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GESTURE RECOGNITION USING A NMF-BASED REPRESENTATION OF
MOTION-TRACES EXTRACTED FROM DEPTH SILHOUETTES

Aymeric Masurelle, Slim Essid and Gaél Richard

Institut Mines-Télécom/Télécom ParisTech, CNRS-LTCI, Paris, France

ABSTRACT

We present a novel approach that classifies full-body human
gestures using original spatio-temporal features obtained by
applying non-negative matrix factorisation (NMF) to an ex-
tended depth silhouette representation. This extended repre-
sentation, the motion-trace representation, incorporates tem-
poral dimensions as it is built by superimposition of consec-
utive depth silhouettes. From this representation, a dictio-
nary of local motion features is learned using NMF. Thus the
projection of these local motion feature components on the
incoming motion-traces results in a compact spatio-temporal
feature representation. Those new features are then exploited
using hidden Markov models for gesture recognition. Our
experiments on a gesture dataset show that our approach out-
performs more traditional methods that use pose features or
decomposition techniques such as principal component anal-
ysis.

Index Terms— Gesture recognition, Depth-silhouette,
Motion-trace, Non-negative matrix factorisation , Hidden
Markov models.

1. INTRODUCTION

Applications dealing with Human-Computer Interaction
(HCI) have become omnipresent in our daily lives: video
games, tablet computer or smart phone usages are just a few
examples of this reality. One important aspect of those in-
teractions relies on the analysis and recognition of human
body movements such as hand movements, head gestures,
body language, etc. For the last few years, significant ad-
vances in HCI technologies have facilitated the recording of
spatio-temporal features of human body. In parallel, gesture
recognition has been an important research area, mainly in
the computer vision community. Numerous surveys on this
topic have been written [1, 2]. Usually related works focus
on methods using data deduced from visual sensors: RGB-
cameras or depth sensors.

Using this kind of data, different types of data representations
have been considered for gesture recognition task. Several
approaches, very suitable for the action recognition task, use
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the pixel locations of spatio-temporal interest points to com-
pute local spatio-temporal descriptors [3, 4]. Other systems
make efficiently use of the 3D human body joint representa-
tion either using it directly [5, 6], or using angles formed by
the obtained joints [7, 8]. Also, several works have reported
successful gesture recognition using global human shape rep-
resentations. For example, quantized representations of bi-
nary silhouettes have been successfully exploited by Yamato
et al. [9] to learn several tennis actions using hidden Markov
models (HMM). The concept of binary silhouettes has been
extended by Bobick and Davis [10] by incorporating temporal
dimensions using two different types of temporal integration
over sequences of binary silhouettes. An improvement using
this global representation has been made by deducing both
local and global descriptors [11]. Although such representa-
tions and variants thereof have been exploited to represent a
wide variety of body gestures with success, they tend to suffer
from ambiguities in the body configurations. For instance,
identical binary silhouette representations can be obtained
with different arm or hand gestures when they are performed
in front of the performer’s torso. To solve ambiguities, an
extension of the binary silhouette representation has been
proposed by Mufioz-Salinas et al. [12]: the depth silhouette
representation. This representation is obtained by filling the
pixels of the silhouette with the corresponding depth value.
Using this representation in a gesture recognition task, satis-
factory results have been obtained through the combined use
of principal component analysis (PCA) and a set of HMM.
Through their system, Mufioz-Salinas et al. suppose that
a gesture is a temporal juxtaposition of poses, where those
poses are expressed as a combination of “eigen” poses.

In our work, we further develop this concept of gesture by
considering it as a concatenation of atomic sequences of mo-
tions and poses of different body parts. Thus our gesture
classification system relies on local spatio-temporal features
exploiting the depth silhouette representation. First we ex-
tend the depth silhouette representation incorporating local
dynamics using a temporal integration process which results
in a global motion representation: the motion-trace. Then to
spatially decompose this global motion representation, a non-
negative matrix factorisation (NMF) is carried out. Indeed
Lee and Seung [13] have successfully shown the efficiency
of NMF in learning the parts of face images in comparison



to PCA or vector quantization techniques. Thus, in our case,
NMF is used to learn a dictionary of redundant local motion
patterns in order to express the global motion-trace represen-
tation as a composition of local motion patterns. Finally, the
classification of gestures is achieved by a HMM classifier.
The paper is organised as follows: a presentation of our hu-
man body gesture recognition process is given in Section 2.
Then details and results from the evaluation stage are ex-
posed and discussed in Section 3. Some conclusions are then
suggested in Section 4.

2. METHOD

The general architecture of our approach is summed up in
Figure 1. The input of our system is the depth-map sequences
captured by a monocular depth sensor placed in front of the
performer. First the depth silhouette representation is ob-
tained using a background subtraction technique followed by
a cropping and resizing procedure. A temporal integration
reveals local dynamics through the motion-trace representa-
tion. Then this global representation is decomposed in a dic-
tionary of local spatio-temporal patterns using non-negative
matrix factorization. Thus to perform the recognition task,
the sequence of dictionary component activations represent-
ing a specific motion-trace sequence feeds HMM classifiers.

