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CONSISTENCY OF RANDOM FORESTS1

By Erwan Scornet∗, Gérard Biau∗ and Jean-Philippe Vert†

Sorbonne Universités∗ and MINES ParisTech, PSL-Research University†

Random forests are a learning algorithm proposed by Breiman
[Mach. Learn. 45 (2001) 5–32] that combines several randomized de-
cision trees and aggregates their predictions by averaging. Despite
its wide usage and outstanding practical performance, little is known
about the mathematical properties of the procedure. This disparity
between theory and practice originates in the difficulty to simultane-
ously analyze both the randomization process and the highly data-
dependent tree structure. In the present paper, we take a step forward
in forest exploration by proving a consistency result for Breiman’s
[Mach. Learn. 45 (2001) 5–32] original algorithm in the context of
additive regression models. Our analysis also sheds an interesting
light on how random forests can nicely adapt to sparsity.

1. Introduction. Random forests are an ensemble learning method for
classification and regression that constructs a number of randomized deci-
sion trees during the training phase and predicts by averaging the results.
Since its publication in the seminal paper of Breiman (2001), the proce-
dure has become a major data analysis tool, that performs well in practice
in comparison with many standard methods. What has greatly contributed
to the popularity of forests is the fact that they can be applied to a wide
range of prediction problems and have few parameters to tune. Aside from
being simple to use, the method is generally recognized for its accuracy and
its ability to deal with small sample sizes, high-dimensional feature spaces
and complex data structures. The random forest methodology has been suc-
cessfully involved in many practical problems, including air quality predic-
tion (winning code of the EMC data science global hackathon in 2012, see
http://www.kaggle.com/c/dsg-hackathon), chemoinformatics [Svetnik et al.
(2003)], ecology [Prasad, Iverson and Liaw (2006), Cutler et al. (2007)], 3D
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object recognition [Shotton et al. (2013)] and bioinformatics [Dı́az-Uriarte
and Alvarez de Andrés (2006)], just to name a few. In addition, many vari-
ations on the original algorithm have been proposed to improve the calcu-
lation time while maintaining good prediction accuracy; see, for example,
Geurts, Ernst and Wehenkel (2006), Amaratunga, Cabrera and Lee (2008).
Breiman’s forests have also been extended to quantile estimation [Mein-
shausen (2006)], survival analysis [Ishwaran et al. (2008)] and ranking pre-
diction [Clémençon, Depecker and Vayatis (2013)].

On the theoretical side, the story is less conclusive, and regardless of their
extensive use in practical settings, little is known about the mathematical
properties of random forests. To date, most studies have concentrated on
isolated parts or simplified versions of the procedure. The most celebrated
theoretical result is that of Breiman (2001), which offers an upper bound on
the generalization error of forests in terms of correlation and strength of the
individual trees. This was followed by a technical note [Breiman (2004)] that
focuses on a stylized version of the original algorithm. A critical step was
subsequently taken by Lin and Jeon (2006), who established lower bounds
for nonadaptive forests (i.e., independent of the training set). They also high-
lighted an interesting connection between random forests and a particular
class of nearest neighbor predictors that was further worked out by Biau and
Devroye (2010). In recent years, various theoretical studies [e.g., Biau, De-
vroye and Lugosi (2008), Ishwaran and Kogalur (2010), Biau (2012), Genuer
(2012), Zhu, Zeng and Kosorok (2012)] have been performed, analyzing con-
sistency of simplified models, and moving ever closer to practice. Recent
attempts toward narrowing the gap between theory and practice are by De-
nil, Matheson and Freitas (2013), who proves the first consistency result for
online random forests, and by Wager (2014) and Mentch and Hooker (2014)
who study the asymptotic sampling distribution of forests.

The difficulty in properly analyzing random forests can be explained by
the black-box nature of the procedure, which is actually a subtle combina-
tion of different components. Among the forest essential ingredients, both
bagging [Breiman (1996)] and the classification and regression trees (CART)-
split criterion [Breiman et al. (1984)] play a critical role. Bagging (a con-
traction of bootstrap-aggregating) is a general aggregation scheme which
proceeds by generating subsamples from the original data set, construct-
ing a predictor from each resample and deciding by averaging. It is one
of the most effective computationally intensive procedures to improve on
unstable estimates, especially for large, high-dimensional data sets where
finding a good model in one step is impossible because of the complexity
and scale of the problem [Bühlmann and Yu (2002), Kleiner et al. (2014),
Wager, Hastie and Efron (2014)]. The CART-split selection originated from
the most influential CART algorithm of Breiman et al. (1984), and is used
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in the construction of the individual trees to choose the best cuts perpen-
dicular to the axes. At each node of each tree, the best cut is selected by
optimizing the CART-split criterion, based on the notion of Gini impurity
(classification) and prediction squared error (regression).

Yet, while bagging and the CART-splitting scheme play a key role in the
random forest mechanism, both are difficult to analyze, thereby explaining
why theoretical studies have, thus far, considered simplified versions of the
original procedure. This is often done by simply ignoring the bagging step
and by replacing the CART-split selection with a more elementary cut pro-
tocol. Besides, in Breiman’s forests, each leaf (i.e., a terminal node) of the
individual trees contains a fixed pre-specified number of observations (this
parameter, called nodesize in the R package randomForests, is usually
chosen between 1 and 5). There is also an extra parameter in the algorithm
which allows one to control the total number of leaves (this parameter is
called maxnode in the R package and has, by default, no effect on the pro-
cedure). The combination of these various components makes the algorithm
difficult to analyze with rigorous mathematics. As a matter of fact, most
authors focus on simplified, data-independent procedures, thus creating a
gap between theory and practice.

Motivated by the above discussion, we study in the present paper some
asymptotic properties of Breiman’s (2001) algorithm in the context of addi-
tive regression models. We prove the L2 consistency of random forests, which
gives a first basic theoretical guarantee of efficiency for this algorithm. To our
knowledge, this is the first consistency result for Breiman’s (2001) original
procedure. Our approach rests upon a detailed analysis of the behavior of
the cells generated by CART-split selection as the sample size grows. It turns
out that a good control of the regression function variation inside each cell,
together with a proper choice of the total number of leaves (Theorem 1) or
a proper choice of the subsampling rate (Theorem 2) are sufficient to ensure
the forest consistency in a L

2 sense. Also, our analysis shows that random
forests can adapt to a sparse framework, when the ambient dimension p is
large (independent of n), but only a smaller number of coordinates carry
out information.

The paper is organized as follows. In Section 2, we introduce some notation
and describe the random forest method. The main asymptotic results are
presented in Section 3 and further discussed in Section 4. Section 5 is devoted
to the main proofs, and technical results are gathered in the supplemental
article [Scornet, Biau and Vert (2015)].

2. Random forests. The general framework is L2 regression estimation,
in which an input random vector X ∈ [0,1]p is observed, and the goal is
to predict the square integrable random response Y ∈ R by estimating the
regression function m(x) = E[Y |X = x]. To this end, we assume given a
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training sample Dn = (X1, Y1), . . . , (Xn, Yn) of [0,1]
p×R-valued independent

random variables distributed as the independent prototype pair (X, Y ). The
objective is to use the data set Dn to construct an estimatemn : [0,1]

p→R of
the functionm. In this respect, we say that a regression function estimatemn

is L2 consistent if E[mn(X)−m(X)]2→ 0 as n→∞ (where the expectation
is over X and Dn).

