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Abstract—We propose an automatic method to quantitatively
describe the spatial organization governing populations of biolog-
ical objects, such as cells, which exist in stationary histology im-
ages. This quantification is of prime importance when striving to
compare different tumoral models in order to evaluate potential
therapies. We compare two animal models of colorectal cancer.
Our approach is based on the topographic map to automatically
extract the location of the relevant biological objects. We describe
their spatial organization along a continuous range of scales using
second-order statistics. Using a functional analysis of variance
test, we show that there are significant differences in these
statistics depending on cancer model, and on the day after tumor
implant.

Index Terms—topographic map, Besag L-function, functional
ANOVA, animal cancer models

I. INTRODUCTION

Colorectal cancer is one of the most widespread types of

cancer in the world. In terms of mortality, this type of cancer

has the second highest rate following lung cancer and has

a lifetime prevalence of 5.1%. In order to evaluate diagnostic

methods and potential therapies, biologists use adapted animal

cancer models that reflect the human pathology. Two types of

models are usually studied in preclinical testing: orthotopic

models and ectopic models, depending on the way the tumor

is implanted in the animal. Orthotopic models are obtained

by implanting the tumor into its original organ. Such models

aim at better reflecting the physiological environment of the

tumor. On the other hand, ectopic models are obtained by

placing the tumor away from its original position, for instance

subcutaneously. These latter models are cheaper and frequently

employed due to their ease of implementation, and to the tu-

mor accessibility. Our long-term biomedical goal is to compare

the growth mechanisms for these two types of models, and to

find out to what extent the ectopic model is similar to the

orthotopic one.

Studies show that the growth of orthotopically implanted

tumors is significantly faster than the ectopically implemented

ones, being more than two times bigger twelve days after

implant [1]. Such a difference should appear in tumor his-

tology images yet they are visually identical (Fig. 1). Thus,

comparing and differentiating such images are challenging

tasks. Descriptive features based on first-order statistics, such

as the objects density, show differences between these two

models in very early days after implant. Quantitative measures

of spatial features are not captured, although spatial rela-

tionships between biological objects may provide additional

informations to have better mechanistic and prognostic insights

of these tumor models [2].

Fig. 1. Two examples of histology images at the 15th day after tumor implant.

Related Work The use of spatial statistics has been

investigated in biomedical imaging. The most commonly used

are second order characteristics such as the Ripley’s K func-

tion [3], the pair correlation function (PCF) [3] and Besag’s

L function [4]. All these functions consider the distribution

of distances between pair of detected points representing the

biological objects. They have been used in various biomedical

contexts such as the description of the organisation of cancer-

ous cells in breast [5], [6] or brain [7] tumors, or diabetic and

non-diabetic epidermal nerve fibers[8]. However, in all these

papers, these statistics are generally used in the simple context

of comparing the organization of diseased and healthy data,

which lead to studying images containing very different spatial



organisations.

In addition, the object extraction in these works is either

done manually [5], [8] or semi-automatically [7], [6]. A

manual intervention leads to inter- and intra-operator vari-

ability and, being costly, limits the possible size of the

study. Semi-supervised methods include fine-tuning threshold-

ing method [7] and pixel-classification using intensive user

feedback over many classification-correction iterations [6].

Contribution In this paper, we propose an automatic

method based on unsupervised object location detection, and

second-order functional description. This statistical description

captures the spatial relations between biological objects at all

observation scales. Using a functional analysis of variance test,

we show that there are significant differences between this

descriptor according to both the time scale of tumor growth

and the site of tumor implantation. Unlike previous works, we

also demonstrate that using second-order features provides a

different insights compared to a single first-order approach.

II. MATERIAL

Colon carcinoma CT26 tumors were implanted into the

caecum for the orthotopic model and subcutaneously for the

ectopic model. In this study, 48 Balb/C mice were used and

sacrificed on different days after tumor implant (see Table I).

