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ABSTRACT 
 
In tensor factorization approach to blind separation of 
multidimensional sources two formulas for calculating the 
source tensor have emerged. In practice, it is observed that 
these two schemes exhibit different levels of robustness 
against perturbations of the factors involved in the tensor 
model. Motivated by both practical reasons and the will to 
better figure this out, we present error analyses in source 
tensor estimation performed by low-rank factorization of 
three-way tensors. To that aim, computer simulations as 
well as the analytical calculation of the theoretical error are 
carried out. The conclusions drawn from these numerical 
and analytical error analyses are supported by the results 
obtained thanks to the tensor factorization based blind 
decomposition of an experimental multispectral image of a 
skin tumor.  
 

Index Terms— Tensor models, multidimensional 
signal, blind source separation 

 
 

1. INTRODUCTION 
 

Great majority of data acquired in contemporary 
medical imaging, remote sensing and/or spectroscopy are 
three-way or three-dimensional (3D) tensors. Few examples 
include MultiSpectral/HyperSpectral Image (MSI/HSI), [1-
4],  multispectral Magnetic Resonance Image (mMRI), [5], 
functional MRI, [6], multi-phase computed tomography 
image, [7], and fluorescence spectroscopy, [8]. Their blind 
(a.k.a. unsupervised) decomposition is receiving increasing 
attention since profiles (temporal, spectral, density, etc.) of 
the objects (materials, organs, tissues, compounds) present 
in the data do not need to be known to be recovered. 
However, a great majority of blind decomposition methods 
rely on two-dimensional representation of the multichannel 
data, [1, 2, 5-7], even when these data are inherently 3D 
tensors. Moreover, in fluorescence spectroscopy, [8], data 

tensor obeys the canonic polyadic decomposition (CPD) 
tensor model (a.k.a. PARAllel FACtor analysis – 
CP/PARAFAC), [9, 10]. Tensor factorization (TF) approach 
to Blind Source Separation (BSS) is justified by the fact that 
hard constraints, such as sparseness or statistical 
independence, necessary in matrix factorization approaches 
to BSS, can be substituted by multidimensionality, [11, 12]. 
In this regard, it has been demonstrated in [3] that 
Nonnegative TF (NTF) based on -divergence cost 
function, a.k.a -NTF [13, 14], is capable to perform blind 
MSI decomposition by using nonnegativity constraint only. 
However, as briefly mentioned in [3], the TF approach to 
BSS yields two formulas for calculating the estimate of the 
source tensor relying on all or a part of the estimated factors 
of the 3D tensor model. Thus, the goal of this paper is to 
present an error analysis that will help make the right choice 
of formula according to a specific application scenario. To 
this end, both numerical and analytical error analyses are 
presented for two tensor models: the Tucker3 model [15] 
and the CPD model. The Tucker3 model is treated even 
though formal proof is still missing regarding conditions 
necessary for achieving a unique decomposition. That is 
because there is a vast number of papers demonstrating 
meaningfulness of results obtained by factorization of data 
tensors according to this Tucker model among which [3, 4, 
14]. The considered error analysis is related to low-rank 
approximations of 3D tensors denoted by    X  , but 
computer simulations will be performed for nonnegative 
tensors to stick to the outlined practical examples. When X  

represents a multichannel image,    stands for the number 
of channel images whose size is then  pixels. Low-rank 
constraint implies that the rank, r, of (3)X g ab´Î  matrix, 

obtained by mode-3 unfolding of X , is constrained by the 

number of channels, i.e. r. Since r matches the number of 
objects present in the data tensor, such a low-rank constraint 
is meaningful and justified from an experimental point of 
view. Even though analytical error analyses in sections 3 
and 4 are related to 3D tensors, it is obvious that they can be 



extended to higher-dimensional tensors. However, the 
algebraic complexity of expressions derived for additive 
noise type of error analysis, presented in section 4, would 
significantly grow with the tensor order. Nevertheless, this 
type of error analysis supplements the results of the Cramer-
Rao Lower Bound (CRLB) analysis presented in [16]. 
While in [16] error bounds on parameter estimates of the 
CPD model are derived upon a white Gaussian noise 
assumption, the additive noise type of error analysis 
presented in this article is distribution invariant.  
 
 

2. PROBLEM FORMULATION 
 

Given a 3D tensor X , the Tucker3 decomposition 
consists of the following triadic or trilinear decomposition: 

1 2 3     X G A B C X  

where G  denotes the core tensor, of smaller size than X , 

X denotes the additive noise or measurement error and n 
stands for the n-mode product of a tensor with a matrix, i.e. 
contraction over the nth tensor index and 2nd matrix index. 
This decomposition is not unique. If the core tensor is 
constrained to be diagonal ( G Λ ), then the so-called CP 

decomposition is unique under known sufficient conditions 
(cf. section 4): 

1 2 3     X Λ A B C X  

In the remainder, sizes of matrices A, B and C are 
respectively r, r and r. Due to the reasons outlined 
in section 1 we impose the low-rank constraint on r, i.e. r. 
In this framework, we are mainly interested in the 
calculation of a signal tensor, which can be expressed in two 
different ways:  
      