A random forest is a predictor consisting of a collection of M random-
ized regression trees. For the jth tree in the family, the predicted value at
the query point x is denoted by mn(x;Θj ,Dn), where Θ1, . . . ,ΘM are inde-
pendent random variables, distributed as a generic random variable Θ and
independent of Dn. In practice, this variable is used to resample the training
set prior to the growing of individual trees and to select the successive can-
didate directions for splitting. The trees are combined to form the (finite)
forest estimate

mM,n(x;Θ1, . . . ,ΘM ,Dn) =
1

M

M
∑

j=1

mn(x;Θj,Dn).(1)

Since in practice we can choose M as large as possible, we study in this
paper the property of the infinite forest estimate obtained as the limit of (1)
when the number of trees M grows to infinity as follows:

mn(x;Dn) = EΘ[mn(x;Θ,Dn)],

where EΘ denotes expectation with respect to the random parameter Θ,
conditional on Dn. This operation is justified by the law of large numbers,
which asserts that, almost surely, conditional on Dn,

lim
M→∞

mn,M(x;Θ1, . . . ,ΘM ,Dn) =mn(x;Dn);

see, for example, Scornet (2014), Breiman (2001) for details. In the sequel,
to lighten notation, we will simply write mn(x) instead of mn(x; Dn).

In Breiman’s (2001) original forests, each node of a single tree is associated
with a hyper-rectangular cell. At each step of the tree construction, the
collection of cells forms a partition of [0,1]p. The root of the tree is [0,1]p

itself, and each tree is grown as explained in Algorithm 1.
This algorithm has three parameters:

(1) mtry ∈ {1, . . . , p}, which is the number of pre-selected directions for split-
ting;

(2) an ∈ {1, . . . , n}, which is the number of sampled data points in each tree;
(3) tn ∈ {1, . . . , an}, which is the number of leaves in each tree.

By default, in the original procedure, the parameter mtry is set to p/3, an
is set to n (resampling is done with replacement) and tn = an. However, in
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Algorithm 1: Breiman’s random forest predicted value at x

Input: Training set Dn, number of trees M > 0, mtry ∈ {1, . . . , p},
an ∈ {1, . . . , n}, tn ∈ {1, . . . , an}, and x ∈ [0,1]p.

Output: Prediction of the random forest at x.
1 for j = 1, . . . ,M do

2 Select an points, without replacement, uniformly in Dn.
3 Set P0 = {[0,1]p} the partition associated with the root of the tree.
4 For all 1≤ ℓ≤ an, set Pℓ =∅.
5 Set nnodes = 1 and level = 0.
6 while nnodes < tn do

7 if Plevel =∅ then

8 level = level + 1
9 else

10 Let A be the first element in Plevel.
11 if A contains exactly one point then

12 Plevel←Plevel \ {A}
13 Plevel+1←Plevel+1 ∪ {A}
14 else

15 Select uniformly, without replacement, a subset
Mtry ⊂ {1, . . . , p} of cardinality mtry.

16 Select the best split in A by optimizing the CART-split
criterion along the coordinates inMtry (see details

below).
17 Cut the cell A according to the best split. Call AL and

AR the two resulting cell.
18 Plevel←Plevel \ {A}
19 Plevel+1←Plevel+1 ∪ {AL} ∪ {AR}
20 nnodes = nnodes + 1

21 end

22 end

23 end

24 Compute the predicted value mn(x;Θj ,Dn) at x equal to the
average of the Yi’s falling in the cell of x in partition
Plevel ∪Plevel+1.

25 end

26 Compute the random forest estimate mM,n(x;Θ1, . . . ,ΘM ,Dn) at the
query point x according to (1).
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our approach, resampling is done without replacement and the parameters
an, and tn can be different from their default values.

In words, the algorithm works by growing M different trees as follows.
For each tree, an data points are drawn at random without replacement
from the original data set; then, at each cell of every tree, a split is chosen
by maximizing the CART-criterion (see below); finally, the construction of
every tree is stopped when the total number of cells in the tree reaches the
value tn (therefore, each cell contains exactly one point in the case tn = an).

We note that the resampling step in Algorithm 1 (line 2) is done by
choosing an out of n points (with an ≤ n) without replacement. This is
slightly different from the original algorithm, where resampling is done by
bootstrapping, that is, by choosing n out of n data points with replacement.

Selecting the points “without replacement” instead of “with replacement”
is harmless—in fact, it is just a means to avoid mathematical difficulties
induced by the bootstrap; see, for example, Efron (1982), Politis, Romano
and Wolf (1999).

On the other hand, letting the parameters an and tn depend upon n offers
several degrees of freedom which opens the route for establishing consistency
of the method. To be precise, we will study in Section 3 the random forest
algorithm in two different regimes. The first regime is when tn < an, which
means that trees are not fully developed. In this case, a proper tuning of
tn ensures the forest’s consistency (Theorem 1). The second regime occurs
when tn = an, that is, when trees are fully grown. In this case, consistency
results from an appropriate choice of the subsample rate an/n (Theorem 2).

So far, we have not made explicit the CART-split criterion used in Al-
gorithm 1. To properly define it, we let A be a generic cell and Nn(A) be
the number of data points falling in A. A cut in A is a pair (j, z), where j
is a dimension in {1, . . . , p} and z is the position of the cut along the jth
coordinate, within the limits of A. We let CA be the set of all such possible

cuts in A. Then, with the notation Xi = (X
(1)
i , . . . ,X

(p)
i ), for any (j, z) ∈ CA,

the CART-split criterion [Breiman et al. (1984)] takes the form

Ln(j, z) =
1

Nn(A)

n
∑

i=1

(Yi − ȲA)21Xi∈A

(2)

− 1

Nn(A)

n
∑

i=1

(Yi − ȲAL
1
X

(j)
i <z

− ȲAR
1
X

(j)
i ≥z

)21Xi∈A,

where AL = {x ∈A :x(j) < z}, AR = {x ∈A :x(j) ≥ z}, and ȲA (resp., ȲAL
,

ȲAR
) is the average of the Yi’s belonging to A (resp., AL, AR), with the

convention 0/0 = 0. At each cell A, the best cut (j⋆n, z
⋆
n) is finally selected
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by maximizing Ln(j, z) over Mtry and CA, that is,
(j⋆n, z

⋆
n) ∈ argmax

j∈Mtry

(j,z)∈CA

Ln(j, z).

To remove ties in the argmax, the best cut is always performed along the
best cut direction j⋆n, at the middle of two consecutive data points.

3. Main results. We consider an additive regression model satisfying the
following properties:

(H1) The response Y follows

Y =

p
∑

j=1

mj(X
(j)) + ε,

where X= (X(1), . . . ,X(p)) is uniformly distributed over [0,1]p, ε is an inde-

pendent centered Gaussian noise with finite variance σ2 > 0 and each com-

ponent mj is continuous.