At the indicated time, tumors were removed, frozen, cut and

stained with the same protocol. Each slice of the tumor was

immunostained for vessel localization and counterstained for

the visualization of cell nuclei. From this biological material,

355 histology images were digitized (Leica DM6000B) into

154 and 201 images from ectopic and orthotopic tumor model

respectively.

TABLE I
NUMBER OF IMAGES (AND MICE).

Day after implant 11th 15th 18th 21th

Ectopic 56 (8) 30 (3) 19 (3) 49 (5)

Orthotopic 48 (7) 66 (11) 59 (8) 28 (3)

III. METHODS

A. Biological Objects Extraction

We aim at describing the spatial organization of biological

objects in histology images of colorectal tumors. Segmenting

the accurate edges of these objects is a very challenging is-

sue [9]. However, in our context, we are interested in the object

locations organization. Estimating the centroid location of each

object is thus sufficient. We therefore use a more pragmatic

extraction method, based on the topographic map [10].

Given an image u, the topographic map is the set of all

its level-lines, defined as the connected components of the

topological boundary of the so-called level sets χλ(u) =
{x ∈ R

2, u(x) ≤ λ}, for all λ ∈ {0..255}. This complete

representation provides several characteristics that we use in

the following proposed successive filtering criteria.

Contrast and Luminance Level-lines are closed curves

passing through a constant grey level, thanks to their level-

set definition. Depending on the gradient sign on its border,

the line is said to hold a negative or positive contrast [11].

Due to the contrast agent’s color, the sought structures are

much darker than the background (Fig. 1). Our first extraction

criterion is thus to only retain negative contrast level-lines

whose mean of interior gray levels is inferior than the mean

of the whole image’s gray levels.

Dimensions The typical dimensions of the biological ob-

jects can be practically mapped on our images since we know

the exact physical scale being used during acquisition. We

thus set a minimal perimeter threshold in order to avoid any

structures related to noise. In our images, this threshold is set

to 10 µm.

Topology Two level-lines are either disjoint or included

one in the other, due to their topological definition. The

topographic map can thus be embedded in a hierarchical tree

structure. In order to be confident in the fact that we extract

no more than one point of interest per structure, we only keep

the tree leaves left by the previous criteria.

Once all these successive filtering steps are applied, the

topographic map is reduced to a set of non-overlapping level-

lines, each of which located within a unique relevant object.

We then compute the centroid of each of these polylines in

order to get a representative point distribution of the image

objects.

B. Spatial Organization Description and Analysis

Our goal is to measure how the biological objects in

histology images are spatially correlated with each other since

such information could help understanding their differentiation

and dissemination during tumor growth. In this section, we

estimate a second order descriptor to characterize the spatial

structure of the biological objects. In order to compare the

results obtained by this descriptor, we use functional analysis

of variance.

1) Second-Order Features: In order to characterize the

spatial organization of biological objects’ locations, we use

Besag’s L-function [3]. This function measures the spatial

interactions within a distribution of points at different scales

and is defined as:

L(r) =
√

K(r)/π − r (1)

where K(r) = λ−1E[number of extra events within a distance

r of a randomly chosen event], E is the expected value and λ
is the density (number of object locations per unit area). K(r)
is estimated by:

K̂(r) = λ−1
∑

i

∑

i 6=j

I(dij < r)

N
(2)

where N is the number of observed points, dij is the Euclidean

distance between the ith and the jth points and I(x) is the

indicator function.

L-functions have several advantages. The second order

behavior of the object distribution can be visualized and



interpreted easily: L(r) = 0 means that the distribution of

the process is completely random at scale r; positive maximal

values account for a clustering behavior whereas negative

minimal values point out regularity at the corresponding

scale (Fig. 2). In addition, it is a cumulative measure whose

estimation does not need any arbitrary kernel smoothing unlike

the pair correlation function.
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Fig. 2. An ectopic model image at the 15th day (left) and its corresponding
L-function (right): The negative peak shows strong evidence of regularity at
this scale.

