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Efficient Variational Bayesian Approximation

Method Based on Subspace optimization

Yuling Zheng, Aurélia Fraysse, Thomas Rodet

Abstract

Variational Bayesian approximations have been widely used in fully Bayesian inference for approx-

imating an intractable posterior distribution by a separable one. Nevertheless, the classical variational

Bayesian approximation (VBA) method suffers from slow convergence to the approximate solution when

tackling large-dimensional problems. To address this problem, we propose in this paper an improved VBA

method. Actually, variational Bayesian issue can be seen as a convex functional optimization problem.

The proposed method is based on the adaptation of subspace optimization methods in Hilbert spaces to

the function space involved, in order to solve this optimization problem in an iterative way. The aim is to

determine an optimal direction at each iteration in order to get a more efficient method. We highlight the

efficiency of our new VBA method and its application to image processing by considering an ill-posed

linear inverse problem using a total variation prior. Comparisons with state of the art variational Bayesian

methods through a numerical example show the notable improved computation time.

Index Terms

Variational Bayesian approximation, subspace optimization, large dimensional problem, unsupervised

approach, total variation

I. INTRODUCTION

Efficient reconstruction approaches for large dimensional inverse problems involved in image pro-

cessing are the main concerns of this paper. In general, such problems are ill-posed, which means that

the information provided by data is not sufficient enough to give a good estimation of the unknown
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objects. The resolution of ill-posed inverse problems generally relies on regularizations which consist of

introducing additional information, see [1] for details. One most commonly used regularization is the

Tikhonov one [2]. Nevertheless, Tikhonov regularization leads to an estimator linear with respect to the

data. Therefore, its ability to reconstruct non-linear components, such as location and magnitude of jumps

or higher order discontinuities, see [3] and [4], is limited.

To overcome such limitations, nonlinear regularizations have been widely used. However, the drawback

of those regularizations is the corresponding non quadratic or even non-convex optimization problems

which are generally intricate. To tackle this issue, Geman et al [3], [4] proposed half-quadratic schemes

in order to get nonlinear estimates more easily. By introducing auxiliary variables using duality tools,

half-quadratic schemes transform the original complicated criterion into a half quadratic one where the

original variables appear quadratically and the auxiliary variables are decoupled. This half-quadratic

criterion can be efficiently optimized using classical optimization algorithms, which lead to the desired

nonlinear estimates.

In a statistical framework, the half-quadratic schemes have been shown by Champagnat et al. [5]

as instances of the EM algorithm with latent variables which provide maximum a posteriori estimates.

Nevertheless, for either the Tikhonov regularization based methods or half-quadratic schemes, only point

estimates could be given. Some useful information such as the variance of the estimator, which evaluates

its precision, could not be directly obtained. However, such information is accessible if we obtain

the posterior distribution of the unknown parameters, which is involved in the Bayesian framework.

Furthermore, another advantage of the Bayesian framework is that it provides a systematic way to

determine hyperparameters, e.g. a Bayesian hierarchical approach can estimate the hyperparameters

as well as unknown parameters by introducing hyperpriors, [6] [7]. Such approaches are known as

unsupervised approaches in the literature. In order to exploit these advantages, in the following we

are mainly interested in the development of efficient unsupervised Bayesian reconstruction approaches.

Nevertheless, the difficulty met in general is that one could only acquire a posterior distribution whose

partition function is unknown due to an intractable integral. In such a case, the main challenge is to

retrieve the posterior distribution.

In this context, two main types of approaches are employed, stochastic approaches and analytic

approximations. Stochastic approaches are based on Markov Chain Monte Carlo (MCMC) techniques

[8] which provide an asymptotically exact numerical approximation of the true posterior distribution.

The main drawbacks of such approaches are the high computational cost and the poor performance for

large dimensional problems involving complicated covariance matrices. The use of such approaches for
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large dimensional problems is therefore limited.

Concerning analytic methods, MacKay in [9], see also [10] for a survey, proposed the variational

Bayesian approximation (VBA) which aims to determine analytic approximations of the true posterior

distribution. In this case, the objective is to find a simpler probability density function (pdf), generally

separable, which is as close as possible to the true posterior distribution in the sense of minimizing the

Kullback-Leibler divergence. This problem can be formulated as a convex infinite-dimensional optimiza-

tion problem, whose resolution results in an optimal analytic approximation. However, this approximation

does not have an explicit form except for extremely simple cases. In practice, it is generally approached

by cyclic iterative methods which update at each iteration one component of the separable distribution

while fixing the other ones. Such optimization procedure is known to be time consuming in general. The

classical Bayesian methodology is thus not efficient enough when dealing with very large dimensional

problems.

In order to obtain more efficient variational Bayesian approaches, a different method has been recently

introduced in [11]. It is based on the adaptation of the exponentiated gradient algorithm [12] into the

space of pdf, which is no longer a Hilbert space. Instead of approximating an analytical solution of the

involved functional optimization problem, this method seeks an approximate solution of this problem

iteratively thanks to a gradient-type algorithm with explicit update equations. The optimization of the

components of the separable approximation can thus be performed in parallel, which leads to a significant

acceleration compared to the classical VBA method.

In order to further improve the method of [11], a natural idea is to consider a new descent direction.

In this context, we propose to adapt the subspace optimization methods [13]–[16], into the space of pdf

involved in variational Bayesian methodology. The advantage of subspace optimization is its generalized

descent directions where Hilbert structure is not required. Moreover, the descent direction can be freely

chosen in a subspace of dimension greater than one. This flexibility allows subspace optimization methods

to be generally more efficient than conjugate gradient methods [17]. Based on the subspace optimization

methods, an improved variational Bayesian optimization method is proposed in this paper.