Additive regression models, which extend linear models, were popularized
by Stone (1985) and Hastie and Tibshirani (1986). These models, which
decompose the regression function as a sum of univariate functions, are
flexible and easy to interpret. They are acknowledged for providing a good
trade-off between model complexity and calculation time, and accordingly,
have been extensively studied for the last thirty years. Additive models also
play an important role in the context of high-dimensional data analysis and
sparse modeling, where they are successfully involved in procedures such as
the Lasso and various aggregation schemes; for an overview, see, for example,
Hastie, Tibshirani and Friedman (2009). Although random forests fall into
the family of nonparametric procedures, it turns out that the analysis of
their properties is facilitated within the framework of additive models.

Our first result assumes that the total number of leaves tn in each tree
tends to infinity more slowly than the number of selected data points an.

Theorem 1. Assume that (H1) is satisfied. Then, provided an →∞,

tn→∞ and tn(log an)
9/an→ 0, random forests are consistent, that is,

lim
n→∞

E[mn(X)−m(X)]2 = 0.

It is noteworthy that Theorem 1 still holds with an = n. In this case, the
subsampling step plays no role in the consistency of the method. Indeed,
controlling the depth of the trees via the parameter tn is sufficient to bound
the forest error. We note in passing that an easy adaptation of Theorem 1
shows that the CART algorithm is consistent under the same assumptions.
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The term (log an)
9 originates from the Gaussian noise and allows us to

control the noise tail. In the easier situation where the Gaussian noise is
replaced by a bounded random variable, it is easy to see that the term
(log an)

9 turns into log an, a term which accounts for the complexity of the
tree partition.

Let us now examine the forest behavior in the second regime, where tn =
an (i.e., trees are fully grown), and as before, subsampling is done at the
rate an/n. The analysis of this regime turns out to be more complicated, and
rests upon assumption (H2) below. We denote by Zi = 1

X
Θ↔Xi

the indicator

that Xi falls into the same cell as X in the random tree designed with Dn

and the random parameter Θ. Similarly, we let Z ′
j = 1

X
Θ′
↔Xj

, where Θ′ is an

independent copy of Θ. Accordingly, we define

ψi,j(Yi, Yj) = E[ZiZ
′
j |X,Θ,Θ′,X1, . . . ,Xn, Yi, Yj]

and

ψi,j = E[ZiZ
′
j |X,Θ,Θ′,X1, . . . ,Xn].

Finally, for any random variables W1, W2, Z, we denote by Corr(W1, W2|Z)
the conditional correlation coefficient (whenever it exists).

(H2) Let Zi,j = (Zi,Z
′
j). Then one of the following two conditions holds:

(H2.1) One has

lim
n→∞

(log an)
2p−2(logn)2E

[

max
i,j
i 6=j

|ψi,j(Yi, Yj)−ψi,j |
]2

= 0.

(H2.2) There exist a constant C > 0 and a sequence (γn)n→ 0 such that,

almost surely,

max
ℓ1,ℓ2=0,1

|Corr(Yi −m(Xi),1Zi,j=(ℓ1,ℓ2)|Xi,Xj , Yj)|
P1/2[Zi,j = (ℓ1, ℓ2)|Xi,Xj , Yj]

≤ γn

and

max
ℓ1=0,1

|Corr((Yi −m(Xi))
2,1Zi=ℓ1 |Xi)|

P1/2[Zi = ℓ1|Xi]
≤C.

Despite their technical aspect, statements (H2.1) and (H2.2) have sim-
ple interpretations. To understand the meaning of (H2.1), let us replace
the Gaussian noise by a bounded random variable. A close inspection of
Lemma 4 shows that (H2.1) may be simply replaced by

lim
n→∞

E

[

max
i,j
i 6=j

|ψi,j(Yi, Yj)−ψi,j|
]2

= 0.
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Therefore, (H2.1) means that the influence of two Y -values on the probabil-
ity of connection of two couples of random points tends to zero as n→∞.

As for assumption (H2.2), it holds whenever the correlation between the
noise and the probability of connection of two couples of random points
vanishes quickly enough, as n→∞. Note that, in the simple case where the
partition is independent of the Yi’s, the correlations in (H2.2) are zero, so
that (H2) is trivially satisfied. This is also verified in the noiseless case, that
is, when Y =m(X). However, in the most general context, the partitions
strongly depend on the whole sample Dn, and unfortunately, we do not
know whether or not (H2) is satisfied.

Theorem 2. Assume that (H1) and (H2) are satisfied, and let tn = an.
Then, provided an →∞, tn →∞ and an logn/n→ 0, random forests are

consistent, that is,

lim
n→∞

E[mn(X)−m(X)]2 = 0.

To our knowledge, apart from the fact that bootstrapping is replaced by
subsampling, Theorems 1 and 2 are the first consistency results for Breiman’s
(2001) forests. Indeed, most models studied so far are designed indepen-
dently of Dn and are, consequently, an unrealistic representation of the true
procedure. In fact, understanding Breiman’s random forest behavior de-
serves a more involved mathematical treatment. Section 4 below offers a
thorough description of the various mathematical forces in action.

Our study also sheds some interesting light on the behavior of forests
when the ambient dimension p is large but the true underlying dimension
of the model is small. To see how, assume that the additive model (H1)
satisfies a sparsity constraint of the form

Y =

S
∑

j=1

mj(X
(j)) + ε,

where S < p represents the true, but unknown, dimension of the model.
Thus, among the p original features, it is assumed that only the first (without
loss of generality) S variables are informative. Put differently, Y is assumed
to be independent of the last (p− S) variables. In this dimension reduction
context, the ambient dimension p can be very large, but we believe that the
representation is sparse, that is, that few components of m are nonzero. As
such, the value S characterizes the sparsity of the model: the smaller S, the
sparser m.

Proposition 1 below shows that random forests nicely adapt to the sparsity
setting by asymptotically performing, with high probability, splits along the
S informative variables.
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In this proposition, we setmtry = p and, for all k, we denote by j1,n(X), . . . ,
jk,n(X) the first k cut directions used to construct the cell containing X,
with the convention that jq,n(X) =∞ if the cell has been cut strictly less
than q times.

Proposition 1. Assume that (H1) is satisfied. Let k ∈ N
⋆ and ξ > 0.

Assume that there is no interval [a, b] and no j ∈ {1, . . . , S} such that mj is

constant on [a, b]. Then, with probability 1 − ξ, for all n large enough, we

have, for all 1≤ q ≤ k,
jq,n(X) ∈ {1, . . . , S}.

This proposition provides an interesting perspective on why random forests
are still able to do a good job in a sparse framework. Since the algorithm
selects splits mostly along informative variables, everything happens as if
data were projected onto the vector space generated by the S informative
variables. Therefore, forests are likely to only depend upon these S vari-
ables, which supports the fact that they have good performance in sparse
framework.

It remains that a substantial research effort is still needed to understand
the properties of forests in a high-dimensional setting, when p = pn may
be substantially larger than the sample size. Unfortunately, our analysis
does not carry over to this context. In particular, if high-dimensionality is
modeled by letting pn→∞, then assumption (H2.1) may be too restrictive
since the term (log an)

2p−2 will diverge at a fast rate.