2.1. Depth silhouette extraction
2.1.1. Background subtraction

As we are only focusing on human full-body gestures, a back-
ground segmentation process is first used to separate the per-
former from his/her background. To process this background
segmentation on a depth-map stream, a constant depth thresh-
old, 7, is applied over all the frames of the sequence:
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where I'[j, k, t] is the resulting value placed at the pixel index
(4, k) of the depth-map frame at time index ¢ and I[j, k, t] is
the corresponding original depth-map frame.

2.1.2. Silhouette bounding-box cropping

For encouraging translation and scale invariance, the follow-
ing three steps are accomplished. First, all frames of the re-
sulting depth-map sequence are cropped with respect to the
bounding-box within which the performer lies. This allows
horizontal and vertical translation invariances. Then, for the
depth translation invariance, the depth values belonging to
the performer’s pixels are normalized between 0 (the furthest
point) and 1 (the closest point). And thus the scale-invariance
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Fig. 1. Schematic illustration of our gesture recognition ap-
proach.

is obtained by resizing the cropped frames to a fixed frame
resolution, in our case 64x64.

Now that we have extracted translation- and scale-invariant
depth silhouettes, we have an efficient spatial feature of the
performer’s body presence for each depth frame.

2.2. Feature representation

In this section, we further describe our feature representation
which aims at representing a gesture as a juxtaposition of lo-
cal spatio-temporal pattern combinations.

2.2.1. Motion-trace representation

Inspired by the temporal templates introduced by Bobick and
Davis [10], we have extended the concept of depth silhouette
to incorporate motion dynamics. A temporal integration is
thus applied on consecutive depth silhouettes, S?, to obtain
a motion-trace, S™¢. This temporal integration is done using
a sliding window whose length is set to a fixed number of
frames, n.-, with an overlap of half the window size.
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This integration improves the robustness of the feature



and achieves a reduction of the image rate for the rest of the
process.

2.2.2. NMF motion-trace depth silhouettes representation

The motion-trace representation can be seen as a global rep-
resentation of a short time instant of a full body gesture. With
respect to our gesture consideration, we need to decompose
motion-trace representation into local spatio-temporal pat-
terns. NMF is known to be appropriate for representing an
image as a linear combination of images parts which may be
previously learned [13]. In our work a NMF is carried out on
motion-traces in order to represent this global representation
as a combination of local spatio-temporal features.

Let X be a non-negative matrix, the problem of NMF is to
find two matrices W and H such that:

X ~ WH 3
W >0,H >0

where W is a dictionary of local components and H repre-
sents the activations of the dictionary components. The above
factorization is achieved by solving the following problem:

win D(X|WH) 4

where D(X|WH) is a cost function which can be expressed
as:

N F
D(X|WH) = Z > d([X] pnl [WH] ) 5)
n=1 f=1
where d(x|y) is the chosen scalar divergence function.

In our work, the observation matrix X is formed by a con-
catenation of vectorized version of motion-traces. W is a dic-
tionary of local spatio-temporal features and H represents the
activations of each local motion feature for each respective
motion-traces. X, W and H have respectively the dimen-
sions F' x N, ' x K and K x N with F' the dimension of
the vectorized motion-trace representation, X the number of
dictionary components and /N the number of motion-trace ex-
amples.

The divergence used in this work is the common squared error
(eq.6).
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We choose the use of the multiplicative update rules to solve
the minimization problem (4) under the latter two objective
functions [14].

To achieve the proposed NMF representation process, we
have to perform two consecutive steps: first the formation
of the local spatio-temporal feature dictionary through the
learning step and then the representation one.

dsp(zly) =

e learning step : in this step, we iteratively learn W and
H (randomly initialized) using the entire training set

concatenated in a single observation matrix X. This
results in a dictionary of K local spatio-temporal fea-
tures that is going to be used to decompose the incom-
ing motion-traces.

e representation step : once the dictionary of local motion
features is learned, each incoming motion-trace is pro-
jected on these dictionary components to obtain the cor-
responding vector of their decomposition factors. Thus
those activation vectors are used as motion features.

As a result of this NMF decomposition process, a com-
pact and semantically meaningful motion representation is
obtained.

2.3. HMM-based classification

Ergodic continuous density hidden Markov models are used
to perform the gesture recognition task [15].

A HMM classifier is associated to each gesture class. Its
hyper-parameters are learned using the Baum-Welch algo-
rithm. Then test data are categorized into one of the consid-
ered gesture classes using maximum likelihood decision.
The implementation of the considered algorithms has been
done using a machine learning toolbox called Scikit-learn
[16].

3. EXPERIMENTAL EVALUATION

In this section, we describe the dataset used, the evaluation
protocol and the results obtained.