Moreover, we also consider the application of our improved variational Bayesian method to ill-posed

linear inverse problems in image processing. In this context, the total variation (TV) regularization has

been popular [18], [19] due to its ability to describe piecewise smooth images. Nevertheless, it is difficult

to integrate the TV based prior into the development of unsupervised Bayesian approaches since its

partition function depends on hyperparameters and it is not explicitly known. To tackle this problem,

Bioucas-Dias et al. [20], [21] proposed a closed form approximation of this partition function. Thanks to
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this approximation, Babacan et al. [22] developed its TV based unsupervised Bayesian approach using

the classical VBA method. In this work, we also take advantage of this approximate TV prior. With this

prior, we develop our unsupervised approach using the proposed VBA method.

In order to evaluate the proposed approach, we provide also numerical comparisons with [22] which is

based on the classical VBA method, and with another approach employing the gradient-type variational

Bayesian algorithm proposed in [11]. These comparisons are based on an implementation on a super-

resolution problem [23] which aims to reconstruct a high resolution image from several low resolution

ones representing the same scene. Moreover, in our reconstruction, we assume that motions between the

low resolution images and a reference one could either be estimated in advance or be known through

other sources of information. Such configuration appears for instance in astronomy [24] and medical

imaging [25].

The rest of this paper is organized as follows: in Section II, we develop our proposed variational

Bayesian optimization algorithm. Next, an application of the proposed algorithm to a linear inverse

problem is shown in Section III whereas results of numerical experiments on super-resolution problems

are given in Section IV. Finally, a conclusion is drawn in Section V.

II. EXPONENTIATED SUBSPACE-BASED VARIATIONAL BAYESIAN OPTIMIZATION ALGORITHM

A. Notations

In the following y ∈ R
M and w ∈ R

J denote respectively the data vector and the unknown parameter

vector to be estimated whereas p(w), p(w|y) and q(w) represent the prior distribution, the true posterior

law and the approximate posterior distribution, respectively.

B. Statement of the problem

The central idea of variational Bayesian methods is to approximate the true posterior distribution by

a separable one

q(w) =

P∏

i=1

qi(wi), (1)

where w = (w1, . . . ,wP ). Here (wi)i=1,...,P denote the P disjoint subsets of elements of w with P an

integer between 1 and J .

The optimal approximation is determined by minimizing a measure of dissimilarity between the true

posterior distribution and the approximate one. A natural choice for the dissimilarity measure is the
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Kullback-Leibler divergence (KL divergence), see [26]:

KL[q‖p(·|y)] =
∫

RJ

q(w) log
q(w)

p(w|y)dw. (2)

In fact, direct minimization of KL[q‖p(·|y)] is usually intractable since it depends on the true posterior

p(·|y) whose normalization constant is difficult to calculate. However, as given in [27], the logarithm of

the marginal probability of the data, called also evidence, can be written as

log p(y) = F(q) +KL[q‖p(·|y)], (3)

where F(q) is the so called negative free energy defined as

F(q) =

∫

RJ

q(w) log
p(y,w)

q(w)
dw. (4)

As log p(y) is a constant with respect to q(w), minimizing the KL divergence is obviously equivalent

to maximizing the negative free energy. We can see from (4) that for the computation of the negative

free energy, the joint distribution p(y,w) is involved instead of the true posterior law. And this joint

distribution can be readily obtained by the product of likelihood and prior distributions. We use hence

the negative free energy as an alternative to the KL divergence.

Let us define a space Ω which is a space of separable pdfs, Ω = {q : pdf and q =
∏P

i=1 qi}. Our

variational Bayesian problem is thus formulated as

qopt = argmax
q∈Ω

F(q) (5)

Classical variational Bayesian approximation [10] is based on an analytical solution of (5) which is

given by q =
∏P

i=1 qi with

qi(wi) = Ki exp
(
〈log p(y,w)〉∏

j 6=i
qj(wj)

)
, ∀i = 1, . . . , P. (6)

Here 〈·〉q = Eq[·] and Ki denotes the normalization constant. We can see from (6) that qi depends on

the other marginal distributions qj for j 6= i. As a result, we cannot obtain an explicit form for q unless

in extremely simple cases. Therefore, iterative methods such as the Gauss-Seidel one have to be used

to iteratively approach this solution. As a result, classical variational Bayesian method is not efficient

enough to treat high dimensional problems.

In this paper, in order to obtain efficient variational Bayesian approaches, instead of firstly giving

an analytical solution then iteratively approaching it, we directly propose iterative methods to solve (5)

which is a functional optimization problem over functions (qi)i=1,...,P , in the space Ω. As stated in [11],
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there exists a problem equivalent to (5) in a separable probability measure space A =
⊗P

i=1Ai, the

Cartesian product of the Ai, which is defined as follows:

Ai = {µi : probability measure

and µi(dwi) = qi(wi)dwi with qi a pdf}.
Therefore, the optimization of (5) is equivalent to the resolution of the following optimization problem

µopt = argmax
µ∈A

F (µ), (7)

where the functional F satisfies that ∀µ ∈ A of density q, F (µ) = F(q).

In [11], the gradient descent method in Hilbert spaces has been transposed into the space of pdfs and, as

a result, an exponentiated gradient based variational Bayesian approximation (EGrad-VBA) method whose

convergence is proven was proposed to solve the involved functional optimization problem. For the aim

of developing more efficient methods, we transpose here in the same context the subspace optimization

method which has been shown to outperform standard optimization methods, such as gradient or conjugate

gradient methods, in terms of rate of convergence in finite dimensional Hilbert spaces [17].

C. Subspace optimization method in Hilbert spaces

We give in this section a brief introduction of the subspace optimization method in Hilbert spaces. The

subspace optimization method has been proposed by Miele et al. [13] with a subspace spanned by the

opposite gradient and the previous direction. This method is known as Memory Gradient (MG) and can

be regarded as a generalization of the conjugate gradient method. More recently, a lot of other subspace

optimization methods based on different subspaces, see [15] and [28] for instance, have been proposed.

Generally, subspace optimization methods use the following iteration formula:

xk+1 = xk + dk = xk +Dksk, (8)

where xk and xk+1 respectively stands for the estimates at kth and (k+1)th iterations, Dk = [dk
1, . . . ,d

k
I ]

gathers I directions which span the subspace and the vector sk = [sk1, ..., s
k
I ]

T encloses the step-sizes

along each direction. The subspace optimization method offers more flexibility in the choice of the descent

direction dk by taking linear combinations of directions in Dk.