4. Discussion. One of the main difficulties in assessing the mathemati-
cal properties of Breiman’s (2001) forests is that the construction process
of the individual trees strongly depends on both the Xi’s and the Yi’s. For
partitions that are independent of the Yi’s, consistency can be shown by
relatively simple means via Stone’s (1977) theorem for local averaging esti-
mates; see also Györfi et al. (2002), Chapter 6. However, our partitions and
trees depend upon the Y -values in the data. This makes things complicated,
but mathematically interesting too. Thus, logically, the proof of Theorem 2
starts with an adaptation of Stone’s (1977) theorem tailored for random
forests, whereas the proof of Theorem 1 is based on consistency results of
data-dependent partitions developed by Nobel (1996).

Both theorems rely on Proposition 2 below, which stresses an important
feature of the random forest mechanism. It states that the variation of the
regression function m within a cell of a random tree is small provided n
is large enough. To this end, we define, for any cell A, the variation of m
within A as

∆(m,A) = sup
x,x′∈A

|m(x)−m(x′)|.
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Furthermore, we denote by An(X,Θ) the cell of a tree built with random
parameter Θ that contains the point X.

Proposition 2. Assume that (H1) holds. Then, for all ρ, ξ > 0, there
exists N ∈N

⋆ such that, for all n>N ,

P[∆(m,An(X,Θ))≤ ξ]≥ 1− ρ.

It should be noted that in the standard, Y -independent analysis of par-
titioning regression function estimates, the variance is controlled by letting
the diameters of the tree cells tend to zero in probability. Instead of such a
geometrical assumption, Proposition 2 ensures that the variation of m in-
side a cell is small, thereby forcing the approximation error of the forest to
asymptotically approach zero.

While Proposition 2 offers a good control of the approximation error of the
forest in both regimes, a separate analysis is required for the estimation error.
In regime 1 (Theorem 1), the parameter tn allows us to control the structure
of the tree. This is in line with standard tree consistency approaches; see,
for example, Devroye, Györfi and Lugosi (1996), Chapter 20. Things are
different for the second regime (Theorem 2), in which individual trees are
fully grown. In this case, the estimation error is controlled by forcing the
subsampling rate an/n to be o(1/ logn), which is a more unusual requirement
and deserves some remarks.

At first, we note that the logn term in Theorem 2 is used to control
the Gaussian noise ε. Thus if the noise is assumed to be a bounded ran-
dom variable, then the logn term disappears, and the condition reduces
to an/n→ 0. The requirement an logn/n→ 0 guarantees that every single
observation (Xi, Yi) is used in the tree construction with a probability that
becomes small with n. It also implies that the query point x is not connected
to the same data point in a high proportion of trees. If not, the predicted
value at x would be influenced too much by one single pair (Xi, Yi), making
the forest inconsistent. In fact, the proof of Theorem 2 reveals that the esti-
mation error of a forest estimate is small as soon as the maximum probability
of connection between the query point and all observations is small. Thus
the assumption on the subsampling rate is just a convenient way to control
these probabilities, by ensuring that partitions are dissimilar enough (i.e.,
by ensuring that x is connected with many data points through the forest).
This idea of diversity among trees was introduced by Breiman (2001), but
is generally difficult to analyze. In our approach, the subsampling is the key
component for imposing tree diversity.

Theorem 2 comes at the price of assumption (H2), for which we do not
know if it is valid in all generality. On the other hand, Theorem 2, which
mimics almost perfectly the algorithm used in practice, is an important step
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toward understanding Breiman’s random forests. Contrary to most previous
works, Theorem 2 assumes that there is only one observation per leaf of each
individual tree. This implies that the single trees are eventually not consis-
tent, since standard conditions for tree consistency require that the number
of observations in the terminal nodes tends to infinity as n grows; see, for
example, Devroye, Györfi and Lugosi (1996), Györfi et al. (2002). Thus the
random forest algorithm aggregates rough individual tree predictors to build
a provably consistent general architecture.

It is also interesting to note that our results (in particular Lemma 3)
cannot be directly extended to establish the pointwise consistency of random
forests; that is, for almost all x ∈ [0,1]d,

lim
n→∞

E[mn(x)−m(x)]2 = 0.

Fixing x ∈ [0,1]d, the difficulty results from the fact that we do not have a
control on the diameter of the cell An(x,Θ), whereas, since the cells form
a partition of [0,1]d, we have a global control on their diameters. Thus,
as highlighted by Wager (2014), random forests can be inconsistent at some
fixed point x ∈ [0,1]d, particularly near the edges, while being L

2 consistent.
Let us finally mention that all results can be extended to the case where ε

is a heteroscedastic and sub-Gaussian noise, with for all x ∈ [0,1]d, V[ε|X=
x]≤ σ′2, for some constant σ′2. All proofs can be readily extended to match
this context, at the price of easy technical adaptations.

5. Proof of Theorems 1 and 2. For the sake of clarity, proofs of the
intermediary results are gathered in the supplemental article [Scornet, Biau
and Vert (2015)]. We start with some notation.

5.1. Notation. In the sequel, to clarify the notation, we will sometimes
write d= (d(1), d(2)) to represent a cut (j, z).

Recall that, for any cell A, CA is the set of all possible cuts in A. Thus,
with this notation, C[0,1]p is just the set of all possible cuts at the root of

the tree, that is, all possible choices d= (d(1), d(2)) with d(1) ∈ {1, . . . , p} and
d(2) ∈ [0,1].

More generally, for any x ∈ [0,1]p, we call Ak(x) the collection of all
possible k ≥ 1 consecutive cuts used to build the cell containing x. Such a cell
is obtained after a sequence of cuts dk = (d1, . . . , dk), where the dependency
of dk upon x is understood. Accordingly, for any dk ∈Ak(x), we let A(x,dk)
be the cell containing x built with the particular k-tuple of cuts dk. The
proximity between two elements dk and d

′
k in Ak(x) will be measured via

‖dk −d
′
k‖∞ = sup

1≤j≤k
max(|d(1)j − d

′(1)
j |, |d

(2)
j − d

′(2)
j |).



CONSISTENCY OF RANDOM FORESTS 13

Accordingly, the distance d∞ between dk ∈Ak(x) and any A⊂Ak(x) is

d∞(dk,A) = inf
z∈A
‖dk − z‖∞.

Remember that An(X,Θ) denotes the cell of a tree containing X and
designed with random parameter Θ. Similarly, Ak,n(X,Θ) is the same cell
but where only the first k cuts are performed (k ∈N

⋆ is a parameter to be

chosen later). We also denote by d̂k,n(X,Θ) = (d̂1,n(X,Θ), . . . , d̂k,n(X,Θ))
the k cuts used to construct the cell Ak,n(X,Θ).

Recall that, for any cell A, the empirical criterion used to split A in the
random forest algorithm is defined in (2). For any cut (j, z) ∈ CA, we denote
the following theoretical version of Ln(·, ·) by

L⋆(j, z) = V[Y |X ∈A]− P[X(j) < z|X ∈A]V[Y |X(j) < z,X ∈A]
− P[X(j) ≥ z|X ∈A]V[Y |X(j) ≥ z,X ∈A].