  1 2

dirS G A B     (1) 

or  
      
  †

3
invS X C     (2) 

which we shall, respectively, call the "direct" and "inverse" 
expressions, and where (.)†stands for the pseudo-inverse 
operator. Signal tensor of size r contains r intensity 
images of size  pixels that indicate spatial locations of r 
objects present in the image. The goal of this paper is to 
determine how to choose between direct and inverse 
formulas. To assist in making such a decision, the sections 3 
and 4 are dedicated to numerical and analytical error 
analyses in the estimation of dirS  and invS  for Tucker3 and 

CPD tensor models. Conclusions drawn from these analyses 
are supported, at the end of section 3, by the results of the 
blind decomposition of an experimental multispectral image 
with a known ground truth. 
 
 

3. NOISE ON LOADING MATRICES 
 

 This analysis of robustness is based on the first order 
perturbation of expressions (1) and (2). On one hand, we 
have: 

 

1 2 1 2 1 2
dirS G A B G A B G A B             (3) 

and on the other hand, by exploiting results derived in [16], 
we find that: 

 
 

† † † †T T †

3 † T †T †

inv

r

C CC C C C I CC
S X

I C C C C C

 




  
  
   

 (4) 

where I denotes the  identity matrix, and (.)T stands for 

the transpose operator. It reduces to: 
1 1

3
invS X C CC        (5) 

if the matrix C happens to be square invertible. In this kind 
of error analysis, it is assumed that the loading matrices are 
estimated thanks to some known TF algorithm (X is tensor 

with all entries equal to zero), and the sensitivity of dirS  and 
invS  is evaluated when G , A, B and C are perturbed by 

independent and identically distributed additive noises. To 
some extent, this could represent rounding errors due to 
computation or storage. It can also represent errors due to 
convergence to local minima. Of course, a crucial point is 
the conditioning of matrix C, which controls the amplitude 
of the perturbation affecting invS , and hence determines 

which of the solutions (direct or inverse) is more robust. As 
it can be observed in Figure 1, when matrix C is sufficiently 
well conditioned, the inverse formula is more accurate. In 
this figure, log10 of the ratio of the Frobenius norms of error 
tensors (3) and (5) is shown versus the condition number of 
the C matrix. The original tensor X  was of size 

85611443. Entries of the loading matrices A, B and C 
and core tensor G  were drawn independently according to 

nonnegative uniform distribution, where intrinsic 
dimensions were equal to r=3. The 33 C matrix was 
generated with controlled condition number between 2 and 
20 in steps of 1. Perturbations of G , A, B and C were 

generated as nonnegative uniform noise with Frobenius 
norms equal to  0.1%, 1% and 10% of the Frobenius norms 
of G , A, B and C, respectively. For each value of the 

condition number of C, one hundred cases were generated. 
Size of the original tensor, loading matrices and core tensor 
as well as type of perturbation distribution comply with the 
typical MSI case but, if necessary, could be selected 
differently. Figure 1 shows the mean values as well as the 
minimal and maximal values of the log10 of the ratio. The 
inverse formula yields overwhelmingly smaller error than 
direct formula when the condition number of C matrix is 
less than or equal to 16. 



 
Fig. 1.  Log10 of the ratio of the Frobenius norms of error tensors (3) and 
(5). Errors are due to uniform random perturbations in the loading factors of 
the Tucker3 tensor model in the amounts of 0.1%, 1% and 10% of the 
Frobenius norms of the true values of loading factors. 

 

 
Fig. 2. (color online). Top row: experimental RGB fluorescent image of a 
skin tumor that stands for measurement tensor X of dimensions 
85611443. Mid row: intensity maps of tumor component. Left direct 
formula (1); right: inverse formula (2). Bottom row: intensity maps of 
background component. Left direct formula (1); right: inverse formula (2).  
Intensity maps are scaled to [0, 1] interval and shown in pseudo-color such 
that dark red indicates that component is present with probability 1, while 
dark blue indicates that component is present with probability 0. 

 
To further support the conclusions drawn from this 
numerical and analytical error analyses, we have repeated 
the experiment previously reported in [3]. It is related to the 
unsupervised decomposition of fluorescent RGB image of a 

skin tumor (basal cell carcinoma) by means of the -NTF 
algorithm [13] (=0.1 was chosen in this case). Here, -
divergence is just a choice and other cost functions could be 
used as well. Results are shown in Figure 2. The ground 
truth is simple and visible on the RGB image itself which is 
shown in top row of Figure 2. The image contains 
fluorescent tumor component in red color and background 
component (composed of surrounding healthy skin and the 
ruler) in green and black colors, that is the C matrix is 32 
matrix. Although result obtained by inverse formula (2) is 
better, it can be seen from Figure 2 that direct formula (1) 
also yields result that is meaningful. Thus, if the 
conditioning of the C matrix happens to be poor (it could be 
due to the existence of spectrally very close or even similar 
objects in X ) direct formula (1) can be useful. 

