

∫

Ω

|χ|2dx+
ε

2

∫

Ω

(∂tχ)2dx.

So replacing in (2.15) we obtain (2.13).

We differentiate (2.9) and (2.11) with respect to t:

(i) (1 + χ)∂ttE + 2∂tχ∂tE + ∂ttχE − curl ∂tH = ∂tG1,

(ii) ∂ttH + curl ∂tE = ∂tG2,

(iii) ∂ttχ =
2

ε
E · ∂tE − 1

ε
∂tχ,
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∂tH × n+ a((∂tE × n) × n) = 0 in IR+ × Γ.

As before we obtain

1

2

d

dt

∫

Ω

(

(1 + χ)|∂tE|2 + |∂tH |2
)

dx+
3

2

∫

Ω

∂tχ|∂tE|2dx+

∫

Ω

∂ttχE · ∂tEdx+

∫

Γ

a(∂tET ) · ∂tET dx2dx3

=

∫

Ω

(∂tG1 · ∂tE + ∂tG2 · ∂tH)dx.

The last equation in (2.9) yields

∫

Ω

∂ttχE · ∂tEdx =
1

4

d

dt

∫

Ω

(∂tχ)2dx+
ε

2

∫

Ω

(∂ttχ)2dx,

so (2.14) holds.

Remark 2 It is clear that (2.14) holds also for the Cauchy problem.

2.4 Global existence for the 2d TE Kerr-Debye system.

For the two-dimensional TE model, the system is the following:











































∂tD2 − ∂3H1 + ∂1H3 = 0,

∂tH1 − ∂3E2 = 0,

∂tH3 + ∂1E2 = 0,

∂tχ =
1

ε
(|E2|2 − χ),

(2.16)

for t > 0, for (x1, x3) ∈ IR+ × IR, together with zero initial data

D2(0, x1, x3) = H1(0, x1, x3) = H3(0, x1, x3) = χ(0, x1, x3) = 0 for x1 > 0, x3 ∈ IR, (2.17)

and the impedance boundary condition

H3(t, 0, x3) + aE2(t, 0, x3) = ϕ(t, x3) for t > 0, x3 ∈ IR. (2.18)

Recall that we have χ ≥ 0 and
∂1H1 + ∂3H3 = 0. (2.19)

We obtain the following global existence result.

Theorem 1 Let ϕ ∈ H5(IR2), compactly supported in IR+× IR. Let ε > 0. Then the smooth solution
W = (D2, H1, H3, χ) to the IBVP (2.16)-(2.17)-(2.18) is defined on [0,+∞[ (T ∗

ε = +∞).

Proof of Theorem 1.

We fix ε > 0 and we assume that T ∗
ε < +∞. Then from Proposition 2, if T ∗

ε < +∞, then

lim
T→T∗

ε

‖W‖H3(ΩT ) = +∞, (2.20)

where

Hp(ΩT ) =

{

W such that ‖W‖Hp(ΩT ) :=

p
∑

i=0

‖∂i
tW‖L∞(0,T ;Hp−i(Ω)) < +∞

}

.
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By variational estimates we will prove uniform bounds on ‖W‖H3(ΩT ) for T < T ∗
ε and so we will obtain a

contradiction with (2.20), which proves that T ∗
ε = +∞.

With this object, as in the 3-d case, we extend the boundary condition (2.20): we replace H3(t, x1, x3)
by H3(t, x1, x3) + ϕ(t, x3)η(x1) where η is a smooth function compactly supported in IR+, equal to 1 in a
neighbourhood of 0. Furthermore, to preserve the divergence free condition (2.19) we replace H1(t, x1, x3)

by H1(t, x1, x3) + ∂3ϕ(t, x3)

∫ +∞

x1

η(s)ds. Then the system (2.16)-(2.17)-(2.18) becomes, in the variable

V = (E2, H1, H3, χ):






















(1 + χ)∂tE2 − ∂3H1 + ∂1H3 = −∂tχE2 +G1,

∂tH1 − ∂3E2 = G2,

∂tH3 + ∂1E2 = G3,

(2.21)

∂tχ =
1

ε
(|E2|2 − χ), (2.22)

together with both zero initial data and homogeneous boundary condition:

V (0, x1, x3) = 0,

H3(t, 0, x3) + aE2(t, 0, x3) = 0, (2.23)

where

G1(t, x1, x3) = ∂2
3ϕ(t, x3)

∫ +∞

x1

η(s)ds − ϕ(t, x3)η
′(x1),

G2(t, x1, x3) = ∂t∂3ϕ(t, x3)

∫ +∞

x1

η(s)ds,

G3(t, x1, x3) = −∂tϕ(t, x3)η(x1).

We recall that the field H remains divergence free:

∂1H1 + ∂3H3 = 0. (2.24)

In this case the dissipation formulae (2.13)-(2.14) read

1

2

d

dt

∫

Ω

(

(1 + χ)|E2|2 + |H |2 +
1

2
|χ|2

)

dx1dx3 +
ε

2

∫

Ω

|∂tχ|2dx+

∫

Γ

a|E2|2dx3 =

∫

Ω

G · Udx. (2.25)

and

1

2

d

dt

∫

Ω

(

(1 + χ)|∂tE2|2 + |∂tH |2 +
1

2
|∂tχ|2

)

dx1dx3 +
3

2ε

∫

Ω

|E2|2|∂tE2|2dx+
ε

2

∫

Ω

|∂ttχ|2dx

+

∫

Γ

a|∂tE2|2dx3 =
3

2ε

∫

Ω

χ|∂tE|2dx+

∫

Ω

∂tG · ∂tUdx

(2.26)

where G = (G1, G2, G3) and U = (E2, H1, H3).
From (2.25), using Gronwall lemma (recall that χ ≥ 0), there exists a constant C such that

‖V ‖H0(ΩT∗

ε
) = ‖V ‖L∞(0,T∗

ε ;L2(Ω)) ≤ C. (2.27)

Estimates on the first order time derivatives.

We recall the derivatives of (2.21)-(2.22)-(2.23) with respect to t:
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(1 + χ)∂2
tE2 + 2∂tχ∂tE2 + ∂2

t χE2 − ∂3∂tH1 + ∂1∂tH3 = ∂tG1,

∂2
tH1 − ∂3∂tE2 = ∂tG2,

∂2
tH3 + ∂1∂tE2 = ∂tG3,

(2.28)

∂2
t χ =

1

ε
(2E2∂tE2 − ∂tχ), (2.29)

∂tH3(t, 0, x3) + a∂tE2(t, 0, x3) = 0. (2.30)

By the equations, we obtain zero initial data

∂tV (0, x1, x3) = 0.

From these equations, we obtained (2.26), and by Gronwall lemma, there exists C > 0 such that

‖∂tV ‖L∞(0,T∗

ε ;L2(Ω)) ≤ C. (2.31)

The last two equations in (2.21) yield

‖E2‖L∞(0,T∗

ε ;H1(Ω)) ≤ C. (2.32)

Solving (2.22) we get

χ(t, x) =
1

ε

∫ t

0

exp(
s− t

ε
)|E2(s, x)|2ds. (2.33)

From Sobolev theorem and (2.32), for all p ∈ [2,+∞[ there exists C > 0 such that

‖E2‖L∞(0,T∗

ε ;Lp(Ω)) ≤ C, (2.34)

and so with (2.33), for all p with 1 ≤ p < +∞, there exists C such that

‖χ‖L∞(0,T∗

ε ;Lp(Ω)) ≤ C. (2.35)

So by (2.22) we obtain that, for all p ∈ [1,+∞[,

‖∂tχ‖L∞(0,T∗

ε ;Lp(Ω)) ≤ C. (2.36)

Estimates on the second order time derivatives.