Observe that L⋆(·, ·) does not depend upon the training set and that, by
the strong law of large numbers, Ln(j, z)→L⋆(j, z) almost surely as n→∞
for all cuts (j, z) ∈ CA. Therefore, it is natural to define the best theoretical
split (j⋆, z⋆) of the cell A as

(j⋆, z⋆) ∈ argmin
(j,z)∈CA
j∈Mtry

L⋆(j, z).

In view of this criterion, we define the theoretical random forest as before,
but with consecutive cuts performed by optimizing L⋆(·, ·) instead of Ln(·, ·).
We note that this new forest does depend on Θ through Mtry, but not
on the sample Dn. In particular, the stopping criterion for dividing cells
has to be changed in the theoretical random forest; instead of stopping
when a cell has a single training point, we impose that each tree of the
theoretical forest is stopped at a fixed level k ∈ N

⋆. We also let A⋆
k(X,Θ)

be a cell of the theoretical random tree at level k, containing X, designed
with randomness Θ, and resulting from the k theoretical cuts d

⋆
k(X,Θ) =

(d⋆1(X,Θ), . . . , d⋆k(X,Θ)). Since there can exist multiple best cuts at, at least,
one node, we call A⋆

k(X,Θ) the set of all k-tuples d⋆
k(X,Θ) of best theoretical

cuts used to build A⋆
k(X,Θ).

We are now equipped to prove Proposition 2. For reasons of clarity, the
proof has been divided in three steps. First, we study in Lemma 1 the
theoretical random forest. Then we prove in Lemma 3 (via Lemma 2) that
theoretical and empirical cuts are close to each other. Proposition 2 is finally
established as a consequence of Lemma 1 and Lemma 3. Proofs of these
lemmas are to be found in the supplemental article [Scornet, Biau and Vert
(2015)].
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5.2. Proof of Proposition 2. We first need a lemma which states that the
variation of m(X) within the cell A⋆

k(X,Θ) where X falls, as measured by
∆(m,A⋆

k(X,Θ)), tends to zero.

Lemma 1. Assume that (H1) is satisfied. Then, for all x ∈ [0,1]p,

∆(m,A⋆
k(x,Θ))→ 0 almost surely, as k→∞.

The next step is to show that cuts in theoretical and original forests are
close to each other. To this end, for any x ∈ [0,1]p and any k-tuple of cuts
dk ∈Ak(x), we define

Ln,k(x,dk) =
1

Nn(A(x,dk−1))

n
∑

i=1

(Yi − ȲA(x,dk−1))
2
1Xi∈A(x,dk−1)

− 1

Nn(A(x,dk−1))

n
∑

i=1

(Yi − ȲAL(x,dk−1)1

X
(d

(1)
k

)

i <d
(2)
k

− ȲAR(x,dk−1)1

X
(d

(1)
k

)

i ≥d
(2)
k

)21Xi∈A(x,dk−1),

where AL(x,dk−1) = A(x,dk−1) ∩ {z :z(d
(1)
k

) < d
(2)
k } and AR(x,dk−1) =

A(x,dk−1) ∩ {z :z(d
(1)
k

) ≥ d(2)k }, and where we use the convention 0/0 = 0
when A(x,dk−1) is empty. Besides, we let A(x,d0) = [0,1]p in the previous
equation. The quantity Ln,k(x,dk) is nothing but the criterion to maximize
in dk to find the best kth cut in the cell A(x,dk−1). Lemma 2 below ensures
that Ln,k(x, ·) is stochastically equicontinuous, for all x ∈ [0,1]p. To this end,

for all ξ > 0, and for all x ∈ [0,1]p, we denote by Aξ
k−1(x)⊂Ak−1(x) the set

of all (k− 1)-tuples dk−1 such that the cell A(x,dk−1) contains a hypercube

of edge length ξ. Moreover, we let Āξ
k(x) = {dk :dk−1 ∈Aξ

k−1(x)} equipped
with the norm ‖dk‖∞.

Lemma 2. Assume that (H1) is satisfied. Fix x ∈ [0,1]p, k ∈N
⋆, and let

ξ > 0. Then Ln,k(x, ·) is stochastically equicontinuous on Āξ
k(x); that is, for

all α,ρ > 0, there exists δ > 0 such that

lim
n→∞

P

[

sup
‖dk−d′

k
‖∞≤δ

dk ,d
′
k
∈Āξ

k
(x)

|Ln,k(x,dk)−Ln,k(x,d
′
k)|> α

]

≤ ρ.

Lemma 2 is then used in Lemma 3 to assess the distance between theo-
retical and empirical cuts.
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Lemma 3. Assume that (H1) is satisfied. Fix ξ, ρ > 0 and k ∈N⋆. Then

there exists N ∈N
⋆ such that, for all n≥N ,

P[d∞(d̂k,n(X,Θ),A⋆
k(X,Θ))≤ ξ]≥ 1− ρ.

We are now ready to prove Proposition 2. Fix ρ, ξ > 0. Since almost sure
convergence implies convergence in probability, according to Lemma 1, there
exists k0 ∈N⋆ such that

P[∆(m,A⋆
k0(X,Θ))≤ ξ]≥ 1− ρ.(3)

By Lemma 3, for all ξ1 > 0, there exists N ∈N⋆ such that, for all n≥N ,

P[d∞(d̂k0,n(X,Θ),A⋆
k0(X,Θ))≤ ξ1]≥ 1− ρ.(4)

Since m is uniformly continuous, we can choose ξ1 sufficiently small such
that, for all x ∈ [0,1]p, for all dk0 ,d

′
k0

satisfying d∞(dk0 ,d
′
k0
)≤ ξ1, we have

|∆(m,A(x,dk0))−∆(m,A(x,d′
k0))| ≤ ξ.(5)

Thus, combining inequalities (4) and (5), we obtain

P[|∆(m,Ak0,n(X,Θ))−∆(m,A⋆
k0(X,Θ))| ≤ ξ]≥ 1− ρ.(6)

Using the fact that ∆(m,A)≤∆(m,A′) whenever A⊂A′, we deduce from
(3) and (6) that, for all n≥N ,

P[∆(m,An(X,Θ))≤ 2ξ]≥ 1− 2ρ.

This completes the proof of Proposition 2.

5.3. Proof of Theorem 1. We still need some additional notation. The
partition obtained with the random variable Θ and the data set Dn is de-
noted by Pn(Dn,Θ), which we abbreviate as Pn(Θ). We let

Πn(Θ) = {P((x1, y1), . . . , (xn, yn),Θ) : (xi, yi) ∈ [0,1]d ×R}
be the family of all achievable partitions with random parameter Θ. Accord-
ingly, we let

M(Πn(Θ)) =max{Card(P) :P ∈Πn(Θ)}
be the maximal number of terminal nodes among all partitions in Πn(Θ).
Given a set z

n
1 = {z1, . . . ,zn} ⊂ [0,1]d, Γ(zn1 ,Πn(Θ)) denotes the number of

distinct partitions of zn1 induced by elements of Πn(Θ), that is, the number
of different partitions {zn1 ∩A :A ∈ P} of zn1 , for P ∈Πn(Θ). Consequently,
the partitioning number Γn(Πn(Θ)) is defined by

Γn(Πn(Θ)) =max{Γ(zn1 ,Πn(Θ)) :z1, . . . ,zn ∈ [0,1]d}.
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Let (βn)n be a positive sequence, and define the truncated operator Tβn
by

{

Tβn
u= u, if |u|< βn,

Tβn
u= sign(u)βn, if |u| ≥ βn.