An overview of existing subspace optimization methods [17] shows that Dk usually includes a descent

direction (e.g. gradient, Newton, truncated Newton direction) and a short history of previous directions.

In this work, we consider only the super memory gradient subspace where Dk is given as follows:

Dk = [−gk,dk−1, . . . ,dk−I+1]. (9)
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Here −gk is the opposite gradient and (dk−j)j=1,...,I−1 are the directions of previous iterations. Chouzenoux

et al. [17] have addressed a discussion about the dimension of the subspace through simulation results

on several image restoration problems. It is shown that in a Hilbert space, for a super memory gradient

subspace (9), taking I = 2 i.e. a subspace constructed by the opposite gradient and the previous direction,

results in the best performance in terms of computation time. In this case, the super memory gradient

subspace is degraded to the memory gradient one.

D. Proposed subspace-based variational Bayesian approximation method

In this section, we define our iterative method based on the transposition of the subspace optimization

method for the resolution of (7). We use here k ∈ N, set initially to zero, as the iteration count and

assume that µk is a Radon probability measure [11] with a density qk, i.e. µk(dw) = qk(w)dw. As

we stand in the space of probability density measures, the next iteration should give also a probability

density measure absolutely continuous with respect to µk. The Radon-Nikodym theorem [29] ensures

that this measure should be written as

µk+1(dw) = hk(w)µk(dw), (10)

where hk ∈ L1(µk) is a positive function1. Since µk is a Radon probability measure with a density qk,

we can equivalently write

qk+1(w) = hk(w)qk(w), (11)

as updating equation for the approximate density. Furthermore, as we deal with entropy-type functionals,

a natural choice for hk would be an exponential form (see [30]). Moreover, this choice ensures the

positivity of pdfs along iterations.

Considering the exponential form of hk and the subspace optimization principle, we propose

hk(w) = Kk(sk) exp
[
Dk(w)sk

]
, (12)

where Kk(sk) represents the normalization constant expressed as

Kk(sk) =

[∫

RJ

exp
[
Dk(w)sk

]
qk(w)dw

]−1

, (13)

and Dk(w) = [dk1(w), . . . , dkI (w)] is the set of I directions spanning the subspace. We should state that

as we deal with a functional optimization problem, the directions (dkl (w))l=1,...,I , are no longer vectors

but functions. Finally, sk = [sk1, . . . , s
k
I ]

T denotes the multi-dimensional step-size.

1h ∈ L1(µ) ⇔
∫
RJ |h(w)|µ(dw) < ∞
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Due to the exponential form, (12) can also be written as:

hk(w) = Kk(sk)
[
φk
1(w)

]sk1
. . .
[
φk
I (w)

]skI
(14)

where φk
l (w) = exp[dkl (w)], for l = 1, . . . , I .

1) Set of directions spanning the subspace: As discussed in Section II-C, for the super memory

gradient subspaces defined in Hilbert spaces (see (9)), the subspace of dimension two, which is known

as memory gradient subspace, leads to the most efficient approaches. Moreover, a subspace of dimension

two would result in less computation complexity than higher order subspaces. As a result, we consider in

this work the transposition of the memory gradient subspace into the space of pdfs. In this case, I = 2.

The transposition leads to a Dk(w) consisting of one term related to the Gateaux differential of F(q)

and the other term corresponding to the previous direction. The Gateaux differential of the negative free

energy F(q) is a linear functional defined on Ω by

∀(q, q̃) ∈ Ω2 dFq(q̃) =

∫

RJ

df(q,w)q̃(w)dw. (15)

In the case of separable q, we have df(q,w) = Σidif(q,wi), in which ∀i = 1, . . . , P , dif(q,wi) is

expressed as:

dif(q,wi) = 〈log p(y,w)〉∏
j 6=i

qj(wj)
− log qi(wi)− 1. (16)

Mathematically, the structure of our Memory Gradient (MG) subspace is given by

Dk
MG(w) = [df(qk,w), dk−1(w)], (17)

where df(qk, ·) is given by (16) and dk−1 stands for the direction of the previous iteration, which is

given by

dk−1(w) = log

( ∏
i q

k
i (wi)∏

i q
k−1
i (wi)

)
. (18)

Our proposed variational Bayesian approximation method based on this subspace is called exponen-

tiated memory gradient subspace-based variational Bayesian approximation in the rest of this paper and

is resumed as follows:

Concerning the step size, let us first define

gk : R2 → R gk(s) = F
(
Kk(s)qk(w) exp

[
Dk

MG(w)s
])

, (19)

then the optimal step-size is given by

(ŝopt)k = argmax
s∈R2

gk(s). (20)
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Algorithm Exponentiated Memory Gradient subspace-based Variational Bayesian Approximation (EMG-

VBA)

1) Initialize(q0 ∈ Ω)

2) repeat

a. determine subspace Dk
MG(w) using (16), (17) and (18)

b. determine step-sizes sk

c. compute

qk+1(w) = Kk
(
sk
)
qk(w) exp

[
Dk

MG(w)sk
]

until convergence

For the proposed EMG-VBA algorithm, we would prove the following proposition.

Proposition 1. Let q0 ∈ Ω and ∀k ≥ 0, let the sequence {qk}k≥0 be defined by

qk+1(w) =Kk
(
sk
)
qk(w) exp

[
Dk

MG(w)sk
]

=Kk
(
sk
)
qk(w)

× exp
[
sk1df(q

k,w) + sk2d
k−1(w)

]
. (21)

If sk is the optimal step-size defined in (20) then

{F(qk)}k≥0 converges to a maximum of F(q).