We differentiate (2.28)-(2.29)-(2.30) with respect to t. We obtain























(1 + χ)∂3
tE2 + 3∂tχ∂

2
tE2 + 3∂2

t χ∂tE2 + ∂3
t χE2 − ∂3∂

2
tH1 + ∂1∂

2
tH3 = ∂2

tG1,

∂3
tH1 − ∂3∂

2
tE2 = ∂2

tG2,

∂3
tH3 + ∂1∂

2
tE2 = ∂2

tG3,

(2.37)

∂3
t χ =

1

ε
(2|∂tE2|2 + 2E2∂

2
tE2 − ∂2

t χ), (2.38)

with homogeneous boundary condition

∂2
tH3(t, 0, x3) + a∂2

tE2(t, 0, x3) = 0, (2.39)

and by the equations, the initial data vanish

∂2
t V (0, x1, x3) = 0.
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Taking the inner product of (2.37) with ∂2
tU we obtain

1

2

d

dt

∫

Ω

(

(1 + χ)|∂2
tE2|2 + |∂2

tH |2
)

dx1dx3 +

∫

Γ

a|∂2
tE2|2dx3

+
5

2

∫

Ω

∂tχ|∂2
tE2|2dx+ 3

∫

Ω

∂2
t χ∂tE2∂

2
tE2 +

∫

Ω

∂3
t χE2∂

2
tE2 =

∫

Ω

∂2
tG · ∂2

tUdx.

Equation (2.22) yields
∫

Ω

∂tχ|∂2
tE2|2dx =

1

ε

∫

Ω

|E2|2|∂2
tE2|2dx− 1

ε

∫

Ω

χ|∂2
tE2|2dx.

From (2.29) we get
∫

Ω

∂2
t χ∂tE2∂

2
tE2dx =

2

ε

∫

Ω

E2|∂tE2|2∂2
tE2dx− 1

ε

∫

Ω

∂tχ∂tE2∂
2
tE2dx.

From (2.38) we have
∫

Ω

∂3
t χE2∂

2
tE2dx =

2

ε

∫

Ω

E2|∂tE2|2∂2
tE2dx+

2

ε

∫

Ω

|E2|2|∂2
tE2|2dx− 2

ε2

∫

Ω

|E2|2∂tE2∂
2
tE2dx

+
1

ε2

∫

Ω

∂tχE2∂
2
tE2dx.

So we obtain

1

2

d

dt

∫

Ω

(

(1 + χ)|∂2
tE2|2 + |∂2

tH |2
)

dx1dx3 +

∫

Γ

a|∂2
tE2|2dx3 +

9

2ε

∫

Ω

|E2|2|∂2
tE2|2dx =

∫

Ω

∂2
tG · ∂2

tUdx+
5

2ε

∫

Ω

χ|∂2
tE2|2dx− 8

ε

∫

Ω

E2∂
2
tE2|∂tE2|2dx+

3

ε

∫

Ω

∂tχ∂tE2∂
2
tE2dx

+
2

ε2

∫

Ω

|E2|2∂tE2∂
2
tE2dx− 1

ε2

∫

Ω

∂tχE2∂
2
tE2dx.

(2.40)

By (2.28) and (2.31) we have
‖∂tE2‖H1(Ω)) ≤ C(1 + ‖∂2

tH‖L2(Ω)). (2.41)

Let us estimate the right hand side terms in (2.40). First we have
∣

∣

∣

∣

8

ε

∫

Ω

E2∂
2
tE2|∂tE2|2dx

∣

∣

∣

∣

≤ 9

4ε

∫

Ω

|E2|2|∂2
tE2|2dx+K(ε)

∫

Ω

|∂tE2|4dx.

By interpolation inequalities and Sobolev theorem, we have

‖u‖L4(Ω) ≤ C‖u‖
H

1
2 (Ω)

≤ ‖u‖
1
2

L2(Ω)‖u‖
1
2

H1(Ω).

So using (2.41)
∣

∣

∣

∣

8

ε

∫

Ω

E2∂
2
tE2|∂tE2|2dx

∣

∣

∣

∣

≤ 9

4ε

∫

Ω

|E2|2|∂2
tE2|2dx+K(ε)(1 + ‖∂2

tH‖2
L2(Ω)). (2.42)

By (2.36) and (2.41) we obtain
∣

∣

∣

∣

∫

Ω

∂tχ∂tE2∂
2
tE2dx

∣

∣

∣

∣

≤ C‖∂tχ‖L4(Ω)‖∂tE2‖L4(Ω)‖∂2
tE2‖L2(Ω)

≤ C‖∂tE2‖H1(Ω)‖∂2
tE2‖L2(Ω)

≤ C(1 + ‖∂2
tU‖2

L2(Ω)).

(2.43)
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In the same way, (2.34) and (2.41) yield

∣

∣

∣

∣

∫

Ω

|E2|2∂tE2∂
2
tE2dx

∣

∣

∣

∣

≤ C(1 + ‖∂2
tU‖2

L2(Ω)), (2.44)

and by (2.34) and (2.36) we have

∣

∣

∣

∣

∫

Ω

∂tχE2∂
2
tE2dx

∣

∣

∣

∣

≤ C(1 + ‖∂2
tU‖2

L2(Ω)). (2.45)

Using (2.42), (2.43), (2.44), (2.45) in (2.40), we obtain

1

2

d

dt

∫

Ω

(

(1 + χ)|∂2
tE2|2 + |∂2

tH |2
)

dx1dx3 ≤ C(1 + ‖∂2
tU‖2

L2(Ω)) +
5

2ε

∫

Ω

χ|∂2
tE2|2dx,

so by Gronwall lemma there exists C = C(T ∗
ε ) such that

‖∂2
tU‖L∞(0,T∗

ε ;L2(Ω)) ≤ C. (2.46)

So by (2.41)
‖∂tE2‖L∞(0,T∗

ε ;H1(Ω)) ≤ C, (2.47)

and by Sobolev theorem, for all p, 2 ≤ p < +∞,

‖∂tE2‖L∞(0,T∗

ε ;Lp(Ω)) ≤ C. (2.48)

As ∂2
t χ =

2

ε
E2∂tE2 −

1

ε
∂tχ, by (2.34), (2.36), (2.48) we have for 1 ≤ p < +∞:

‖∂2
t χ‖L∞(0,T∗

ε ;Lp(Ω)) ≤ C. (2.49)

Estimates on the third order time derivatives.

We differentiate (2.37)-(2.38)-(2.39) with respect to t:























(1 + χ)∂4
tE2 + 4∂tχ∂

3
tE2 + 6∂2

t χ∂
2
tE2 + 4∂3

t χ∂tE2 + ∂4
t χE2 − ∂3∂

3
tH1 + ∂1∂

3
tH3 = ∂3

tG1,

∂4
tH1 − ∂3∂

3
tE2 = ∂3

tG2,

∂4
tH3 + ∂1∂

3
tE2 = ∂3

tG3,

(2.50)

∂4
t χ =

6

ε
∂tE2∂

2
tE2 +

2

ε
E2∂

3
tE2 −

2

ε2
|∂tE2|2 −

2

ε2
E2∂

2
tE2 +

1

ε2
∂2

t χ, (2.51)

together with homogeneous boundary condition:

∂3
tH3(t, 0, x3) + a∂3

tE2(t, 0, x3) = 0,

and by the equations, the initial data vanish:

∂3
t V (0, x1, x3) = 0.