Hence Tβn
mn(X,Θ), YL = TLY and Yi,L = TLYi are defined unambiguously.

We let Fn(Θ) be the set of all functions f : [0,1]d→R piecewise constant on
each cell of the partition Pn(Θ). [Notice that Fn(Θ) depends on the whole
data set.] Finally, we denote by In,Θ the set of indices of the data points that
are selected during the subsampling step. Thus the tree estimate mn(x,Θ)
satisfies

mn(·,Θ) ∈ argmin
f∈Fn(Θ)

1

an

∑

i∈In,Θ

|f(Xi)− Yi|2.

The proof of Theorem 1 is based on ideas developed by Nobel (1996), and
worked out in Theorem 10.2 in Györfi et al. (2002). This theorem, tailored
for our context, is recalled below for the sake of completeness.

Theorem 3 [Györfi et al. (2002)]. Let mn and Fn(Θ) be as above. As-

sume that:

(i) limn→∞ βn =∞;

(ii) limn→∞E[inff∈Fn(Θ),‖f‖∞≤βn
EX[f(X)−m(X)]2] = 0;

(iii) for all L> 0,

lim
n→∞

E

[

sup
f∈Fn(Θ)

‖f‖∞≤βn

∣

∣

∣

∣

1

an

∑

i∈In,Θ

[f(Xi)− Yi,L]2 − E[f(X)− YL]2
∣

∣

∣

∣

]

= 0.

Then

lim
n→∞

E[Tβn
mn(X,Θ)−m(X)]2 = 0.

Statement (ii) [resp., statement (iii)] allows us to control the approxima-
tion error (resp., the estimation error) of the truncated estimate. Since the
truncated estimate Tβn

mn is piecewise constant on each cell of the partition
Pn(Θ), Tβn

mn belongs to the set Fn(Θ). Thus the term in (ii) is the classical
approximation error.

We are now equipped to prove Theorem 1. Fix ξ > 0, and note that we just
have to check statements (i)–(iii) of Theorem 3 to prove that the truncated
estimate of the random forest is consistent. Throughout the proof, we let
βn = ‖m‖∞ + σ

√
2(log an)

2. Clearly, statement (i) is true.
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Approximation error. To prove (ii), let

fn,Θ =
∑

A∈Pn(Θ)

m(zA)1A,

where zA ∈A is an arbitrary point picked in cell A. Since, according to (H1),
‖m‖∞ <∞, for all n large enough such that βn > ‖m‖∞, we have

E inf
f∈Fn(Θ)

‖f‖∞≤βn

EX[f(X)−m(X)]2 ≤ E inf
f∈Fn(Θ)

‖f‖∞≤‖m‖∞

EX[f(X)−m(X)]2

≤ E[fΘ,n(X)−m(X)]2

(since fΘ,n ∈Fn(Θ))

≤ E[m(zAn(X,Θ))−m(X)]2

≤ E[∆(m,An(X,Θ))]2

≤ ξ2 +4‖m‖2∞P[∆(m,An(X,Θ))> ξ].

Thus, using Proposition 2, we see that for all n large enough,

E inf
f∈Fn(Θ)

‖f‖∞≤βn

EX[f(X)−m(X)]2 ≤ 2ξ2.

This establishes (ii).

Estimation error. To prove statement (iii), fix L > 0. Then, for all n
large enough such that L< βn,

PX,Dn

(

sup
f∈Fn(Θ)

‖f‖∞≤βn

∣

∣

∣

∣

1

an

∑

i∈In,Θ

[f(Xi)− Yi,L]2 − E[f(X)− YL]2
∣

∣

∣

∣

> ξ

)

≤ 8exp

[

logΓn(Πn(Θ)) + 2M(Πn(Θ)) log

(

333eβ2n
ξ

)

− anξ
2

2048β4n

]

[according to Theorem 9.1 in Györfi et al. (2002)]

≤ 8exp

[

−an
β4n

(

ξ2

2048
− β4n logΓn(Πn)

an
− 2β4nM(Πn)

an
log

(

333eβ2n
ξ

))]

.

Since each tree has exactly tn terminal nodes, we have M(Πn(Θ)) = tn, and
simple calculations show that

Γn(Πn(Θ))≤ (dan)
tn .



18 E. SCORNET, G. BIAU AND J.-P. VERT

Hence

P

(

sup
f∈Fn(Θ)

‖f‖∞≤βn

∣

∣

∣

∣

1

an

∑

i∈In,Θ

[f(Xi)− Yi,L]2 −E[f(X)− YL]2
∣

∣

∣

∣

> ξ

)

≤ 8exp

(

−anCξ,n

β4n

)

,

where

Cξ,n =
ξ2

2048
− 4σ4

tn(log(dan))
9

an
− 8σ4

tn(log an)
8

an
log

(

666eσ2(log an)
4

ξ

)

→ ξ2

2048
as n→∞,

by our assumption. Finally, observe that

sup
f∈Fn(Θ)

‖f‖∞≤βn

∣

∣

∣

∣

1

an

∑

i∈In,Θ

[f(Xi)− Yi,L]2 −E[f(X)− YL]2
∣

∣

∣

∣

≤ 2(βn +L)2,

which yields, for all n large enough,

E

[

sup
f∈Fn(Θ)

‖f‖∞≤βn

∣

∣

∣

∣

∣

1

an

an
∑

i=1

[f(Xi)− Yi,L]2 −E[f(X)− YL]2
∣

∣

∣

∣

∣

]

≤ ξ +2(βn +L)2P

[

sup
f∈Fn(Θ)

‖f‖∞≤βn

∣

∣

∣

∣

∣

1

an

an
∑

i=1

[f(Xi)− Yi,L]2 − E[f(X)− YL]2
∣

∣

∣

∣

∣

> ξ

]

≤ ξ +16(βn +L)2 exp

(

−anCξ,n

β4n

)

≤ 2ξ.

Thus, according to Theorem 3,

E[Tβn
mn(X,Θ)−m(X)]2→ 0.

Untruncated estimate. It remains to show the consistency of the non-
truncated random forest estimate, and the proof will be complete. For this
purpose, note that, for all n large enough,

E[mn(X)−m(X)]2 = E[EΘ[mn(X,Θ)]−m(X)]2

≤ E[mn(X,Θ)−m(X)]2

(by Jensen’s inequality)
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≤ E[mn(X,Θ)− Tβn
mn(X,Θ)]2

+E[Tβn
mn(X,Θ)−m(X)]2

≤ E[[mn(X,Θ)− Tβn
mn(X,Θ)]21mn(X,Θ)≥βn

] + ξ

≤ E[m2
n(X,Θ)1mn(X,Θ)≥βn

] + ξ

≤ E[E[m2
n(X,Θ)1mn(X,Θ)≥βn

|Θ]] + ξ.