 
 

4. NOISE ON MEASUREMENT TENSOR 
 

In the second analysis, only tensor X  is perturbed and 
corresponding perturbations of factor matrices A, B and C 
as well as tensor Λ  are calculated. Hence, the latter 
perturbations are not independent nor of same variance 
anymore. It is clear that this analysis can be carried out only 
when the decomposition is unique, which discards the 
Tucker3 decomposition. In order to carry out the computer 
simulations, it is now necessary to have the expressions of 
A, B, C and Λ  as a function of X . For this purpose, 
we consider again the first order expansion of the CPD of 
X , which yields: 

   
   

T T

(3)

T T

  

 

 

 

X CΛ B A C Λ B A

CΛ B A CΛ B A

 

 
 

where   denotes the column-wise Kronecker product, 
often  referred to as Khatri-Rao product, see e.g. page 30 in 
[18].  is a rr diagonal matrix containing the entries of the 
diagonal tensor Λ , if r denotes the rank of X . This 
expansion is based on the third mode unfolding of X  i.e. 

 T(3)X CΛ B A  . The derived expansion is a linear 

system and can be rewritten in a more convenient form, by 
defining the two following vectors: 
 

 

 
 
 
 

 (3)and 
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vecd
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where vec{.} and vecd{.} respectively mean: 
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11

...

rr

vecd Λ






 
 
 
  

  and 1a ,…, ra stand for the r 

columns of the loading matrix A. Then, we have to solve for 
z the linear system Mz=x, where the 4-block matrix M 
is written as ( "|" standing for the separation between the 
different blocks):  

       

   
, ,r rD D   



  
 
  

K CΛ I B K CΛ I A
M

B A Λ I B A C


  
 (6) 

 

where    1,..., rD Diag    A I a I a  and 

   1 ,..., rD Diag    B b I b I  are block-diagonal 

matrices of size r  r and r  r , respectively, and  
stands for the Kronecker product. Note that there probably 
exist other more compact ways of writing D(A) and D(B), 
for instance by using the selection matrix E satisfying 

    B A B A E , [19], but this would be 

computationally very suboptimal. This matrix M is of size  
  ( +  + + 1)r. Due to low-rank constraint, r , 
and due to the fact that  stands for number of channels 
which is low (=3 in case of RGB image analyzed in section 
3) matrix M has less columns than rows; in other words, we 
have more equations than unknowns. Eventually, every 
matrix perturbation can be obtained from X . Figure 3 
shows log10 of the ratio of the Frobenius norms of error 
tensors (3)  and (5) versus the condition number of the C 
matrix. The original tensor X  was of the size 50503. For 
each realization of X  entries of loading matrices A, B and 
C were drawn from nonnegative uniform distributions, 
where dimensions were equal to r=3. The core tensor Λ  
was generated with nonnegative uniformly distributed 
values on diagonal. Please note that, if necessary, tensors 
with positive and negative entries could be generated as 
well. The 33 C matrix was generated with controlled 
condition number between 2 and 20 in steps of 1. Entries of 
tensor perturbation X  were drawn independently 
according to a nonnegative uniform distribution, whereas 
Frobenius norm of X  was determined from a predefined 
signal-to-noise ratio (SNR) in dB as: 

 1020logSNR  X X . The numerical evaluation 

scenario is consistent with the one used in section 3 to 
obtain Figure 1. Figure 3 shows the mean values as well as 
the minimal and maximal values of the log10 of the ratio. 
The inverse formula yields overwhelmingly smaller error 
than direct formula when condition number of C matrix is 

less than or equal to 8. The fact that inverse formula is more 
sensitive to measurement noise than noise in loading factors 
is expected since it increases noise via †C . Results 
presented in this section supplement the one related to 
Cramer-Rao lower bound (CRLB) analysis presented in 
[16]. While CRLB predicts error bounds on parameter of 
the CPD model under a white Gaussian noise assumption, 
the error analysis presented herein can be performed for 
arbitrary distribution of the additive noise.   
 

 
Fig. 3.  Log10 of the ratio of the Frobenius norms of error tensors (3) and 
(5). Errors are due to uniform random perturbations in the measurement 
tensor based on the CPD tensor model.   
 

5. CONCLUSION 
In factorization of three-way tensors direct and inverse 
formulas for calculating source tensor emerge. In case of 
measurement noise and mode-3 dimension equal to 3, 
inverse formula is better when condition number of mode-3 
loading matrix is smaller than or equal to 8. If errors are due 
to perturbations in loading matrices inverse formula is better 
when condition number of the mode-3 loading matrix is 
smaller than or equal to 16. 

 
APPENDIX 

Eq. (6) was obtained thanks to a certain number of 
identities. Some of them are recalled below: 

      Tvec vec UVW W U V      (7) 

      Tvec vecdUΛW W U Λ       (8) 

and, assuming U is  and W is : 
 

         Tvec vec vec
   UW I U W W I U         (9) 

      ,vec vec vec         U W I K I U W      (10) 
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