We take the inner product of (2.50) with ∂3
tU and we obtain

1

2

d

dt

∫

Ω

(

(1 + χ)|∂3
tE2|2 + |∂3

tH |2
)

dx1dx3 +

∫

Γ

a|∂3
tE2|2dx3 +

7

2

∫

Ω

∂tχ|∂3
tE2|2dx+ 6

∫

Ω

∂2
t χ∂

2
tE2∂

3
tE2

+4

∫

Ω

∂3
t χ∂tE2∂

3
tE2 +

∫

Ω

∂4
t χE2∂

3
tE2 =

∫

Ω

∂3
tG · ∂3

tUdx.
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Equation (2.22) yields

∫

Ω

∂tχ|∂3
tE2|2dx =

1

ε

∫

Ω

|E2|2|∂3
tE2|2dx− 1

ε

∫

Ω

χ|∂3
tE2|2dx.

From (2.38)

∫

Ω

∂3
t χ∂tE2∂

3
tE2 =

2

ε

∫

Ω

|∂tE2|3∂3
tE2dx +

2

ε

∫

Ω

E2∂tE2∂
2
tE2∂

3
tE2dx−

∫

Ω

∂2
t χ∂tE2∂

3
tE2.

From (2.51), we get

∫

Ω

∂4
t χE2∂

3
tE2 =

6

ε

∫

Ω

E2∂tE2∂
2
tE2∂

3
tE2dx+

2

ε

∫

Ω

|E2|2|∂3
tE2|2dx− 2

ε2

∫

Ω

E2|∂tE2|2∂3
tE2dx

− 2

ε2

∫

Ω

|E2|2∂2
tE2∂

3
tE2dx+

1

ε2

∫

Ω

∂2
t χE2∂

3
tE2.

So we arrive at

1

2

d

dt

∫

Ω

(

(1 + χ)|∂3
tE2|2 + |∂3

tH |2
)

dx1dx3 +

∫

Γ

a|∂3
tE2|2dx3 +

11

2ε

∫

Ω

|E2|2|∂3
tE2|2dx

=

∫

Ω

∂3
tG · ∂3

tUdx+
7

2ε

∫

Ω

χ|∂3
tE2|2dx+ I1 + I2,

(2.52)

where

I1 = −6

∫

Ω

∂2
t χ∂

2
tE2∂

3
tE2dx− 14

ε

∫

Ω

E2∂tE2∂
2
tE2∂

3
tE2dx+

2

ε

∫

Ω

|E2|2∂2
tE2∂

3
tE2dx,

I2 = −8

ε

∫

Ω

|∂tE2|3∂3
tE2dx+

4

ε

∫

Ω

∂2
t χ∂tE2∂

3
tE2dx+

2

ε2

∫

Ω

E2|∂tE2|2∂3
tE2dx

− 1

ε2

∫

Ω

∂2
t χE2∂

3
tE2dx.

From (2.37) and (2.46) we have

‖∂2
tE2‖H1(Ω) ≤ K(1 + ‖∂3

tH‖L2(Ω)). (2.53)

So by Sobolev theorem, (2.34), (2.48), (2.49) and (2.53), we get

|I1| ≤ C(1 + ‖∂3
tU‖2

L2(Ω)). (2.54)

By (2.34), (2.48), (2.49), we have
|I2| ≤ C‖∂3

tE2‖L2(Ω). (2.55)

Estimates (2.54) and (2.55) together with (2.52) imply

1

2

d

dt

∫

Ω

(

(1 + χ)|∂3
tE2|2 + |∂3

tH |2
)

dx1dx3 ≤ C(1 + ‖∂3
tU‖2

L2(Ω)) +
7

2ε

∫

Ω

χ|∂3
tE2|2dx.

So there exists a constant C = C(T ∗
ε ) > 0 such that

‖∂3
tU‖L∞(0,T∗

ε ;L2(Ω)) ≤ C.

By (2.53)
‖∂2

tE2‖L∞(0,T∗

ε ;H1(Ω)) ≤ C,

14



and, for all p, 2 ≤ p < +∞,

‖∂2
tE2‖L∞(0,T∗

ε ;Lp(Ω)) ≤ C. (2.56)

As ∂3
t χ =

2

ε
|∂tE2|2 +

2

ε
E2∂

2
tE2 −

1

ε
∂2

t χ, using (2.34), (2.48), (2.49) and (2.56), for 1 ≤ p < +∞,

‖∂3
t χ‖L∞(0,T∗

ε ;Lp(Ω)) ≤ C.

Estimates in H3(ΩT∗

ε
).

In order to estimate the space derivatives of H we recall the following div-curl lemma (see [9]).

Lemma 1 Let Ω = {(x1, x3), x1 > 0}. We denote Γ = ∂Ω. Let H = (H1, H3) ∈ Hk(Ω) such that

div H = ∂1H1 + ∂3H3 ∈ Hk(Ω), curl H = −∂1H3 + ∂3H1 ∈ Hk(Ω), H3 ∈ Hk+ 1
2 (Γ). Then H ∈ Hk+1(Ω)

and we have

‖H‖Hk+1(Ω) ≤ C
(

‖H‖Hk(Ω) + ‖div H‖Hk(Ω) + ‖curl H‖Hk(Ω) + ‖H‖
H

k+ 1
2 (Γ)

)

.

By the first equation in (2.21), using (2.34), (2.35), (2.36) and (2.48), we obtain

‖curl H‖L∞(0,T∗

ε ;L2(Ω)) ≤ C.

Recall that div H = 0 and on the boundary Γ, H3(t, 0, x3) = −aE2(t, 0, x3), so by (2.32),

‖H3(t, 0, .)‖
L∞(0,T∗

ε ;H
1
2 (Γ))

≤ C.

Using lemma 1, we obtain
‖H‖L∞(0,T∗

ε ;H1(Ω)) ≤ C.

By the first equation in (2.28), using (2.34), (2.35), (2.36), (2.48), (2.49) and (2.56), we get

‖curl ∂tH‖L∞(0,T∗

ε ;L2(Ω)) ≤ C.

Condition (2.23) together with (2.47) yield

‖∂tH3(t, 0, .)‖
L∞(0,T∗

ε ;H
1
2 (Γ))

≤ C,

thus
‖∂tH‖L∞(0,T∗

ε ;H1(Ω)) ≤ C. (2.57)

By the second and the third equations in (2.21), by (2.32) and (2.57),

‖E2‖L∞(0,T∗

ε ;H2(Ω)) ≤ C, (2.58)

and by Sobolev theorem,
‖E2‖L∞([0,T∗

ε [×Ω) ≤ C.

As H2(Ω) is an algebra, using (2.33), we obtain

‖χ‖L∞(0,T∗

ε ;H2(Ω)) ≤ C, (2.59)

and by Sobolev theorem,
‖χ‖L∞([0,T∗

ε [×Ω) ≤ C.

Since ∂tχ =
1

ε
(|E2|2 − χ),

‖∂tχ‖L∞(0,T∗

ε ;H2(Ω)) ≤ C, (2.60)

and by Sobolev theorem,
‖∂tχ‖L∞([0,T∗

ε [×Ω) ≤ C.
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In addition with (2.38) we have
‖∂2

t χ‖L∞(0,T∗

ε ;H1(Ω)) ≤ C.

By the first equation in (2.21), using (2.47), (2.58), (2.59), (2.60), we obtain

‖curl H‖L∞(0,T∗

ε ;H1(Ω)) ≤ C.

Using (2.58), (2.23) yields
‖H3(t, 0, .)‖

L∞(0,T∗

ε ;H
3
2 (Γ))

≤ C,

so by Lemma 1,
‖H‖L∞(0,T∗

ε ;H2(Ω)) ≤ C.

By analogous arguments, we prove successively that

‖∂2
tH‖L∞(0,T∗

ε ;H1(Ω)) ≤ C,

‖∂tE2‖L∞(0,T∗

ε ;H2(Ω)) ≤ C,

‖∂2
t χ‖L∞(0,T∗

ε ;H2(Ω)) ≤ C,

‖∂tH‖L∞(0,T∗

ε ;H2(Ω)) ≤ C,

‖E2‖L∞(0,T∗

ε ;H3(Ω)) ≤ C,

‖χ‖L∞(0,T∗

ε ;H3(Ω)) ≤ C,

‖H‖L∞(0,T∗

ε ;H3(Ω)) ≤ C.

