A non elliptic spectral problem related to the analysis of superconductive micro-strip lines

Anne-Sophie Bonnet-Ben Dhia 1 Karim Ramdani
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, ENSTA ParisTech UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : This paper is devoted to the spectral analysis of a non elliptic operator A , deriving from the study of superconducting micro-strip lines. Once a sufficient condition for the self-adjointness of operator A has been derived, we determine its continuous spectrum. Then, we show that A is unbounded from below and that it has a sequence of negative eigenvalues tending to -∞. Using the Min-Max principle, a characterization of its positive eigenvalues is given. Thanks to this characterization, some conditions on the geometrical (large width) and physical (large dielectric permittivity in modulus) properties of the strip that ensure the existence of positive eigenvalues are derived. Finally, we analyze the asymptotic behavior of the eigenvalues of A as the dielectric permittivity of the strip goes to -∞.
Type de document :
Article dans une revue
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2002, 36 (3), pp.461-487. <10.1051/m2an:2002021>
Liste complète des métadonnées

https://hal-ensta.archives-ouvertes.fr/hal-00990209
Contributeur : Aurélien Arnoux <>
Soumis le : mardi 14 février 2017 - 16:35:28
Dernière modification le : lundi 20 février 2017 - 15:19:04

Fichier

02_M2AN.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Anne-Sophie Bonnet-Ben Dhia, Karim Ramdani. A non elliptic spectral problem related to the analysis of superconductive micro-strip lines. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2002, 36 (3), pp.461-487. <10.1051/m2an:2002021>. <hal-00990209>

Partager

Métriques

Consultations de
la notice

109

Téléchargements du document

16