In a previous work [11], it has been proven that for qk ∈ Ω, if qk+1 is constructed by the EGrad-VBA

with the following updating formula:

qk+1
grad (w) = Kk

(
sk1

)
qk(w) exp

[
sk1df(q

k,w)
]
, (22)

with an optimal step-size defined as:

sk1 = argmax
s1∈R

F
(
Kk (s1) q

k(w) exp
[
s1df(q

k,w)
])

, (23)

then the negative free energy F(q) increases. More precisely,

F(qk+1
grad ) ≥ F(qk)

for qk ∈ Ω and qk+1
grad constructed by (22)

(24)

Comparing (21) and (22), we notice that the EGrad-VBA algorithm can be identified as a special case

of our proposed EMG-VBA algorithm with the second step-size s2 set to zero. Due to the use of optimal
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step-sizes, we obtain

F(qk+1
grad ) = maxs1∈RF

(
Kk (s1) q

k(w) exp
[
s1df(q

k,w)
])

= maxs1∈R,s2=0g
k(s) (25)

However, in our proposed EMG-VBA, we consider

F(qk+1) = maxs∈R2gk(s)

≥ maxs1∈R,s2=0g
k(s) = F(qk+1

grad ) (26)

Combining (24) and (26), we obtain

F(qk+1) ≥ F(qk), (27)

which shows that for a sequence {qk}k≥0 constructed by the proposed EMG-VBA, the sequence of

negative free energy {F(qk)}k≥0 is a increasing one. Furthermore, F is a concave functional. As a

result, the proposed EMG-VBA generates a sequence {F(qk)}k≥0 which converges to a maximum of

F(q).

E. The approximate step-size

Generally, it is too expensive to get the optimal step-size. Therefore, in practice most iterative ap-

proaches take sub-optimal ones considering the trade-off between computational cost and difference

from the optimal step-size. In scalar cases, typical line search approaches determine trade-off steps by

trying out a sequence of values until the fulfillment of certain sufficient conditions, such as Wolfe,

Goldstein [31]. An extension of these conditions to multi-dimensional cases can be easily obtained.

However, such approximate methods in scalar cases have already been known to be time-consuming

when the computation of the objective criterion is expensive, which is the case here. Moreover, it

is difficult to adjust multi-dimensional step-sizes to satisfy the sufficient conditions. As a result, the

extension to multi-dimensional cases can greatly increase the computational cost. Furthermore, the rate

of convergence of such line search methods depends closely on parameters controlling the boundaries

of chosen conditions and on the starting point of the step-size. A bad choice of these parameters will

cause a slow convergence. Therefore, in this paper, we do not consider such approximate methods and

take sub-optimal steps calculated as in [11]. Firstly, we take the second order Taylor expansion of gk(s)

at origin as local approximation,

g̃k(s) = gk(0) +

(
∂gk

∂s

∣∣∣∣
s=0

)T

s+
1

2
sT
(

∂2gk

∂s∂sT

∣∣∣∣
s=0

)
s, (28)
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where ∂gk

∂s

∣∣
s=0

denotes the gradient vector whereas ∂2gk

∂s∂sT

∣∣
s=0

is the Hessian matrix of the function gk

at s = 0. When s1 and s2 are small, g̃k(s) is a close approximation of gk(s). Secondly, we compute our

sub-optimal steps by maximizing g̃k(s) which is quadratic. Assuming that the Hessian matrix ∂2gk

∂s∂sT

∣∣
s=0

is invertible, our sub-optimal steps are given by

(ŝsubopt)k = −
(

∂2gk

∂s∂sT

∣∣∣∣
s=0

)−1
∂gk

∂s

∣∣∣∣
s=0

. (29)

III. APPLICATION TO A LINEAR INVERSE PROBLEM WITH A TOTAL VARIATION PRIOR

We show in this section an application of the proposed EMG-VBA to ill-posed inverse problems in

image processing. Variational Bayesian approaches are widely used to tackle inverse problems where

complicated posterior distributions are involved. In the following, we firstly present such a problem

which adopts a Total Variation (TV) prior. Then we develop an unsupervised Bayesian approach with

the proposed EMG-VBA.

A. Direct model

We consider here a classical linear direct model:

y = Ax+ n, (30)

where y ∈ R
M and x ∈ R

N denote respectively data and unknown parameters to be estimated arranged

in column lexicographic ordering. The linear operator A ∈ R
M×N is assumed to be known and n is an

additive white noise, assumed to be i.i.d. Gaussian, n ∼ N (0, γ−1
n I), with γn as a precision parameter,

i.e. the inverse of the noise variance. The direct model (30) and the hypothesis of i.i.d. Gaussian noise

allow an easy derivation of the likelihood function:

p(y|x, γn) ∝ γM/2
n exp

[
−γn‖y −Ax‖2

2

]
. (31)

B. Image model

In this work, we consider an image model, more precisely a prior distribution of the unknown x,

satisfying two main properties. Firstly, it is able to describe the piecewise smoothness property of images.

In the literature, total variation has been largely used in various imaging problems including denoising

[18], blind deconvolution [32], inpainting [33] and super-resolution [22]. Secondly, we should have some

knowledge of its partition function in order to develop unsupervised approaches which sidestep the

difficulty of tuning hyperparameters. Both demands described above lead us to the work of Babacan et
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al. [22], where an unsupervised Bayesian approach using the total variation (TV) prior was developed.

The TV prior is given by

p(x|γp) =
1

ZTV (γp)
exp [−γpTV (x)] , (32)

where ZTV (γp) is the partition function and

TV (x) =

N∑

i=1

√
(Dhx)

2
i + (Dvx)2i . (33)

Here Dh and Dv represent first-order finite difference matrices in horizontal and vertical directions,

respectively.

The major difficulty is that there is no closed form expression for the partition function ZTV (γp). To

overcome this difficulty, Bioucas-Dias et al. [20], [21] proposed an approximate partition function

ZTV (γp) ≃ Cγ−θN
p , (34)

where C is a constant and θ is a parameter which has to be adjusted in practice to get better results.