Finally,
‖V ‖H3(ΩT∗

ε
) ≤ C.

This estimate contradicts (2.20), so T ∗
ε = +∞. The proof of Theorem 1 is complete.

2.5 Global existence for the 1-d Kerr-Debye system.

The one-dimensional Kerr Debye IBVP writes:











































∂td+ ∂xh = 0,

∂th+ ∂xe = 0,

∂tχ =
1

ε
(e2 − χ),

d = (1 + χ)e,

(2.61)

for (t, x) ∈ IR+ × IR+, together with both zero initial data

(d, h, χ)(0, x) = 0 for x ≥ 0, (2.62)

and the boundary condition
h(t, 0) + ae(t, 0 = ϕ(t) for t ≥ 0. (2.63)

Theorem 2 Let ϕ ∈ H4(IR) compactly supported in IR+. Let ε > 0. Then the smooth solution (d, h, χ) to
the IBVP (2.61)-(2.62)-(2.63) is defined on [0,+∞[.
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The proof of Theorem 2 is analogous to the proof of Theorem 1. The one-dimensional case is easier: the
divergence free condition is irrelevant and the space regularity is obtained directly by the equations. In
addition, by Sobolev theorem, the H1-estimates implies bounds in the L∞-norm. We refer to [7] for the
detailed proof of the global existence for the Cauchy problem.

Remark 3 Using the general stability results in [12] and [1], we can observe that for the 1-d Kerr-Debye
model, a constant equilibrium state (ē, h̄, χ̄ = (ē)2) is stable if ē 6= 0. The stability property if ē = 0 in the
one-dimensional case and in the two-dimensional TE case remains an open problem.

Remark 4 It seems more difficult to obtain the global existence for both the 2-dTM and the 3-d models. First
we lack for an adapted div-curl lemma to obtain the space regularity. Indeed, in both cases, the divergence
free condition (2.7) is nonlinear in (χ,E). In addition, the Sobolev embeddings used in the 2-d case don’t
work in the 3-d case.

3 Convergence result.

First we replace the Kerr-Debye model in the general framework of [8]. The equilibrium manifold in (2.4) is
defined by:

V =
{

(D,H, χ) ∈ IR7, χ = |E|2 = (1 + χ)−2|D|2
}

,

so that the reduced system associated with the Kerr-Debye model (2.4) is the Kerr model (2.1).
The strictly convex entropy EKD satisfies the stability condition in the definition 2.1 of [8] and, on the
equilibrium manifold V , we have the relation:

EK(D,H) = EKD(D,H, χ(D)).

Furthermore characteristic speeds associated to (2.4) and (2.1) are interlaced on the equilibrium manifold
V . In our case, by the previous calculations, in the 3-d model we have

µ1(|E|2, ξ) = λ1(E, ξ) = µ2(|E|2, ξ) ≤ λ2(E, ξ) ≤ 0 = µ3 = λ3 = µ4 = λ4 = µ5.

So the Kerr-Debye model is a relaxation approximation of the Kerr model, with the stability properties. In
this context, it is natural to study the convergence of the solutions to the Kerr-Debye model as the relaxation
coefficient tends to zero. The Cauchy problem is studied in [11]. Here we establish the convergence for the
impedance IBVP.

3.1 Entropic variables and main result.

In order to prove the convergence result it is more convenient to use the entropic variables which are
introduced in [12]. These variables are obtained taking the gradient of the convex entropy (2.8):



























∂DEKD = (1 + χ)−1D = E,

∂HEKD = H,

∂χEKD =
1

2
(χ− |E|2) := v,

The IBVP (2.4)-(2.5)-(2.6) becomes (for (t, x) ∈ IR+ × Ω):

A0(Wε)∂tWε +
3

∑

j=1

Aj∂jWε =
1

ε
Q(Wε), (3.1)

where
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• Wε =





Eε

Hε

vε



 , Q(Wε) =





0
0

−2vε



,

• A0(Wε) =





(|Eε|2 + 2vε + 1)I3 + 2Eε
tEε 0 2Eε

0 I3 0
2 tEε 0 2



,

•
3

∑

j=1

Aj∂j =





0 −curl 0
curl 0 0

0 0 0



,

with the initial data
Eε(0, x) = Hε(0, x) = 0, vε(0, x) = 0 for x ∈ Ω, (3.2)

and with the boundary condition

Hε × n+ a((Eε × n) × n) = ϕ for (t, x) ∈ IR+ × Γ. (3.3)

We observe that in the entropic variables (E,H, v), the boundary condition is linear. In addition, with these

variables, the equilibrium manifold is flat since V =
{

(E,H, v) ∈ IR7, v = 0
}

and the relaxation term is

linear.

We rewrite the divergence free condition in the entropic variables:

div ((1 + |Eε|2 + 2vε)Eε) = div Hε = 0. (3.4)

In the same way we can write the Kerr model in its entropic variables :







∂DEK = E,

∂HEK = H.

The IBVP (2.1)-(2.2)-(2.3) becomes







((1 + |E0|2)I3 + 2E0
tE0)∂tE0 − curl H0 = 0,

∂tH0 + curl H0 = 0,
(3.5)

for (t, x) ∈ IR+ × Ω together with zero initial data

E0(0, x) = H0(0, x) = 0 for x ∈ Ω, (3.6)

and with the impedance boundary condition

H0 × n+ a((E0 × n) × n) = ϕ for (t, x) ∈ IR+ × Γ. (3.7)

We remark that the divergence free condition is satisfied

div ((1 + |E0|2)E0) = div H0 = 0. (3.8)

In these entropic variables the IBVP (3.5)-(3.6)-(3.7) is the reduced system of the IBVP (3.1)-(3.2)-(3.3).
Let us recall the assumptions on the source term ϕ in both problems:

ϕ is compactly supported in IR+ × Γ,
ϕ ∈ Hs(IR × Γ), s ≥ 5.

(3.9)
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Thus we can apply Proposition 1 and Proposition 2 with the source term ϕ to define the solution (E0, H0) to
(3.5)-(3.6)-(3.7) on [0, T ∗[ and the solution (Eε, Hε, vε) to (3.1)-(3.2)-(3.3) on [0, T ∗

ε [. In addition we choose
s great enough to ensure a sufficient regularity on the profile (E0, H0) (see Remark 1).

As in the previous section we introduce for T > 0 and k ∈ IN :

Hk(ΩT ) =

{

W such that ‖W‖Hk(ΩT ) :=

k
∑

i=0

‖∂i
tW‖L∞(0,T ;Hk−i(Ω)) < +∞

}

.

We obtain the following convergence result.

Theorem 3 Let ϕ satisfying (3.9). Let (E0, H0) be the solution to (3.5)-(3.6)-(3.7) which lifespan is denoted
by T ∗. We assume that for all T < T ∗, E0 ∈ H7(ΩT ). For ε > 0, let (Eε, Hε, vε) be the solution to (3.1)-
(3.2)-(3.3) which lifespan is denoted by T ∗

ε . We fix T < T ∗. There exists ε0 > 0 such that

∀ ε < ε0, T
∗
ε ≥ T, (3.10)

and there exists a constant C such that for all ε < ε0,

‖Eε − E0‖H3(ΩT ) + ‖Hε −H0‖H3(ΩT ) + ‖vε‖H3(ΩT ) ≤ Cε. (3.11)

As remarked in the introduction, we don’t expect boundary layer formation in the IBVP (3.1)-(3.2)-(3.3)
near the profile (E0, H0, 0). Hence we use a Hilbert expansion to describe the behavior of the solution as ε
tends to zero.