Since |mn(X,Θ)| ≤ ‖m‖∞ +max1≤i≤n |εi|, we have

E[m2
n(X,Θ)1mn(X,Θ)≥βn

|Θ]

≤ E

[(

2‖m‖2∞ + 2 max
1≤i≤an

ε2i

)

1max1≤i≤an εi≥σ
√
2(logan)2

]

≤ 2‖m‖2∞P

[

max
1≤i≤an

εi ≥ σ
√
2(log an)

2
]

+2
(

E

[

max
1≤i≤an

ε4i

]

P

[

max
1≤i≤an

εi ≥ σ
√
2(log an)

2
])1/2

.

It is easy to see that

P

[

max
1≤i≤an

εi ≥ σ
√
2(log an)

2
]

≤ a1−logan
n

2
√
π(log an)2

.

Finally, since the εi’s are centered i.i.d. Gaussian random variables, we have,
for all n large enough,

E[mn(X)−m(X)]2

≤ 2‖m‖2∞a1−logan
n

2
√
π(log an)2

+ ξ + 2

(

3anσ
4 a1−logan

n

2
√
π(log an)2

)1/2

≤ 3ξ.

This completes the proof of Theorem 1.

5.4. Proof of Theorem 2. Recall that each cell contains exactly one data
point. Thus, letting

Wni(X) = EΘ[1Xi∈An(X,Θ)],

the random forest estimate mn may be rewritten as

mn(X) =
n
∑

i=1

Wni(X)Yi.



20 E. SCORNET, G. BIAU AND J.-P. VERT

We have in particular that
∑n

i=1Wni(X) = 1. Thus

E[mn(X)−m(X)]2 ≤ 2E

[

n
∑

i=1

Wni(X)(Yi−m(Xi))

]2

+ 2E

[

n
∑

i=1

Wni(X)(m(Xi)−m(X))

]2

def
= 2In +2Jn.

Approximation error. Fix α > 0. To upper bound Jn, note that by Jensen’s
inequality,

Jn ≤ E

[

n
∑

i=1

1Xi∈An(X,Θ)(m(Xi)−m(X))2
]

≤ E

[

n
∑

i=1

1Xi∈An(X,Θ)∆
2(m,An(X,Θ))

]

≤ E[∆2(m,An(X,Θ))].

So, by definition of ∆(m,An(X,Θ))2,

Jn ≤ 4‖m‖2∞E[1∆2(m,An(X,Θ))≥α] +α

≤ α(4‖m‖2∞ + 1),

for all n large enough, according to Proposition 2.

Estimation error. To bound In from above, we note that

In = E

[

n
∑

i,j=1

Wni(X)Wnj(X)(Yi −m(Xi))(Yj −m(Xj))

]

= E

[

∑

i=1

W 2
ni(X)(Yi−m(Xi))

2

]

+ I ′n,

where

I ′n = E

[

∑

i,j
i 6=j

1
X

Θ↔Xi

1
X

Θ′
↔Xj

(Yi−m(Xi))(Yj −m(Xj))

]

.

The term I ′n, which involves the double products, is handled separately in
Lemma 4 below. According to this lemma, and by assumption (H2), for all
n large enough,

|I ′n| ≤ α.
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Consequently, recalling that εi = Yi−m(Xi), we have, for all n large enough,

|In| ≤ α+ E

[

n
∑

i=1

W 2
ni(X)(Yi −m(Xi))

2

]

≤ α+ E

[

max
1≤ℓ≤n

Wnℓ(X)

n
∑

i=1

Wni(X)ε2i

]

(7)

≤ α+ E

[

max
1≤ℓ≤n

Wnℓ(X) max
1≤i≤n

ε2i

]

.

Now, observe that in the subsampling step, there are exactly
(an−1
n−1

)

choices
to pick a fixed observation Xi. Since x and Xi belong to the same cell only
if Xi is selected in the subsampling step, we see that

PΘ[X
Θ↔Xi]≤

(an−1
n−1

)

(an
n

) =
an
n
,

where PΘ denotes the probability with respect to Θ, conditional on X and
Dn. So,

max
1≤i≤n

Wni(X)≤ max
1≤i≤n

PΘ[X
Θ↔Xi]≤

an
n
.(8)

Thus, combining inequalities (7) and (8), for all n large enough,

|In| ≤ α+
an
n
E

[

max
1≤i≤n

ε2i

]

.

The term inside the brackets is the maximum of n χ2-squared distributed
random variables. Thus, for some positive constant C,

E

[

max
1≤i≤n

ε2i

]

≤C logn;

see, for example, Boucheron, Lugosi and Massart (2013), Chapter 1. We
conclude that for all n large enough,

In ≤ α+C
an logn

n
≤ 2α.

Since α was arbitrary, the proof is complete.

Lemma 4. Assume that (H2) is satisfied. Then, for all ε > 0, and all n
large enough, |I ′n| ≤ α.

Proof. First, assume that (H2.2) is verified. Thus we have for all ℓ1, ℓ2 ∈
{0,1},

Corr(Yi−m(Xi),1Zi,j=(ℓ1,ℓ2)|Xi,Xj , Yj)
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=
E[(Yi −m(Xi))1Zi,j=(ℓ1,ℓ2)]

V1/2[Yi −m(Xi)|Xi,Xj, Yj]V1/2[1Zi,j=(ℓ1,ℓ2)|Xi,Xj , Yj]

=
E[(Yi −m(Xi))1Zi,j=(ℓ1,ℓ2)|Xi,Xj , Yj]

σ(P[Zi,j = (ℓ1, ℓ2)|Xi,Xj , Yj]− P[Zi,j = (ℓ1, ℓ2)|Xi,Xj, Yj]2)1/2

≥
E[(Yi−m(Xi))1Zi,j=(ℓ1,ℓ2)|Xi,Xj, Yj]

σP1/2[Zi,j = (ℓ1, ℓ2)|Xi,Xj, Yj]
,

where the first equality comes from the fact that, for all ℓ1, ℓ2 ∈ {0,1},

Cov(Yi −m(Xi),1Zi,j=(ℓ1,ℓ2)|Xi,Xj, Yj)

= E[(Yi −m(Xi))1Zi,j=(ℓ1,ℓ2)|Xi,Xj, Yj],

since E[Yi−m(Xi)|Xi,Xj, Yj ] = 0. Thus, noticing that, almost surely,

E[Yi −m(Xi)|Zi,j ,Xi,Xj , Yj]

=
2

∑

ℓ1,ℓ2=1

E[(Yi −m(Xi))1Zi,j=(ℓ1,ℓ2)|Xi,Xj, Yj ]

P[Zi,j = (ℓ1, ℓ2)|Xi,Xj, Yj]
1Zi,j=(ℓ1,ℓ2)

≤ 4σ max
ℓ1,ℓ2=0,1

|Corr(Yi −m(Xi),1Zi,j=(ℓ1,ℓ2)|Xi,Xj, Yj)|
P1/2[Zi,j = (ℓ1, ℓ2)|Xi,Xj, Yj]

≤ 4σγn,

we conclude that the first statement in (H2.2) implies that, almost surely,

E[Yi−m(Xi)|Zi,j ,Xi,Xj, Yj ]≤ 4σγn.