This analytic approximation results in

p(x|γp) ≃ p̃(x|γp) = C̃γθNp exp [−γpTV (x)] . (35)

Babacan et al. [22] adopted this approximate TV prior with θ = 1/2. In such a case, ZTV (γp) is

approximated by Cγ
−N/2
p which corresponds to the partition function of a multivariate normal distribution

of a N-dimensional random vector. However, a TV prior is not similar to a Gaussian one. Therefore, this

approximation is not close enough. As a result, in this paper, we keep the parameter θ and adjust it in

practice.

C. Hyperpriors

The hyperparameters γn and γp play an important role in the performance of algorithms. In prac-

tice, choosing correct hyperparameters is far from a trivial task. Therefore, we prefer to automatically

determine their values. This is done by introducing hyperpriors for the hyperparameters. In order to

obtain numerically implementable approaches, conjugate hyperpriors are employed. For γn and γp, we

use Gamma distributions,

p(γn) = G(γn|ãn, b̃n) (36)

p(γp) = G(γp|ãp, b̃p) (37)
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where for a > 0 and b > 0

G(z|a, b) = ba

Γ(a)
za−1 exp (−bz) (38)

As we do not have any prior information about γn and γp, in practice, we consider ãn = 0, b̃n = 0

and ãp = 0, b̃p = 0, which lead to non-informative Jeffreys’ priors.

Consequently, we obtain a joint distribution as follows

p(y,x, γn, γp) ∝̃ γM/2
n exp

[
−γn‖y −Ax‖2

2

]

× γθNp exp

[
−γp

N∑

i=1

√
(Dhx)

2
i + (Dvx)2i

]
γ−1
n γ−1

p (39)

where ∝̃ means “is approximately proportional to”. The posterior distribution p(x, γn, γp|y) is not known

explicitly since the normalization constant is not calculable. In order to proceed the statistic inference of

the unknown variables, we resort to the variational Bayesian approximation methods which aims at getting

the best separable analytical approximation. In the context of variational Bayesian methods, in order to

get numerically implementable approaches, conjugate priors are needed to ensure that each posterior

distribution belongs to a given family. Consequently, the optimization of the approximate distribution can

be reduced to a numerical approximation of its parameters. Nevertheless, the TV prior introduced above

is not conjugate with the likelihood (see (31)) which is a Gaussian distribution. To tackle this problem,

Minorization-Maximization (MM) techniques [34] are employed here to get a conjugate variant, as done

by Babacan et al. in [22].

D. Application of variational Bayesian approximation methods

Let Θ denote the set of all unknown parameters: Θ = {x, γn, γp}, the objective of variational Bayesian

approximations is to give a tractable approximation qΘ of the true posterior distribution p(·|y). As the TV

prior is not conjugate with the likelihood, it is difficult to carry out the maximization of the negative free

energy with respect to qΘ. This difficulty has been solved by adopting Minorization-Maximization (MM)

techniques [34], in which maximizing the negative free energy is substituted by maximizing a tractable

lower bound. To get such a lower bound of the negative free energy, a lower bound of the approximate

TV prior is firstly constructed by introducing positive auxiliary variables λ = [λ1, . . . , λN ], see [22] for

details,

p̃(x|γp) ≥M(x, γp|λ) = cγθNp

× exp

[
−γp

N∑

i=1

(Dhx)
2
i + (Dvx)

2
i + λi

2
√
λi

]
. (40)
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From (40), we can see that the lower bound of the TV prior, M(x, γp|λ), is proportional to a Gaussian

distribution and is therefore conjugate to the likelihood. Combining (4) and (40), a lower bound of the

negative free energy can be derived as

F(qΘ) ≥ FL(qΘ,λ)

=

∫
qΘ(x, γn, γp) log

(
L(x, γp, γn,y|λ)
qΘ(x, γn, γp)

)
dxdγndγp, (41)

where

L(x, γp, γn,y|λ) = p(y|x, γn)M(x, γp|λ)p(γn)p(γp) (42)

is a lower bound of the joint distribution.

Hence the resolution of the problem (5) is performed by alternating the two following steps: maximizing

the lower bound FL with respect to the pdf qΘ and updating the auxiliary variable λ in order to maximize

FL. Assuming that

qΘ(Θ) = qx(x)qγn
(γn)qγp

(γp)

=
∏

i

qi(xi)qγn
(γn)qγp

(γp), (43)

we carry out an alternate optimization of FL with respect to qx, qγn
, qγp

and λ. Altogether, we perform

the following alternate iterative scheme2:

qk+1
x

= argmax
qx

FL
(
qxq

k
γn
qkγp

,λk
)
, (44)

λ
k+1 = argmax

λ∈RN

FL
(
qk+1
x

qkγn
qkγp

,λ
)

(45)

qk+1
γn

= argmax
qγn

FL
(
qk+1
x

qγn
qkγp

,λk+1
)
, (46)

qk+1
γp

= argmax
qγp

FL
(
qk+1
x

qk+1
γn

qγp
,λk+1

)
(47)

The functional optimizations with respect to qx, qγn
and qγp

(given by (44), (46) and (47), respectively)

are solved by variational Bayesian approximation methods. Since the conditional posterior p(γn, γp|x,y)
is separable, it could be approximated efficiently thanks to the classical VBA. In fact, the proposed

EMG-VBA is only adopted to approximate the posterior distribution of x where it improves the rate

of convergence. As regards the optimization of the auxiliary variable λ (given by (45)), it involves a

classical optimization in a Hilbert space.

2The auxiliary variable λ is chosen to be updated before qγn and qγp in order to get a simpler iteration formula for qγp , see

[22].
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Due to the use of MM techniques, we manage to get a prior for x conjugate with the likelihood.

Moreover, conjugate Gamma priors are chosen for hyperparameters γn and γp. Therefore, the optimal

approximations (qi)i=1,...,N belong to a Gaussian family whereas the optimal approximate posterior

distributions of hyperparameters qγn
and qγp

belong to a Gamma one.

qk
x
(x) =

∏

i

N (xi|(mk)i, (σ
2
k)i), (48)

qkγn
(γn) = G(γn|akγn

, bkγn
), (49)

qkγp
(γp) = G(γp|akγp

, bkγp
), (50)

Therefore, the optimization of approximate distributions can be performed by iteratively updating their

parameters.