3.1. Dataset

To evaluate our system, a subset of the Huawei/3DLife 3D
human reconstruction and action recognition Grand Chal-
lenge database! is used: a set of the 8 dynamic actions (‘Golf
drive’, ‘Lunges’, ‘Squats’, ‘Jumping Jacks’, ‘Tennis back-
hand’,“Walking on the treadmill’, ‘Punching and kicking’,
‘Hand Waving’) performed by 8 participants (S01 — S08)
from the session 1 of the dataset 1. This database is com-
posed of multimodal recordings (RGB and depth-map video
streams, audio streams and inertial data streams) of multiple
gestures performed several times (at least 5 times by each in-
dividual) by each participant. In addition, gesture annotations
related to each performance are attached.

3.2. Reference systems

We have reimplemented three existing gesture recognition
systems as faithfully as possible in order to compare their
performance with our proposed approach. We have chosen
these systems in the context that is relevant to our work, that
is gesture recognition for HCI applications.

"http://mmv.eecs.gmul.ac.uk/mmgc2013/



One of them is the approach introduced in [12] which di-
rectly uses the depth-map stream to extract the corresponding
depth silhouette sequence and then uses a principal compo-
nent analysis to acquire the features that will feed the HMM
classifiers. In addition, we add a temporal integration step
(cf. Section 2.2.1) in between the extraction of depth sil-
houettes and the PCA process to compress the data and to
make it more robust. The two others references approaches
are described in [8, 6]. They both use the 3D positions of
the participants’ main body joints as input. Those position
are extracted from a depth-map sequence using the OpenNi?.
To feed the HMM classifiers, the approach of Papadopoulos
et al.[8] uses spherical angles between selected body joints
and their respective angular velocities expressed in a torso-
centered coordinate system. Also, our previous method [6]
exploits motion features extracted from 3D sub-trajectories
of participants’ body joint positions using PCA. The original
implementation of this approach segments the body joint tra-
jectories where participants’ footstep impacts happen on the
floor using signals of onfloor piezoelectric sensors. In this
study, no piezoelectric sensors are available, then we have
segmented the trajectories using a fixed size window.

3.3. Evaluation procedure

Our evaluation is performed using cross-validation. To avoid
using gestures performed by a particular participant both in
the test and train partition through the same fold, the train and
test partitions for each cross-validation fold are formed in a
leave-one-participant-out fashion. Thus the number of folds
is equal to the number of participants, that is eight.

Different window size are tested (w = {3,4,5,6,7}). For
the NMF, the effect of the number of components has been
investigated (k = {64, 128,256}). We also test the values of
the following set for the PCA-feature space dimension: d =
{20, 30,40,50,60}. In the HMM implementation, we use
one Gaussian probability density function per hidden state
and different hidden state numbers are tested: Q = {2, 3,4, 5,
6,7,8}.
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To quantify action classification results we use the F-measure”.

This quantity is first computed for each gesture in each fold,
then the obtained F-measure are uniformly averaged over all
gestures giving a F-measure value for each fold. Finally a
global F-measure is obtained by averaging uniformly over all
folds.

3.4. Classification results

In Table 1, we present the best results in F-measure obtained
over all model parameters and feature space dimensions
tested for our system and the reference systems that consist
in an adaptation of [8, 6, 12] as described in Section 3.2.

2http://www.openni.org/
3F-measure = 2-(precision X recall) / (precision + recall)

Approaches

[8] [6] [12] proposed
78% 89% 89% 91%
(0=6) | (w=6,d=30,0=2) | (w=5,d=40, 0=2) | (w=6, k=128, Q=7)

Table 1. Best classification results in F-measure on 8 gesture

classes with HMM classifiers.

The results of Table 1 show that our approach obtains
superior performance compared to the reference systems.
First we can observe that the method based only on global
pose features [8] is outperformed by the other methods that
incorporate motion dynamics and a decomposition process
through their feature representation. However, our experi-
ments have shown that the number of hidden states had only
minor impact on the results whereas the window size and the
number of NMF components are two critical parameters that
have a strong influence on the results. As the performance
of our system is superior to the other reference systems, the
use of a NMF decomposition technique seems to be more
suitable to efficiently represent spatio-temporal motion fea-
tures compared to a PCA decomposition. This highlights
the importance of considering a gesture as a concatenation
of atomic sequences of motions and poses of different body
parts.

4. CONCLUSION

Through this paper we have presented a new gesture classi-
fication system based on a compact and efficient NMF rep-
resentation using local spatio-temporal features. First by in-
corporating motion dynamics to depth silhouette representa-
tion, then by representing it through a NMF decomposition
using a dictionary of local spatio-temporal features, we ob-
tain an efficient motion representation. Finally temporal de-
pendencies between those motion features are modelled by
HMM. Our system obtains better performance than reference
systems based on PCA decomposition and/or 3D body joint
positions. An important extension of our research would be
to encourage complementary invariances and to include data
from other media such as RGB cameras and accelerometers.
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