Similarly, one can prove that the second statement in assumption (H2.2)
implies that, almost surely,

E[|Yi −m(Xi)|2|Xi,1
X

Θ↔Xi

]≤ 4Cσ2.

Returning to the term I ′n, and recalling that Wni(X) = EΘ[1
X

Θ↔Xi

], we ob-

tain

I ′n = E

[

∑

i,j
i 6=j

1
X

Θ↔Xi

1
X

Θ′
↔Xj

(Yi−m(Xi))(Yj −m(Xj))

]

=
∑

i,j

i 6=j

E[E[1
X

Θ↔Xi

1
X

Θ′
↔Xj

(Yi−m(Xi))

× (Yj −m(Xj))|Xi,Xj, Yi,1
X

Θ↔Xi

,1
X

Θ′
↔Xj

]]
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=
∑

i,j

i 6=j

E[1
X

Θ↔Xi

1
X

Θ′
↔Xj

(Yi −m(Xi))

× E[Yj −m(Xj)|Xi,Xj , Yi,1
X

Θ↔Xi

,1
X

Θ′
↔Xj

]].

Therefore, by assumption (H2.2),

|I ′n| ≤ 4σγn
∑

i,j
i 6=j

E[1
X

Θ↔Xi

1
X

Θ′
↔Xj

|Yi −m(Xi)|]

≤ γn
n
∑

i=1

E[1
X

Θ↔Xi

|Yi −m(Xi)|]

≤ γn
n
∑

i=1

E[1
X

Θ↔Xi

E[|Yi −m(Xi)||Xi,1
X

Θ↔Xi

]]

≤ γn
n
∑

i=1

E[1
X

Θ↔Xi

E
1/2[|Yi −m(Xi)|2|Xi,1

X
Θ↔Xi

]]

≤ 2σC1/2γn.

This proves the result, provided (H2.2) is true. Let us now assume that
(H2.1) is verified. The key argument is to note that a data point Xi can be
connected with a random point X if (Xi, Yi) is selected via the subsampling
procedure and if there are no other data points in the hyperrectangle defined
by Xi and X. Data points Xi satisfying the latter geometrical property are
called layered nearest neighbors (LNN); see, for example, Barndorff-Nielsen
and Sobel (1966). The connection between LNN and random forests was first
observed by Lin and Jeon (2006), and later worked out by Biau and Devroye
(2010). It is known, in particular, that the number of LNN Lan(X) among
an data points uniformly distributed on [0,1]d satisfies, for some constant
C1 > 0 and for all n large enough,

E[L4
an(X)]≤ anP[X Θ↔

LNN
Xj ] + 16a2nP[X

Θ↔
LNN

Xi]P[X
Θ↔

LNN
Xj ]

(9)
≤ C1(log an)

2d−2;

see, for example, Barndorff-Nielsen and Sobel (1966), Bai et al. (2005). Thus
we have

I ′n = E

[

∑

i,j
i 6=j

1
X

Θ↔Xi

1
X

Θ′
↔Xj

1
Xi

Θ↔
LNN

X
1
Xj

Θ′
↔

LNN
X
(Yi−m(Xi))(Yj −m(Xj))

]

.
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Consequently,

I ′n = E

[

∑

i,j
i 6=j

(Yi−m(Xi))(Yj −m(Xj))1
Xi

Θ↔
LNN

X
1
Xj

Θ′
↔

LNN
X

×E[1
X

Θ↔Xi

1
X

Θ′
↔Xj

|X,Θ,Θ′,X1, . . . ,Xn, Yi, Yj]

]

,

where Xi
Θ↔

LNN
X is the event where Xi is selected by the subsampling and is

also a LNN of X. Next, with the notation of assumption (H2),

I ′n = E

[

∑

i,j
i 6=j

(Yi −m(Xi))(Yj −m(Xj))1
Xi

Θ↔
LNN

X
1
Xj

Θ′
↔

LNN
X
ψi,j(Yi, Yj)

]

= E

[

∑

i,j

i 6=j

(Yi −m(Xi))(Yj −m(Xj))1
Xi

Θ↔
LNN

X
1
Xj

Θ′
↔

LNN
X
ψi,j

]

+ E

[

∑

i,j
i 6=j

(Yi −m(Xi))(Yj −m(Xj))1
Xi

Θ↔
LNN

X
1
Xj

Θ′
↔

LNN
X
(ψi,j(Yi, Yj)−ψi,j)

]

.

The first term is easily seen to be zero since

E

[

∑

i,j
i 6=j

(Yi −m(Xi))(Yj −m(Xj))1
Xi

Θ↔
LNN

X
1
Xj

Θ′
↔

LNN
X
ψ(X,Θ,Θ′,X1, . . . ,Xn)

]

=
∑

i,j

i 6=j

E[1
Xi

Θ↔
LNN

X
1
Xj

Θ′
↔

LNN
X
ψi,j

× E[(Yi −m(Xi))(Yj −m(Xj))|X,X1, . . . ,Xn,Θ,Θ
′]]

= 0.

Therefore,

|I ′n| ≤ E

[

∑

i,j
i 6=j

|Yi −m(Xi)||Yj −m(Xj)|1
Xi

Θ↔
LNN

X
1
Xj

Θ′
↔

LNN
X
|ψi,j(Yi, Yj)− ψi,j|

]

≤ E

[

max
1≤ℓ≤n

|Yi−m(Xi)|2max
i,j
i 6=j

|ψi,j(Yi, Yj)−ψi,j |
∑

i,j
i 6=j

1
Xi

Θ↔
LNN

X
1
Xj

Θ′
↔

LNN
X

]

.
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Now, observe that
∑

i,j
i 6=j

1
Xi

Θ↔
LNN

X
1
Xj

Θ′
↔

LNN
X
≤L2

an(X).

Consequently,

|I ′n| ≤ E
1/2

[

L4
an(X) max

1≤ℓ≤n
|Yi −m(Xi)|4

]

(10)

×E1/2
[

max
i,j
i 6=j

|ψi,j(Yi, Yj)− ψi,j|
]2
.

Simple calculations reveal that there exists C1 > 0 such that, for all n,

E

[

max
1≤ℓ≤n

|Yi−m(Xi)|4
]

≤C1(logn)
2.(11)

Thus, by inequalities (9) and (11), the first term in (10) can be upper
bounded as follows:

E
1/2

[

L4
an(X) max

1≤ℓ≤n
|Yi−m(Xi)|4

]

= E
1/2

[

L4
an(X)E

[

max
1≤ℓ≤n

|Yi −m(Xi)|4|X,X1, . . . ,Xn

]]

≤C ′(logn)(log an)
d−1.

Finally,

|I ′n| ≤C ′(log an)
d−1(logn)α/2E1/2

[

max
i,j
i 6=j

|ψi,j(Yi, Yj)−ψi,j|
]2
,

which tends to zero by assumption. �
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