1) Optimization of qx using the proposed EMG-VBA: According to (11), (12) and (16) – (18), we get

a distribution of x depending on the step-size s:

qs
x
(x) = Kk(s)qk

x
(x) exp(s1df(q

k
x
,x) + s2d

k−1(x))

= Kk(s)qk
x
(x)
∏

i

(
qri (xi)

qki (xi)

)s1( qki (xi)

qk−1
i (xi)

)s2

. (51)

As the lower bound of the negative free energy is involved, the auxiliary function qri is of the form

qri (xi) ∝ exp

[〈
logL(x, γp, γn,y|λk)

〉

(
∏

j 6=i
qkj )qkγnqkγp

]

∝ exp

[
−
∫ (

γn
2
‖y −Ax‖2

+ γp

N∑

i=1

(Dhx)
2
i + (Dvx)

2
i + λk

i

2
√

λk
i

)

×
(∏

j 6=i

qkj (xj)dxj

)
qkγn

(γn)q
k
γp
(γp)dγndγp

]

∝ exp

[
− 〈γn〉k

2

(
x2i diag

(
ATA

)
i
− 2xi

(
ATy

)
i

+ 2xi
(
ATAmk

)
i
− 2xidiag

(
ATA

)
i
(mk)i

)

− 〈γp〉k
2

(
x2i diag

(
DT

hΛ
kDh +DT

v Λ
kDv

)

i

+ 2xi

(
DT

hΛ
kDhmk +DT

v Λ
kDvmk

)

i

− 2xidiag
(
DT

hΛ
kDh +DT

v Λ
kDv

)

i
(mk)i

)]
(52)
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where 〈z〉k = Eqkz (z), Λk = Diag

(
1√
λk
i

)
is a diagonal matrix with

(
1√
λk
i

)

i=1,...,N
as its elements.

Moreover, diag (M) is a vector whose entries are the diagonal elements of matrix M.

The computation of qri , for i = 1, . . . , N , shows that each of them can be identified as a Gaussian

distribution with mean and variance expressed explicitly by the two following expressions:

(σ2
r )i =

[
〈γn〉kdiag

(
ATA

)
i

+ 〈γp〉kdiag
(
DT

hΛ
kDh +DT

v Λ
kDv

)

i

]−1
, (53)

(mr)i =(σ2
r )i

[
〈γn〉k

(
ATy −ATAmk + diag(ATA) ◦mk

)
i

− 〈γp〉k
(
DT

hΛ
kDhmk +DT

v Λ
kDvmk

)

i

+ 〈γp〉kdiag
(
DT

hΛ
kDh +DT

v Λ
kDv

)

i
(mk)i

]
, (54)

where ◦ denotes the Hadamard product between two vectors.

Based on the above results for qri , using (51), we can derive the expression of qs
x
(x) =

∏
i q

s

i (xi)

where each component qsi (xi) is a Gaussian distribution with mean (ms)i and variance (σ2
s
)i satisfying:

σ
2
s
=

[
1

σ2
k

+ s1

(
1

σ2
r

− 1

σ2
k

)
+ s2

(
1

σ2
k

− 1

σ2
k−1

)]−1

, (55)

ms = σ
2
s

[
mk

σ2
k

+ s1

(
mr

σ2
r

− mk

σ2
k

)
+ s2

(
mk

σ2
k

− mk−1

σ2
k−1

)]
. (56)

In above equations, we omit all the indication of vector component (·)i for the sake of clarity. From (55),

we can see that σ2
s

is equal to the inverse of a linear combination of three terms where the first term is

the present inverse variance, the second term comes from the gradient and the third term is caused by

the memory of the previous direction. From (56), we can see that ms has the same structure. As stated

earlier, the EGrad-VBA can be identified as the proposed EMG-VBA with s2 set to zero which leads to

the elimination of the third term in (55) and (56). Because of the extra term (the third term) compared

to EGrad-VBA, EMG-VBA can obtain a closer approximation than EGrad-VBA in one iteration.

The previous distribution is still a function of the step size. A sub-optimal step-size defined by (29)

in Section II-E is then adopted. As a result, (σ2)k+1 = σ
2
ŝsubopt and mk+1 = mŝsubopt .

2) optimization of λ in Hilbert spaces: The elements of auxiliary vector λ are calculated by maxi-

mizing the upper bound FL with respect to (λi)i=1,...,N . Since FL is concave and differentiable with
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respect to (λi)i=1,...,N , its maximum is achieved at the critical point which is given by

λk+1
i =Eqk+1

x

[
(Dhx)

2
i + (Dvx)

2
i

]

=Eqk+1
x

[
xT (Dh)

T
i (Dh)ix+ xT (Dv)

T
i (Dv)ix

]

=(Dhm
k+1)2i + (Dvm

k+1)2i

+ trace
[
(Dh)

T
i (Dh)iΣ

k+1)
]

+ trace
[
(Dv)

T
i (Dv)iΣ

k+1)
]
, (57)

where (Dh)i and (Dv)i represent the ith row of Dh and Dv, respectively. And Σk+1 = Diag
(
(σ2)k+1

)

is the covariance matrix which is diagonal under the separability hypothesis.

3) optimization of qγn
and qγp

using classical VBA: These two distributions are computed using (6).

More details of the calculus can be found in [22]. The means of Gamma distributions are used as the

estimates of hyperparameters which are

〈γn〉k+1 =
M

Eqk+1
x

[‖y −Ax‖2] , (58)

〈γp〉k+1 =
θN

∑N
i=1

√
λk+1
i

. (59)

Altogether, the proposed algorithm for inverse problem using TV prior is summed up in Algorithm 1.