3.2 Hilbert expansion.

We denote by ρε =t (Rε, Sε, sε) the remainder term in the Hilbert expansion of Wε:

Eε = E0 + εRε,

Hε = H0 + εSε,

vε = εs1 + εsε,

with s1 = −E0∂tE0. Using (3.5)-(3.6)-(3.7) and (3.1)-(3.2)-(3.3), the rest term ρε satisfies the following
system:

A0(t, x)∂tρε +

3
∑

j=1

Aj∂jρε + L(t, x)ρε +B(t, x) +G(t, x,Rε) + F (t, x, ρ̃ε)∂tρ̃ε = −t(0, 0,
2

ε
sε), (3.12)

where

• ρ̃ε =





Rε

0
sε



,

• A0(t, x) =





(1 + |E0|2)I3 + 2E0
tE0 0 2E0

0 I3 0
2 tE0 0 2



,

• L(t, x)ρε =





2sε∂tE0 + 2E0 ·Rε∂tE0 + 2(E0
tRε +Rε

tE0)∂tE0 + 2ε∂ts1Rε

0
2 tRε∂tE0



,

• B(t, x) =





2s1∂tE0 + 2∂ts1E0

0
2∂ts1



,
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• G(t, x,Rε) =





ε|Rε|2∂tE0 + εRε
tRε∂tE0

0
0



,

• F (t, x, ρ̃ε)∂tρ̃ε =





ε(Rε
tE0 + E0

tRε)∂tRε + εsε∂tRε + ε2Rε
tRε∂tRε + 2εRε∂tsε + ε2|Rε|2∂tRε

0
2εRε · ∂tRε



,

with the zero initial data
ρε(0, x) = 0 for x ∈ Ω, (3.13)

and the homogeneous boundary condition

Sε × n+ a((Rε × n) × n) = 0 for (t, x) ∈ IR+ × Γ. (3.14)

We remark that we introduced the one order term εs1 in the expansion of vε to avoid a singular source term
in the last equation of System (3.12).

For t ≤ T ∗
ε we define ϕε and ψε by

ϕε(t) =



‖ρε(t)‖2
L2(Ω) +

∑

i6=1

‖∂iρε(t)‖2
L2(Ω) +

∑

i,j 6=1

‖∂ijρε(t)‖2
L2(Ω) +

∑

i,j,k 6=1

‖∂ijkρε(t)‖2
L2(Ω)





1
2

,

ψε(t) =



‖∂1ρε(t)‖2
L2(Ω) +

∑

i

‖∂1iρε(t)‖2
L2(Ω) +

∑

i,j

‖∂1ijρε(t)‖2
L2(Ω)





1
2

.

Let us remark that ϕε measures the tangential derivatives ∂0 = ∂t, ∂2, ∂3 and we have

(ϕε(t))
2 + (ψε(t))

2 =
3

∑

i=0

‖∂i
tρε(t)‖2

H3−i(Ω).

We define also
Φε(t) = sup

s∈[0,t]

ϕε(s),

Ψε(t) = sup
s∈[0,t]

ψε(s),

so we have
Φε(T ) + Ψε(T ) ∼ ‖ρε‖H3(ΩT ).

3.3 Proof of Theorem 3.

We fix T < T ∗ and we define Tε by

Tε = sup

{

t ≤ T, ‖ρε‖H3(Ωt) ≤
1√
ε

}

, (3.15)

so by Proposition 2, Tε ≤ T ∗
ε .

The proof of Theorem 3 is organized as follows. In the first step, by variational methods on the system
(3.12)-(3.13)-(3.14) we estimate the tangential derivatives of ρε. In the second step we bound the normal
derivatives of ρε by solving the last equation in (3.12) and using the divergence free conditions (3.4) and
(3.8).

We will use the following classical lemma.

Lemma 2 For k ≥ 2, Hk(ΩT ) is an algebra.
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Since E0 ∈ H7(ΩT ), we obtain
A0, L, B ∈ H5(ΩT ), (3.16)

so A0, L and B are sufficiently regular to allow the following calculations.

For the convenience of the reader, we will omit the dependence on the index ε.

First step: estimates on ϕε.

Let us establish the following lemma:

Lemma 3 There exists a constant C such that for t ∈ [0, Tε],

d

dt





∫

Ω



A0ρ · ρ+
∑

i6=1

A0∂iρ · ∂iρ+
∑

i,j 6=1

A0∂ijρ · ∂ijρ+
∑

i,j,k 6=1

A0∂ijkρ · ∂ijkρ



 dx

+

∫

Ω





∑

i,j,k 6=1

F (t, x, ρ̃)∂ijk ρ̃ · ∂ijk ρ̃



 dx



 ≤ C(1 + ϕ2).

(3.17)

Proof. The nonlinear terms in (3.12) are bounded thanks to the following estimates, which are a straight-
forward consequence of Lemma 2 and (3.15): there exists a constant C such that for all ε > 0,

‖G(t, x,R)‖H3(ΩTε ) ≤ C,

‖F (t, x, ρ̃)∂tρ̃‖H2(ΩTε ) ≤ C,

‖F (t, x, ρ̃)‖H3(ΩTε ) ≤ C
√
ε.

(3.18)

Taking the inner product of (3.12) with ρ we obtain

1

2

d

dt

∫

Ω

A0ρ · ρ dx−
∫

Γ

a((R× n) × n) ·Rdx2dx3 +
2

ε

∫

Ω

|s|2dx =

1

2

∫

Ω

∂tA0ρ · ρdx−
∫

Ω

Lρ · ρdx−
∫

Ω

B · ρdx −
∫

Ω

G(t, x,R) · ρdx−
∫

Ω

F (t, x, ρ̃)∂tρ̃ · ρdx.

By assumption on the operator a, we have

∫

Γ

a((R × n) × n) ·Rdx2dx3 ≤ 0.

Since E0 is regular enough, by (3.16), we have immediately

∣

∣

∣

∣

1

2

∫

Ω

∂tA0ρ · ρdx−
∫

Ω

Lρ · ρdx
∣

∣

∣

∣

≤ C(ϕ(t))2,

and
∣

∣

∣

∣

∫

Ω

B · ρdx
∣

∣

∣

∣

≤ Cϕ(t).

From (3.18),
∣

∣

∣

∣

∫

Ω

G(t, x,R) · ρdx
∣

∣

∣

∣

≤ ‖G‖L2(Ω)‖ρ‖L2(Ω) ≤ ‖G‖H3(ΩTε )ϕ(t) ≤ Cϕ(t),

and
∣

∣

∣

∣

∫

Ω

F (t, x, ρ̃)∂tρ̃ · ρdx
∣

∣

∣

∣

≤ ‖F∂tρ̃‖L2(Ω)‖ρ‖L2(Ω) ≤ ‖F∂tρ̃‖H2(ΩTε )‖ρ‖L2(Ω) ≤ Cϕ(t).
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Thus we obtain the L2 estimate:

d

dt

∫

Ω

A0ρ · ρdx ≤ C(1 + (ϕ(t))2).

In the same way, differentiating (3.12) with respect to the tangential variables, we obtain

d

dt





∫

Ω

∑

i6=1

A0∂iρ · ∂iρdx+

∫

Ω

∑

i,j 6=1

A0∂ijρ · ∂ijρdx



 ≤ C(1 + (ϕ(t))2).

For the third order derivatives, we use also the estimate:
for i, j, k 6= 1,

∣

∣

∣

∣

∫

Ω

∂ijk(F (t, x, ρ̃)∂tρ̃) · ∂ijk ρ̃dx− 1

2

d

dt

∫

Ω

F (t, x, ρ̃)∂ijk ρ̃ · ∂ijk ρ̃dx

∣

∣

∣

∣

≤ C(1 + (ϕ(t))2),

and we conclude the proof of Lemma 3.