To make sure that the spatial dependence is not related to a

first order effect such as density, we assume that the obtained

point patterns are stationary and isotropic. These assumptions

are plausible for our image database (Fig. 1). Based on these

assumptions and since we have a rectangular region of interest,

the most appropriate edge correction method when computing

L is the toroidal one [12].

2) Analysis of Variance for Functional Data: In order

to find whether the obtained L-functions have significantly

different values according to both the day after tumor implant

and the animal cancer model (ectopic and orthotopic), we use

an analysis of variance for functional data (fANOVA).

ANOVA is a statistical method that models a quantitative

variable as a function of qualitative factors. Each factor can

take several values, called levels, and ANOVA allows to

compare the means of two or more groups defined by these

levels by testing the null hypothesis H0: ”the different levels

have equal means”. In our study, the quantitative L-functions

can be described along two factors: the day after tumor implant

which has four levels (11, 15, 18 and 21) and the cancer model

which has two levels (ectopic, orthotopic).

Two types of ANOVA will be considered in our results

according to the number of factors taken into account:

• A two-way ANOVA tests the influence of both factors

simultaneously: that is the entangled impact of both the

cancer model and the day after implant on L-functions

variability.

• A one-way ANOVA considers each factor separately.

It can be used to determine which precise levels are

responsible for the null hypothesis failing if the two-way

ANOVA test is rejected.

Since we are dealing with functional data (the L-functions),

we choose to use the method proposed in [13]. Basically, this

method uses random projections to transform functional data

into univariate data and then solves the obtained simple scalar

ANOVA problem. We obtain conclusions for the functional

data by collecting the information from sets of several pro-

jections with p-value correction based on the False Discovery

Rate (FDR). This method is flexible, easy to compute and

requires no normality assumption.

IV. RESULTS AND DISCUSSION

A. Objects’ Centroid Extraction

We compute the topographic map for each image in our

database. Following the filtering criteria explained in Sec-

tion III-A, we get the objects’ locations. Figure 3 shows one

result on a cropped area. Results over the whole database

have been qualitatively evaluated and are visible online1. The

proposed extraction method has several important advantages:

It is invariant to local contrast and it does not require fine

threshold tuning or an object pre-detection step. We can

thus apply the same procedure and parameter value (object

physical size) to all images. The combination of dimension

and topological criteria acts as a bidirectional filtering in the

tree structure: the dimension threshold cuts the lower lines

(noise) whereas the subsequent leaf threshold cuts the lines

that could enclose more than one object. This trade-off is a

typical problem in binarization methods which seek to obtain

disjoint clusters of pixels [7]. Finally, the computation of

the topographic map is fast, and the implementation of the

whole method, including the manipulation of the level-lines

as polylines is straightforward.

(a) Input image (b) Filtered map (c) Centroids

Fig. 3. Object extraction on a cropped example. Computing the topographic
map of the input image (a), we apply successive filtering criteria providing
a set of disjoint level-lines (b). The centroids of these filtered tree’s leaves
represent the object locations (c).

B. L-Functions Estimation

For each image, we estimate the L-function on the obtained

point distribution along a vector of distances 0 < r < 114µm.

This upper bound corresponds to the common practice of

choosing the one-half of the shortest image dimension [14].

The L-functions estimated over the whole database strongly

overlap due to their high visual similarity (top row of Fig-

ure 4). We thus also show the envelopes of the L-functions

for each model and each day (bottom row of Figure 4).

The negative peak around 5µm points out a strong regularity

behavior at this scale. This is due to the typical interspace

distance between cells. By only observing these functions and

envelopes, we cannot conclude whether there are significant

differences in the spatial organizations between the different

days, or between the two models.