Algorithm 1 Proposed unsupervised variational Bayesian approach

1) Initialize parameters of (q0i )i=1,...,N , q0γn
, q0γp

and λ

2) Update means and variances of qk+1
i for i = 1, . . . , N

a. Compute parameters of intermediary functions qri using (53), (54)

b. Determine the suboptimal step-sizes (ssubopt1 , ssubopt2 ) using (29)

c. Update means and variances of qk+1
i using (55), (56)

3) Update auxiliary vector λk+1 using (57)

4) Determine the parameters of qk+1
γn

and compute its mean by (58)

5) Determine the parameters of qk+1
γp

and compute its mean by (59)

6) Go back to 2) until convergence
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IV. EXPERIMENTAL EVALUATION

The performance of the proposed approach (Algorithm 1) is evaluated through an application on a

super-resolution (SR) problem. A SR problem is covered by the linear direct model (30) with a system

matrix A gathering the warping, blurring and down-sampling operators. In fact, the main concern of this

section is the evaluation of the time efficiency of the new variational Bayesian algorithm EMG-VBA by

comparisons with the existing variational Bayesian approximation techniques, classical VBA and EGrad-

VBA [11] for the estimation of images. Therefore, we treat here a non-classical super-resolution problem

where, for the sake of simplicity, the system matrix A is assumed to be known, i.e. no motion parameters

are estimated. Meanwhile, this assumption would reduce the implementation limitation of a state of the

art approach based on classical VBA [22] to large dimensional problems. In the following, at first, we

present briefly this state of the art approach based on the classical VBA and another one using the

EGrad-VBA, then we show the comparisons of the proposed approach with these two approaches.

A. State of the art approaches

1) A SR approach based on classical VBA [22]: The linear inverse problem with TV image prior

treated in Section III has also been treated recently by Babacan et al. in [22] in the context of classical

super-resolution. In this paper, we suppose that the motion parameters are known in order to make the

SR approach of Babacan et al. applicable for large-dimensional problems.

Two major differences exist between the work in [22] and our work presented in Section III-D. The

first one is that Babacan et al. used the classical VBA for the optimization of qx whereas we adopt the

proposed EMG-VBA. The second difference is that we assume that qx is fully separable whereas Babacan

et al. supposed that it is not. Due to the non-separability assumption, classical VBA based on (6) yields

a multivariate Gaussian distribution for qk
x

. Updating the distribution is also equivalent to updating its

parameters, i.e. mean mk and covariance matrix Σk. These two parameters are given by

mk+1 =Σk+1
[
〈γn〉kATy

]
, (60)

(Σk+1)−1 =〈γn〉kATA

+ 〈γp〉k
(
DT

hΛ
kDh +DT

v Λ
kDv

)
, (61)

We can see from (60) that mk+1 depends on the covariance matrix Σk+1 but the computation of Σk+1

needs the inversion of the matrix given by (61). To bypass the matrix inversion, Babacan et al. have

adopted the conjugate gradient method to iteratively approximate mk+1, which can be inefficient in large
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dimensional cases. For the optimization of the auxiliary variable λ and the hyperparameters γn, γp, the

same updating equations as (57), (58) and (59) are obtained. In (57) where the covariance matrix Σk+1

is needed, it is approximated by a diagonal matrix whose diagonal entries are equal to the inverse of the

diagonal elements of (Σk+1)−1. Generally, this approximation is not a precise one.

2) EGrad-VBA [11] based approach: We present in this section another approach for comparison

which treats the same inverse problem. The only major difference between this approach and the proposed

one is that the EGrad-VBA using approximate optimal step-sizes defined in a same way as (29) is adopted

for the optimization of qx. In fact, EMG-VBA differs from the EGrad-VBA only in the selection of the

direction: EMG-VBA takes the memory of previous direction into consideration whereas EGrad-VBA

does not. Here, there is no need to show the details of the application of EGrad-VBA into our inverse

problem since it is a degenerated version of the EMG-VBA with a subspace Dk(w) consisting of only

df(qk, ·). Consequently, the updating equations of the mean and variance of qx could be easily obtained

by considering s2 = 0 in (55) and (56). The updating equations for the auxiliary variable λ and the

hyperparameters γn, γp are still the same as (57), (58) and (59).

B. Simulation results

In the following, the approach of Babacan et al. [22] is named VBA-SR whereas the EGrad-VBA

based approach is referred to as EGrad-SR. The objective of SR is to construct a High-Resolution (HR)

image from several degraded Low-Resolution (LR) images representing the same scene, i.e. data. In our

experiments, four groups of LR images are generated from four standard images, Testpat and Cameraman

of dimension 256×256 and Lena, Jetplane of dimension 512×512. During the generation of LR images,

a 3 × 3 uniform blur kernel and a decimation factor of 4 in both horizontal and vertical directions are

used. Moreover, we add i.i.d. white Gaussian noises at SNR levels of 5 dB, 15 dB, 25 dB, 35 dB and 45

dB. However, for the sake of simplicity, we treat a problem where LR images are without rotation and

motions are supposed to be known. During the reconstruction, we take twelve LR images as data and

assume that the convolution kernel, decimation factor and shifting of LR images are all known. Since

the decimation factor of 4 is used, the size of a LR image is 1
16 of that of the HR image. As a result,

the size of twelve LR images is smaller than that of the objective HR image.

In fact, all the considered approaches are based on a same Bayesian model and tackle the same

optimization problem. Therefore, in general, these approaches lead to similar reconstruction results. The

main concern of this comparison is their rate of convergence. To have a fair comparison, we take the

same initializations for all the approaches: m0 = ATy as the mean and 100 as the variance of HR
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image pixels, the initializations of the auxiliary variables and the hyperparameters are computed from

m0 using (57), (58) and (59). Moreover, the parameter θ involved in the partition function of the image

prior needs to be adjusted. A set of experiments carried out with different images show that the best

results are achieved with θ = 1.1. As a result, we set θ = 1.1 for all our experiments.

As convergence criterion of the VBA-SR we use ‖mk−mk−1‖/‖mk−1‖ < 10−5, where mk and mk−1

represents the estimate of the HR image at kth and (k − 1)th iteration, respectively. And for EGrad-SR

and our approach, they stop when they achieve a HR image of a PSNR value very close (difference

within 1‰) to that obtained by VBA-SR.