Let us recall that A0(t, x) = A0(E0) (see (3.12)), so, since E0 is smooth on [0, T ]×Ω, there exists a constant
α > 0 such that for all ξ ∈ IR3 and (t, x) ∈ [0, T ]× Ω,

A0(t, x)ξ · ξ ≥ α|ξ|2. (3.19)

In addition, from the last estimate in (3.18) we remark that, for all t ∈ [0, Tε],

∣

∣

∣

∣

∣

∣

∫

Ω

∑

i,j,k 6=1

F (t, x, ρ̃)∂ijk ρ̃ · ∂ijk ρ̃dx

∣

∣

∣

∣

∣

∣

≤ C1

√
ε(ϕ(t))2. (3.20)

So, integrating (3.17) and using (3.19) and (3.20) we obtain that, for t ∈ [0, Tε],

αϕ2(t) − C1

√
εϕ2(t) ≤ C2

∫ t

0

(1 + ϕ2(s))ds,

so for ε small enough,

ϕ2(t) ≤ C

∫ t

0

(1 + ϕ2(s))ds,

so by Gronwall lemma, we obtain that there exists C such that for all t ∈ [0, Tε]

ϕ2(t) ≤ C. (3.21)

Second step: estimates on ψε.

In order to estimate the derivatives with respect to the normal variable ∂1 we proceed as follows:

1. We rewrite (3.12) isolating ∂1R3, ∂1R2 ∂1S3 and ∂1S2 in curl R and curl S:

{

∂1R3 = ∂3R1 + ∂tS2

∂1R2 = ∂2R1 − ∂tS3
(3.22)

so from (3.21),
‖∂1R3‖L∞(0,Tε;L2(Ω)) + ‖∂1R2‖L∞(0,Tε;L2(Ω)) ≤ C, (3.23)

and
{

∂1S3 = ∂3S1 − (A0∂tρ)2 − (Lρ)2 +M2(t, x, ε, ρ̃, ∂tρ̃),
∂1S2 = ∂2S1 + (A0∂tρ)3 + (Lρ)3 +M3(t, x, ε, ρ̃, ∂tρ̃),

(3.24)
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where, by (3.18),
‖M2‖H2(ΩTε ) + ‖M3‖H2(ΩTε ) ≤ C. (3.25)

Using also (3.21), we obtain that

‖∂1S3‖L∞(0,Tε;L2(Ω)) + ‖∂1S2‖L∞(0,Tε;L2(Ω)) ≤ C.

2. In order to estimate ∂1S1, ∂1R1 and ∂1s, let us rewrite the divergence free conditions. From (3.4) and
(3.8), we obtain

∂1S1 = −∂2S2 − ∂3S3, (3.26)

so we have
‖∂1S1‖L∞(0,Tε;L2(Ω)) ≤ C.

It remains to estimate ∂1R1 and ∂1s. From (3.4) and (3.8), we have

div
(

(1 + |E0|2R+ 2(E0 ·R)E0 + 2sE0

)

= Ñ(t, x, ερ̃, ∂1ρ̃, ∂2ρ̃, ∂3ρ̃)

:= −div
(

2s1E0 +ε|R|2E0 + 2ε(s1 + s+ (E0 ·R)R) + ε2|R|2R
)

.

We expend the left hand side term and we obtain

(1 + |E0|2 + 2(E0,1)
2)∂1R1 + 2E0,1∂1s+ Λ̃(t, x)ρ+ Λ̃2(t, x)∂2ρ+ Λ̃3(t, x)∂3ρ

+2E0,1E0,2∂1R2 + 2E0,1E0,3∂1R3 = Ñ

where Λ̃(t, x), Λ̃2(t, x) and Λ̃3(t, x) are linear operators.
Using (3.22) we obtain

∂1R1 +2(1 + |E0|2 +2(E0,1)
2)−1E0,1∂1s = Λ(t, x)ρ+

∑

i∈{0,2,3}

Λi(t, x)∂iρ+N(t, x, ε, ρ̃, ∂1ρ̃, ∂2ρ̃, ∂3ρ̃), (3.27)

where Λ(t, x) and the Λi(t, x) are linear operators, and N = (1 + |E0|2 + 2(E0,1)
2)−1Ñ . By (3.18) we have

‖N‖H2(ΩTε ) ≤ C. (3.28)

3. Les us consider the last equation in (3.12):

∂ts+
1

ε
s = −∂t(E0 · R+ s1 +

ε

2
|R|2).

We differentiate this equation with respect to x1:

∂t∂1s+
1

ε
∂1s = −∂t(E0,1∂1R1) − ∂t(E0,2∂1R2 + E0,3∂1R3 + ∂1E0 ·R+ ∂1s1 +

ε

2
∂1|R|2),

and using (3.27), we obtain

∂t(h∂1s+ b) +
1

ε
∂1s = 0, (3.29)

where
h = (1 + |E0|2 + 2(E0,1)

2)−1(1 + |E0|2),

b = E0,1(Λρ+
∑

i6=1

Λi∂iρ+N) + E0,2∂1R2 + E0,3∂1R3 + ∂1E0 · R+ ∂1s1 +
ε

2
∂1|R|2.

We have
1

3
≤ h ≤ 1, (3.30)

and, from (3.21), (3.28), (3.23) and (3.15),

‖b‖L∞(0,Tε;L2(Ω)) ≤ C. (3.31)
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We remark that h∂1s+ b = 0 at t = 0 and solving (3.29) :

∂1s(t) = − b(t)

h(t)
+

1

h(t)

∫ t

0

1

ε
exp

(

−
∫ t

σ

1

εh(τ)
dτ

)

b(σ)

h(σ)
dσ,

so, by (3.30) and (3.31),
‖∂1s(t)‖L∞(0;Tε;L2(Ω)) ≤ C,

and by (3.27),
‖∂1R1‖L∞(0,Tε;L2(Ω)) ≤ C.

Therefore we obtain the H1 estimate:
‖ρ‖H1(ΩTε ) ≤ C. (3.32)

In order to obtain the H2 estimate on the remainder term ρ, first we deal with the derivative ∂1iρ, i ∈ {0, 2, 3}.
We differentiate (3.22), (3.24) and (3.26) with respect to ∂i and using (3.21) and (3.25) we obtain

‖∂1iR2‖L∞(0,Tε;L2(Ω)) + ‖∂1iR3‖L∞(0,Tε;L2(Ω)) ≤ C,

‖∂1iS1‖L∞(0,Tε;L2(Ω)) + ‖∂1iS2‖L∞(0,Tε;L2(Ω)) + ‖∂1iS3‖L∞(0,Tε;L2(Ω)) ≤ C.

(3.33)

We differentiate (3.29) with respect to ∂i:

∂t(h∂1,is+ (∂ih∂1s+ ∂ib)) +
1

ε
∂1is = 0,

from (3.21), (3.33), (3.15) we remark that

‖∂ih∂1s+ ∂ib‖L∞(0,Tε;L2(Ω)) ≤ C,

so, in the previous process, we can replace b by ∂ih∂1s+ ∂ib, and we obtain

‖∂1is‖L∞(0,Tε;L2(Ω)) ≤ C. (3.34)

We differentiate (3.27) with respect to ∂i and we use (3.28), (3.21), (3.34) to obtain

‖∂1iR1‖L∞(0,Tε;L2(Ω)) ≤ C. (3.35)

Therefore, by (3.33)-(3.35) we have for i 6= 1,

‖∂1iρ‖L∞(0,Tε;L2(Ω)) ≤ C. (3.36)

Now we estimate ∂11ρ. Differentiating (3.22), (3.26) and (3.24) with respect to ∂1, using (3.21), (3.36), (3.25)
and (3.32) we obtain that

‖∂11R2‖L∞(0,Tε;L2(Ω)) + ‖∂11R3‖L∞(0,Tε;L2(Ω)) ≤ C,

‖∂11S1‖L∞(0,Tε;L2(Ω)) + ‖∂11S2‖L∞(0,Tε;L2(Ω)) + ‖∂11S3‖L∞(0,Tε;L2(Ω)) ≤ C.

