G. Abril, F. Guérin, S. Richard, R. Delmas, C. Lacaux et al., Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir, Global Biogeochem. Cycles, vol.19, p.4007, 2005.

R. L. Armstrong and M. J. Brodzik, Northern Hemisphere EASE-Grid weekly snow cover and sea ice extent, version 3, Natl. Snow and Ice Data Cent, 2005.

P. Bousquet, D. A. Hauglustaine, P. Peylin, C. Carouge, and P. Ciais, Two decades of OH variability as inferred by an inversion of atmospheric transport and chemistry of methyl chloroform, Atmos. Chem. Phys, vol.5, pp.2635-2656, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00328406

P. Bousquet, The contribution of anthropogenic and natural sources to the variability of atmospheric methane, Nature, vol.443, pp.439-443, 2006.

M. Cao, S. Marshall, and K. Gregson, Global carbon exchange and methane emissions from natural wetlands: Application of a processbased model, J. Geophys. Res, vol.14, pp.399-414, 1996.

T. R. Christensen, A. Ekberg, L. Ström, M. Mastepanov, N. Panikov et al., Factors controlling large scale variations in methane emissions from wetlands, Geophys. Res. Lett, vol.30, issue.7, p.1414, 2003.

R. Conrad, Control of methane production in terrestrial ecosystems, Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere, pp.39-58, 1989.

E. J. Dlugokencky, B. P. Walter, K. A. Masarie, P. M. Lang, and E. S. Kasichke, Measurements of an anomalous global methane increase during 1998, Geophys. Res. Lett, vol.28, issue.3, pp.499-502, 2001.

I. Fung, J. John, J. Lerner, E. Matthews, M. Prather et al., Threedimensional model synthesis of the global methane cycle, J. Geophys. Res, vol.96, pp.33-46, 1991.

K. R. Gurney, Towards robust regional estimates of CO 2 sources and sinks using atmospheric transport models, Nature, vol.415, pp.626-630, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02888447

D. A. Hauglustaine, Interactive chemistry in the Laboratoire de Meteorologie Dynamique general circulation model: Description and background tropospheric chemistry evaluation, J. Geophys. Res, vol.109, p.4314, 2004.

R. Hein, P. J. Crutzen, and M. Heimann, An inverse modeling approach to investigate the global atmospheric methane cycle, Global Biogeochem. Cycles, vol.11, pp.43-76, 1997.

J. T. Houghton, Projection of Future Climate Change, The Scientific Contribution Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, 881 pp, 2001.

B. W. Hütsch, J. Augustin, and W. Merbach, Plant rhizodeposition: An important source for carbon turnover in soils, J. Plant Nutr. Soil Sci, vol.165, pp.397-408, 2002.

J. O. Kaplan, Wetlands at the Last Glacial Maximum: Distribution and methane emissions, Geophys. Res. Lett, vol.29, issue.6, p.1079, 2002.

M. Keller, Biological sources and sinks of methane in tropical habitats and tropical atmospheric chemistry, 1990.

C. A. Kelly and D. P. Chynoweth, The contributions of temperature and of the input of organic matter in controlling rates of sediment methanogenesis, Limnol. Oceanogr, vol.26, issue.5, pp.891-897, 1981.

D. V. Khvorostyanov, G. Krinner, P. Ciais, M. Heimann, and S. A. Zimov, Vulnerability of permafrost carbon to global warming. Part 1. Model description and role of heat generated by organic matter decomposition, Tellus, Ser. B, vol.60, pp.265-275, 2008.
URL : https://hal.archives-ouvertes.fr/insu-00378482

J. Y. King and W. S. Reeburgh, A pulse-labeling experiment to determine the contribution of recent plant photosynthates to net methane emission in arctic wet sedge tundra, Soil Biol. Biochem, vol.34, issue.2, pp.173-180, 2002.

G. Krinner, N. Viovy, N. Noblet-ducoudré, J. Ogée, J. Polcher et al., A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochem. Cycles, vol.19, p.1015, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02865384

L. K. Liblik and T. R. Moore, Methane emissions from wetlands in the zone of discontinuous permafrost: Fort Simpson, Northwest Territories, Canada, Global Biogeochem. Cycles, vol.11, pp.485-494, 1997.

T. R. Loveland, B. C. Reed, J. F. Brown, D. O. Ohlen, Z. Zhu et al., Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data, Int. J. Remote Sens, vol.21, issue.6/7, pp.1303-1330, 2000.

E. Matthews and I. Fung, Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources, Global Biogeochem. Cycles, vol.1, pp.61-86, 1987.

E. Matthews, I. Fung, and J. Lerner, Methane emission from rice cultivation: Geographic and seasonal distribution of cultivated areas and emissions, Global Biogeochem. Cycles, vol.5, pp.3-24, 1991.

W. J. Mitsch and J. G. Gosselink, , 2000.

T. Ngo-duc, J. Polcher, and K. Laval, A 53-year forcing data set land surface models, J. Geophys. Res, vol.110, p.6116, 2005.

