Measures of Transverse Paths in Sub-Riemannian Geometry

Abstract : We define a class of lengths of paths in a sub-Riemannian manifold. It includes the length of horizontal paths but also measures the length of transverse paths. It is obtained by integrating an infinitesimal measure which generalizes the norm on the tangent space. This requires the definition and the study of the metric tangent space (in Gromov's sense). As an example, we compute those measures in the case of contact sub-Riemannian manifolds.
Type de document :
Article dans une revue
Journal d'analyse mathématique, Springer, 2003, 91 (1), pp.231-246. <10.1007/BF02788789>
Liste complète des métadonnées

https://hal-ensta.archives-ouvertes.fr/hal-00989831
Contributeur : Aurélien Arnoux <>
Soumis le : lundi 12 mai 2014 - 14:54:03
Dernière modification le : jeudi 5 janvier 2017 - 01:53:22

Identifiants

Collections

Citation

Elisha Falbel, Frédéric Jean. Measures of Transverse Paths in Sub-Riemannian Geometry. Journal d'analyse mathématique, Springer, 2003, 91 (1), pp.231-246. <10.1007/BF02788789>. <hal-00989831>

Partager

Métriques

Consultations de la notice

61