Differentiating (3.29) and (3.27) with respect to ∂1 and using in particular (3.36) we obtain by the same
method that

‖∂11s‖L∞(0,Tε;L2(Ω)) + ‖∂11R1‖L∞(0,Tε;L2(Ω)) ≤ C,

which conclude the H2 estimate:
‖ρ‖H2(ΩTε ) ≤ C.

For the H3 estimate, we bound successively ‖∂1ijρ‖L∞(0,Tε;L2(Ω)) for i, j 6= 1, ‖∂11iρ‖L∞(0,Tε;L2(Ω)) for i 6= 1
and ‖∂111ρ‖L∞(0,Tε;L2(Ω)). So we obtain that there exists a constant C such that

‖ρ‖H3(ΩTε ) ≤ C. (3.37)
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Last step of the proof of Theorem 3.

We recall that we fixed T < T ∗, and that we defined Tε by (3.15). So, either T = Tε or ‖ρε‖H3(ΩTε ) =
1√
ε
,

which is contradictory with (3.37) for ε small enough. So there exists ε0 > 0 such that for ε < ε0, T
∗
ε ≥ Tε = T

and by (3.37), ‖ρε‖H3(ΩT ) ≤ C, so we obtain (3.10) and (3.11) in Theorem 3.

Remark 5 The same conclusions hold in the two-dimensional and the one-dimensional cases. In the 1-d
case we can replace (3.11) by:

‖eε − e0‖H2(ΩT ) + ‖hε − h0‖H2(ΩT ) + ‖vε‖H2(ΩT ) ≤ Cε.

For the 1-d and 2-dTE cases, (3.10) is irrelevant since T ∗
ε = +∞ by Theorems 1 and 2.

4 Appendix: Proof of Proposition 2.

As in Section 2.3 the IBVP (2.4)-(2.7) is equivalent to the following system in the variable V = (U, χ) =
(E,H, χ):



























(i) (1 + χ)∂tE + (∂tχ)E − curl H = G1,

(ii) ∂tH + curl E = G2,

(iii) ∂tχ =
1

ε
(|E|2 − χ),

(4.1)

with zero initial data and homogeneous boundary condition:

V (0, x) = 0, x ∈ Ω, (4.2)

H × n+ a((E × n) × n) = 0, (t, x) ∈ IR+ × Γ. (4.3)

We recall the divergence free conditions

div H = div ((1 + χ)E) = 0,

and the positiveness property
χ ≥ 0.

The proof is based on the following iteration scheme.
First, χk ≥ 0 being given, we define Uk+1 = (Ek+1, Hk+1) by







(1 + χk)∂tEk+1 + (∂tχk)Ek+1 − curl Hk+1 = G1,

∂tHk+1 + curl Ek+1 = G2,

(4.4)

with zero initial data and homogeneous boundary condition

Uk+1(0, x) = 0, x ∈ Ω, (4.5)

Hk+1 × n+ a((Ek+1 × n) × n) = 0, (t, x) ∈ IR+ × Γ, (4.6)

so the divergence free conditions hold

div Hk+1 = div ((1 + χk)Ek+1) = 0. (4.7)

Afterwards we define χk+1 solving the differential equation

∂tχk+1 +
1

ε
χk+1 =

1

ε
|Ek+1|2, (4.8)
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with the initial condition
χk+1(0, x) = 0, x ∈ Ω. (4.9)

We remark that
χk+1 ≥ 0.

We initialize the iteration scheme by taking V0 = 0. Assuming that for any T > 0, Vk ∈ H3(ΩT ) with
∂tχk ∈ H3(ΩT ), using the existence results for linear problems in [16], the system (4.4)-(4.5)-(4.6) admits
a unique solution Uk+1 = (Ek+1, Hk+1) ∈ H3(ΩT ) which satisfies the divergence free condition (4.7). So
(4.8)-(4.9) admits a unique solution χk+1 ∈ H3(ΩT ) and by these equations ∂tχk+1 ∈ H3(ΩT ) and χk+1 ≥ 0.

4.1 High-norm boundedness.

We denote

ξk(t) =

3
∑

i=0

‖∂i
tUk(t)‖H3−i(Ω), (4.10)

and

ϕk(t) =
3

∑

i=0

‖∂i
tVk(t)‖H3−i(Ω) +

3
∑

i=0

‖∂i+1
t χk(t)‖H3−i(Ω). (4.11)

For α = (α0, α2, α3) ∈ IN3 we define the operator ∂α = ∂α0

t ∂α2

2 ∂α3

3 and we denote

ηk(t) =
∑

α=(α0,α2,α3),|α|≤3

‖∂αUk(t)‖L2(Ω), (4.12)

that is, ηk(t) measures the L2-norm of the tangential derivatives of Uk.
Finally the source terms are estimated by

Γ(t) = ‖G‖H3(Ωt). (4.13)

We introduce the time Tk defined by

Tk = max

{

t ≥ 0, sup
s∈[0,t]

ϕk(s) ≤ 1,Γ(t) ≤ 1

}

. (4.14)

To obtain the boundedness, we shall prove that there exists T̃ > 0 such that

∀ k ≥ 0, Tk ≥ T̃ . (4.15)

In order to estimate the tangential derivatives of Uk we first establish the following result.

Lemma 4 There exists a constant K > 0 such that, for all k, we have

∀ t ≤ Tk,
d

dt

∫

Ω

∑

α=(α0,α2,α3),|α|≤3

(

(1 + χk)|∂αEk+1|2 + |∂αHk+1|2
)

dx ≤ K(1 + (ξk+1)
2). (4.16)

Proof. Taking the inner product of (4.4) with Uk+1 we obtain

1

2

d

dt

∫

Ω

(

(1 + χk)|Ek+1|2 + |Hk+1|2
)

dx−
∫

∂Ω

a((Ek+1 × n) × n) ·Ek+1dx2dx3

= −1

2

∫

Ω

∂tχk|Ek+1|2dx+

∫

Ω

G · Uk+1dx.

Since ‖∂tχk‖L∞(Ω) ≤ ϕk we get the L2-estimate

∀ t ≤ Tk,
1

2

d

dt

∫

Ω

(

(1 + χk)|Ek+1|2 + |Hk+1|2
)

dx ≤ K(1 + (ξk+1)
2).
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By the same method we obtain similar estimates concerning the tangential derivatives. Let us describe the
order 3 derivatives estimates: for α = (α0, α2, α3) with |α| = α0 + α2 + α3 = 3, we take the inner product
of ∂α(4.4) with ∂αUk+1. We obtain

1

2

d

dt

∫

Ω

(

(1 + χk)|∂αEk+1|2 + |∂αHk+1|2
)

dx ≤ I1 + . . .+ I5,

with

I1 = K
∑

|β| = |(β0, β2, β3)| = 1
|γ| = |(γ0, γ2, γ3)| = 3

∫

Ω

|∂βχk||∂γEk+1||∂αEk+1|dx

≤ K
∑

|β|=1,|γ|=3

‖∂βχk‖L∞(Ω)‖∂γEk+1‖L2(Ω)‖∂αEk+1‖L2(Ω),

I2 = K
∑

|β|=2,|γ|=2

∫

Ω

|∂βχk||∂γEk+1||∂αEk+1|dx

≤ K
∑

|β|=2,|γ|=2

‖∂βχk‖L4(Ω)‖∂γEk+1‖L4(Ω)‖∂αEk+1‖L2(Ω),

I3 = K
∑

|β|=3,|γ|=1

∫

Ω

|∂βχk||∂γEk+1||∂αEk+1|dx

≤ K
∑

|β|=3,|γ|=1

‖∂βχk‖L2(Ω)‖∂γEk+1‖L∞(Ω)‖∂αEk+1‖L2(Ω),

I4 =

∫

Ω

|∂t∂
αχk||Ek+1||∂αEk+1|dx

≤ K‖∂t∂
αχk‖L2(Ω)‖Ek+1‖L∞(Ω)‖∂αEk+1‖L2(Ω),

I5 =

∫

Ω

|∂αG||∂αUk+1|dx

≤ ‖∂αG‖L2(Ω)‖∂αUk+1‖L2(Ω).