J. G. Olivier and J. J. Berdowski, Global emissions sources and sinks, in The Climate System, pp.33-78, 2001.

S. E. Page, F. Siegert, J. O. Rieley, H. V. Boehm, A. Jaya et al., Wetland dynamics using a suite of satellite observations: A case study of application and evaluation for the Indian Subcontinent, Geophys. Res. Lett, vol.420, p.8401, 2002.

F. Papa, C. Prigent, and W. B. Rossow, Ob' River flood inundations from satellite observations: A relationship with winter snow parameters and river runoff, J. Geophys. Res, vol.112, p.18103, 2007.

F. Papa, C. Prigent, and W. B. Rossow, Monitoring flood and discharge variations in the large Siberian rivers from a multi-satellite technique, Surv. Geophys, vol.29, pp.297-317, 2008.

F. Papa, A. Güntner, F. Frappart, C. Prigent, and W. B. Rossow, Variations of surface water extent and water storage in large river basins: A comparison of different global data sources, Geophys. Res. Lett, vol.35, p.11401, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00442263

A. M. Petrescu, J. Van-huissteden, M. Jackowicz-korczynski, A. Yurova, T. R. Christensen et al., Modelling CH4 emissions from arctic wetlands: Effects of hydrological parameterization, Biogeosciences, vol.5, pp.111-121, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00297919

C. Prigent, E. Matthews, F. Aires, and W. B. Rossow, Remote sensing of global wetlands dynamics with multiple satellite data sets, Geophys. Res. Lett, vol.28, issue.24, pp.4631-4634, 2001.

C. Prigent, F. Papa, F. Aires, W. B. Rossow, and E. Matthews, Global inundation dynamics inferred from multiple satellite observations, J. Geophys. Res, vol.112, p.12107, 1993.

R. D. Shannon and J. R. White, A 3-year study of controls on methane emissions from two Michigan peatlands, Biogeochemistry, vol.27, pp.35-60, 1994.

D. T. Shindell, B. P. Walter, and G. Faluvegi, Impacts of climate change on methane emissions from wetlands, Geophys. Res. Lett, vol.31, p.21202, 2004.

N. J. Shurpali and S. B. Verma, Micrometeorological measurements of methane flux in a Minnesota peatland during two growing seasons, Biogeochemistry, vol.40, pp.1-15, 1998.

S. M. Uppala, The ERA-40 Reanalysis, J. R. Meteorol. Soc, vol.131, pp.2961-3012, 2005.

D. W. Valentine, E. A. Holland, and D. S. Schimel, Ecosystem and physiological controls over methane production in northern wetlands, J. Geophys. Res, vol.99, issue.D1, pp.1563-1571, 1994.

G. R. Van-der-werf, J. T. Randerson, G. J. Collatz, and L. Giglio, Carbon emissions from fires in tropical and subtropical ecosystems, Global Change Biol, vol.9, pp.547-562, 2003.

G. R. Van-der-werf, Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period, Science, vol.303, pp.73-76, 2004.

B. P. Walter and M. Heimann, A process-based, climate-sensitive model to derive methane emissions from natural wetlands: Application to five wetland sites, sensitivity to model parameters, and climate, Global Biogeochem. Cycles, vol.14, issue.3, pp.745-765, 2000.

B. P. Walter, M. Heimann, and E. Matthews, Modelling modern methane emissions from natural wetlands: 1. Model description and results, J. Geophys. Res, vol.106, issue.D24, pp.189-223, 2001.

B. P. Walter, M. Heimann, and E. Matthews, Modeling modern methane emissions from natural wetlands: 2. Interannual variations 1982-1993, J. Geophys. Res, vol.106, issue.D24, pp.207-241, 2001.

K. M. Walter, S. A. Zimov, J. P. Chanton, D. Verbyla, and F. S. Chapin, Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming, Nature, vol.443, pp.71-75, 2006.

G. J. Whiting and J. P. Chanton, Primary production control of methane emissions from wetlands, Nature, vol.364, pp.794-795, 1993.

S. A. Zimov, Y. V. Voropaev, I. P. Semiletov, S. P. Davidov, S. F. Prosiannikov et al., North Siberian lakes: A methane source fueled by Pleistocene carbon, Science, vol.277, pp.800-802, 1997.

L. Zobler, Global Soil Types, 1-Degree Grid (Zobler), data set, Oak Ridge Natl, Lab. Distrib. Act. Arch. Cent, 1999.

P. Bousquet, P. Ciais, N. Noblet-ducoudré, and B. Ringeval, Laboratoire des Sciences du Climat et de l'Environnement, Unité mixte CEA

F. Papa and W. B. Rossow,

N. Broadway, . York, U. C. Ny-10025, and . Prigent, Laboratoire d'Etudes du Rayonnement et de la Matière en Astrophysique