TABLE I: PERFORMANCE COMPARISON OF VBA-SR [22], EGRAD-SR [11] AND OUR PROPOSED

APPROACH IN TERMS OF NUMBER OF ITERATIONS/CPU TIME (IN SECONDS).

Data PSNR VBA-SR EGrad-SR Proposed

Testpat

5dB 16.71 88/14.9 108/1.7 105/2.0

15dB 20.98 25/4.1 92/1.5 73/1.4

25dB 25.33 24/6.1 185/2.9 68/1.3

35dB 29.98 33/11.5 282/4.2 101/2.1

45dB 32.62 48/20.1 364/5.3 128/2.6

Camera

-man

5dB 23.23 181/56.9 336/5.0 254/4.9

15dB 28.77 45/7.4 80/1.3 80/1.4

25dB 33.58 23/4.5 106/1.6 70/1.4

35dB 37.15 26/9.1 231/3.4 75/1.6

45dB 40.52 34/14.6 412/6.3 107/2.0

Lena

5dB 27.14 108/100.5 312/16.2 204/15.7

15dB 31.23 21/12.8 98/5.3 83/6.1

25dB 34.61 22/16.8 145/7.6 71/5.4

35dB 37.02 26/25.9 264/13.7 88/6.7

45dB 38.30 32/43.6 392/20.5 106/7.8

Jetplane

5dB 32.87 123/76.2 182/9.7 172/13.0

15dB 37.36 31/16.2 90/4.7 74/5.6

25dB 41.04 20/16.0 146/7.7 72/5.4

35dB 44.72 25/25.7 366/19.0 85/6.3

45dB 46.76 31/40.0 342/18.2 104/7.9

We show in Table I the number of iterations as well as the computation time taken by VBA-SR, EGrad-

SR and the proposed approach to obtain HR images of similar PSNR values (fluctuation < 1‰) which

are given in the third column of the Table I. All experiments are run using Matlab R2013a on Intel(R)
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Core(TM) i7-3770 CPU (3.40 GHz) with 8.0 GB RAM. In Table I, we use bold numbers to indicate the

best results, i.e. the shortest computation time for each data. Comparing the computation time, we can see

that the proposed approach is much more efficient than the VBA-SR for all the datasets and more efficient

than EGrad-SR in most cases, especially in lower noise ones such as cases where SNR = 25, 35 and 45

dB. For instance, in the case where SNR = 5 dB for the Cameraman image, the proposed approach takes

4.9 seconds which is only 9% of 56.9 seconds used by VBA-SR and slightly smaller than 5.0 seconds

taken by EGrad-SR, in the case where SNR = 25 dB for the Lena image, the proposed approach took

5.4 seconds which is nearly 32% of the time needed by VBA-SR (16.8 seconds) and 71% of the time

taken by EGrad-SR (7.6 seconds), in the case where SNR = 45 dB for the Jetplane image, the proposed

approach took 7.9 seconds which is only 20% of the time taken by VBA-SR (40 seconds) and 43% of

the time used by EGrad-SR (18.2 seconds). On average, the proposed approach is approximately 4 times

faster than the VBA-SR and approximately 1.7 times as fast as EGrad-SR. Comparing the number of

iterations, the proposed approach generally takes less iterations than the EGrad-SR (only one exception

in the case where SNR = 15 dB of Cameraman image). This result suggests that the introduction of the

memory gradient subspace gives better directions and the proposed approach thus needs less iterations

than the approach based on the gradient direction. Even though each iteration of the proposed approach

takes more computation time than EGrad-SR due to its complexity, the proposed approach is still more

efficient than EGrad-SR in most cases thanks to the decrease in the number of iterations. Concerning

the VBA-SR, it takes less iterations than the other two approaches. However, each of its iteration takes

much more time since it contains an inner loop due to the use of the conjugate gradient method to avoid

the direct matrix inversion. As a result, VBA-SR is less efficient than the proposed approach in terms of

computation time.

In order to compare the visual quality of reconstructed images, we show in Fig. 1 and Fig. 2 one of

the LR images, the reconstructed images obtained by VBA-SR, EGrad-SR and our proposed approach

for Cameraman and Jetplane LR images of SNR = 5, 15, 25, 35 dB. Comparing the LR images (shown

in the top row) and the reconstructed HR images (given in the second, third and the bottom row) in Fig.

1 and Fig. 2, we can see that all the approaches increase the image resolution. Even in highly noisy cases

where SNR = 5 dB, the noise present in LR images is effectively reduced meanwhile the image edges

are not over-smoothed. Moreover, we can see that all the approaches give very similar HR images in

each case, which is coherent with the similar PSNR values achieved by these approaches. Furthermore,

as stated above, all the HR images were obtained with a same value of θ. We can see here that our

approaches work well with this value in all the tested cases.
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(a) (b) (c) (d)

Fig. 1: One of the LR images (top row), HR images obtained by VBA-SR (the second row), EGrad-SR

(the third row), Proposed approach (bottom row) for the Cameraman in the cases where SNR = (a) 5

dB; (b) 15 dB; (c) 25 dB (d) 35 dB. All images are presented in the same range of grayscale.

V. CONCLUSION

In this paper, we proposed an efficient variational Bayesian approximation method based on the

transposition of the memory gradient subspace algorithm into the space of probability density functions.
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(a) (b) (c) (d)

Fig. 2: One of the LR images (top row), HR images obtained by VBA-SR (the second row), EGrad-SR

(the third row), Proposed approach (bottom row) for the Jetplane in the cases when SNR = (a) 5 dB;

(b) 15 dB; (c) 25 dB (d) 35 dB. All images are presented in the same range of grayscale.

This approach is applied to a linear inverse problem where a TV image prior with an approximate partition

function and Jeffrey’s hyperpriors are used, which results in a fully automatic algorithm. We have shown

on a super-resolution problem that the proposed algorithm is much more fast than state of art approaches.
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The reason is that we have integrated the memory gradient subspace optimization method which allows

more flexibility in the choice of directions.
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