So using Sobolev inequalities we obtain that for all t ≤ Tk,

I1 + . . .+ I5 ≤ K(1 + (ξk+1)
2).

Now we control all the derivatives of Uk+1 by the tangential derivatives with the following estimate.

Lemma 5 There exists K > 0 such that

∀ k, ∀ t ≤ Tk, ξk+1(t) ≤ K(ηk+1(t) + Γ(t)). (4.17)
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Proof. In order to estimate ∂1Uk+1 we rewrite (4.4) and (4.7) to obtain

∂1Hk+1,3 = −∂tχkEk+1,2 − (1 + χk)∂tEk+1,2 + ∂3Hk+1,1 +G1,2,

∂1Hk+1,2 = +∂tχkEk+1,3 + (1 + χk)∂tEk+1,3 + ∂2Hk+1,1 −G1,3,

∂1Ek+1,3 = ∂3Ek+1,1 + ∂tHk+1,2 −G2,2,

∂1Ek+1,2 = ∂2Ek+1,1 − ∂tHk+1,3 +G2,3,

∂1Hk+1,1 = −∂2Hk+1,2 − ∂3Hk+1,3,

∂1Ek+1,1 = −∂2Ek+1,2 − ∂3Ek+1,3 − (1 + χk)−1(∇χk · Ek+1).

(4.18)

Using (4.10), (4.11), (4.12), (4.13) and (4.14), we obtain the estimate

∀ t ≤ Tk, ‖∂1Uk+1‖L2(Ω) ≤ K(ηk+1(t) + Γ(t)).

In order to estimate ∂1iUk+1 we differentiate (4.18) with respect to ∂i. For i 6= 1, we obtain directly that

∀ t ≤ Tk, ‖∂1iUk+1‖L2(Ω) ≤ K(ηk+1(t) + Γ(t)), (4.19)

and using (4.19) we obtain

∀ t ≤ Tk, ‖∂11Uk+1‖L2(Ω) ≤ K(ηk+1(t) + Γ(t)).

With the same arguments we estimate successively ‖∂1ijUk+1‖L2(Ω), ‖∂11jUk+1‖L2(Ω) and ‖∂111Uk+1‖L2(Ω)

where i 6= 1 and j 6= 1, so we conclude the proof of Lemma 5.

Using (4.16) and (4.17), by Gronwall lemma, we obtain that there exists K > 0 such that

∀ k, ∀ t ≤ Tk, (ηk+1(t))
2 ≤ eKt − 1,

so by (4.17), there exists K > 0 such that

∀ k, ∀ t ≤ Tk, ξk+1(t) ≤ K
(

(eKt − 1)
1
2 + Γ(t)

)

. (4.20)

Then, solving (4.8) we obtain that

‖χk+1(t)‖H3(Ω) ≤ K sup
s∈[0,t]

(ξk+1(s))
2.

Using (4.8), ∂t(4.8), ∂2
t (4.8) and ∂3

t (4.8) we obtain that

4
∑

i=1

‖∂i
tχk+1‖H4−i(Ω) ≤ K sup

s∈[0,t]

(ξk+1(s))
2.

So there exists K > 0 such that

∀ k, ϕk+1(t) ≤ ξk+1(t) +K sup
s∈[0,t]

(ξk+1(s))
2.

Therefore with (4.20) there exists K > 0 such that

∀ k, ∀ t ≤ Tk, ϕk+1(t) ≤ g(t) := K
(

(eKt − 1)
1
2 + Γ(t) + ((eKt − 1)

1
2 + Γ(t))2

)

.

Since g(0) = 0 there exists T̃ > 0 such that for t ≤ T̃ , g(t) ≤ 3
4 and Γ(t) ≤ 3

4 , so we conclude the proof of
(4.15). In addition we have obtained the high-norm boundedness:

∀ k, sup
[0,T̃ ]

ϕk(t) ≤ 1. (4.21)
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4.2 Low-norm contraction.

Subtracting (4.4) for k − 1 to the one for k we have






















(1 + χk)∂t(Ek+1 − Ek) − curl (Hk+1 −Hk) = −∂tχk(Ek+1 − Ek) + (χk−1 − χk)∂tEk

+(∂tχk−1 − ∂tχk)Ek,

∂t(Hk+1 −Hk) + curl (Ek+1 − Ek) = 0,

(4.22)

with the zero initial data and the homogeneous boundary condition

(Ek+1 − Ek)(0, x) = (Hk+1 −Hk)(0, x) = 0, x ∈ Ω,

(Hk+1 −Hk) × n+ a(((Ek+1 − Ek) × n) × n) = 0, (t, x) ∈ IR+ × Γ.

Taking the inner product of (4.22) with Uk+1 − Uk we obtain

1

2

d

dt

∫

Ω

((1 + χk)|Ek+1 − Ek|2 + |Hk+1 −Hk|2)dx ≤ −1

2

∫

Ω

∂tχk|Ek+1 − Ek|2dx

+

∫

Ω

(χk−1 − χk)∂tEk(Ek+1 − Ek)dx+

∫

Ω

(∂tχk−1 − ∂tχk)Ek · (Ek+1 − Ek)dx,

so using (4.21)

d

dt

∫

Ω

((1 + χk)|Ek+1 − Ek|2 + |Hk+1 −Hk|2)dx

≤ K
(

‖Ek+1 − Ek‖2
L2(Ω) + ‖χk − χk−1‖2

L2(Ω) + ‖∂tχk − ∂tχk−1‖2
L2(Ω)

)

.

(4.23)

Subtracting (4.8) for k − 2 to the one for k − 1 we have

∂t(χk − χk−1) +
1

ε
(χk − χk−1) =

1

ε
(Ek + Ek−1) · (Ek − Ek−1), (4.24)

so

χk − χk−1 =

∫ t

0

1

ε
exp

(

t− s

ε

)

(Ek + Ek−1)(s) · (Ek − Ek−1)(s)ds. (4.25)

We introduce
uk(t) = ‖Uk+1 − Uk‖L∞(0,t;L2(Ω)),

and from (4.25) and (4.21) we have

‖(χk − χk−1)(t)‖L2(Ω) ≤ Kuk−1(t), (4.26)

and from (4.24)
‖(∂tχk − ∂tχk−1)(t)‖L2(Ω) ≤ Kuk−1(t). (4.27)

Integrating (4.23) and using (4.26) and (4.27) we have

(uk(t))2 ≤ Kt(uk(t))2 +Kt(uk−1(t))
2. (4.28)

We fix T̄ ≤ T̃ such that, in (4.28), KT̄ ≤ 1

4
. So we have

∀ k, ∀ t ≤ T̄ , uk(t) ≤ 1√
3
uk−1(t).

Hence Uk is a Cauchy sequence in C(0, T̄ ;L2(Ω)) and by (4.26), χk is also a Cauchy sequence in C(0, T̄ ;L2(Ω)).
By standard arguments we obtain a smooth local solution to (4.1)-(4.2)-(4.3). The end of the proof of
Proposition 2 is classical.
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