1http://www.math-info.univ-paris5.fr/~malsheha/conferences/ispa2013/

http://www.math-info.univ-paris5.fr/~malsheha/conferences/ispa2013/


Fig. 4. (top) The 355 L-functions estimated over the whole database strongly
overlap due to their high similar content. (bottom) The L-functions’ envelopes
show their amplitude range for each day and model.

C. fANOVA Application

Intra Group fANOVA As a sanity check, we first test

the null hypothesis within each single group (day/model).

We randomly separate each of the groups into two parts,

and we use one-way fANOVA between these two parts. We

repeated this test 1000 times per group. The obtained p-

values (p > 0.05) state that H0 is accepted for all groups

considered separately. This ensures that the potential inner

group variabilities, such as the mice variability, do not affect

subsequent results.

Two-Way fANOVA We use the functional ANOVA frame-

work presented in Section III-B to test the existence of factors’

interaction. The obtained p-values indicate that H0 is rejected

and the interaction exist (p < 0.05). This means that there

is a significant difference in the spatial organization of the

biological objects in the images according to both factors

simultaneously.

One-Way fANOVA We use the fANOVA with each factor

separately to find where exactly the significant differences

occur. We first test H0 for each day between the two models

(see diagonal of Table II). The results show that there are

significant differences between the two models at days 15,

18, and 21 whereas there are no differences at day 11. This

suggests that after that day, the two models are no more similar

in terms of the spatial behavior of the objects.

We also test the null hypothesis for each model between

every pair of days (upper and lower triangles of Table II).

For the ectopic model there are differences in the spatial

organization at all days, whereas for orthotopic model there

are no differences between the days 11 and 15 (see Table II).

In other words, this suggests that the orthotopic model does

not significantly evolve between these two days in terms of

the spatial behavior, whereas the ectopic one does.

TABLE II
TEST OF H0 FOR THE L-FUNCTION BETWEEN ALL PAIRS OF DAY AFTER

IMPLANT FOR ECTOPIC MODEL IN LIGHT GRAY, FOR ORTHOTOPIC MODEL

IN GRAY, AND BETWEEN BOTH MODELS IN WHITE. “A” AND “R” STAND

FOR accepted AND rejected RESPECTIVELY. THE STAR EXPONENT MEANS

THAT THE SAME ANOVA TEST ON FIRST-ORDER density of objects GIVES

AN OPPOSITE ANSWER.

Day 11th 15th 18th 21th

11th A A⋆ R⋆ R

15th R⋆ R⋆ R R

18th R⋆ R R⋆ R

21th R R R R⋆

D. Comparison With a First-Order Descriptor

We compare the proposed second-order descriptor with a

first-order descriptor: the density of objects. The star exponents

in Table II show where the scalar ANOVA test for the density

value gives a different result. Along the diagonal for instance,

the results indicate that this first-order descriptor detects no

differences between the ectopic and the orthotopic model at

all days. The null hypothesis is indeed always accepted. This

observation stresses the added insights given by the second

order analysis.

V. CONCLUSION AND FUTURE WORK

We proposed a framework that automatically extracts the

locations of the objects of interest in histology images. Based

on a second-order function, that measures the spatial interac-

tions on a continuous scale range, and a functional analysis

of variance, we are able to assess the differences along both

the cancer model and the day after implant. Note that the

two considered cancer models visually produce highly similar

images. However, the proposed second-order framework ac-

counts for significant differences where the classic first-order

density feature does not detect any. This advocates for the

complementary use of first and second order features to better

compare the models used by biologists.

We plan to address the following limitations in the near

future. First, measuring the intra- and inter-correlation between

the different types of the biological objects, such as cells’

nuclei and vessels populations, would give more specific

insights to the entangling of the underlying behavior. In fact,

vascularization plays a key role in tumor evolution. Secondly,

our next goal is to propose statistical features that not only

assess the differences between two groups of images with

respect to the presented factors, but also measure these dif-

ferences with a metric. This would eventually enable ordering

the groups based on their relative distances.
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