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The Dyck pattern poset∗

Axel Bacher† Antonio Bernini‡ Luca Ferrari‡ Benjamin Gunby§

Renzo Pinzani‡ Julian West¶

Abstract

We introduce the notion of pattern in the context of lattice paths, and investigate it in the
specific case of Dyck paths. Similarly to the case of permutations, the pattern-containment
relation defines a poset structure on the set of all Dyck paths, which we call the Dyck pattern
poset. Given a Dyck path P , we determine a formula for the number of Dyck paths covered
by P , as well as for the number of Dyck paths covering P . We then address some typical
pattern-avoidance issues, enumerating some classes of pattern-avoiding Dyck paths. We also
compute the generating function of Dyck paths avoiding any single pattern in a recursive
fashion, from which we deduce the exact enumeration of such a class of paths. Finally, we
describe the asymptotic behavior of the sequence counting Dyck paths avoiding a generic
pattern, we prove that the Dyck pattern poset is a well-ordering and we propose a list of
open problems.

Proposed running head : The Dyck pattern poset. AMS Classification (2010): 05A15, 05A16, 06A07.

Keywords: Dyck path, pattern, exact enumeration, asymptotic, poset.

1 Introduction

One of the most investigated and fruitful notions in contemporary combinatorics is that of
a pattern. Historically it was first considered for permutations [11], then analogous definitions
were provided in the context of many other structures, such as set partitions [8, 10, 13], words
[2, 3], and trees [5, 7, 12]. Perhaps all of these examples have been motivated or informed by
the more classical notion of graphs and subgraphs. Informally speaking, given a specific class of
combinatorial objects, a pattern can be thought of as an occurrence of a small object inside a
larger one; the word “inside” means that the pattern is suitably embedded into the larger object,
depending on the specific combinatorial class of objects. The main aim of the present work is
to introduce the notion of pattern in the context of lattice paths and to begin its systematic
study in the special case of Dyck paths.

For our purposes, a lattice path is a path in the discrete plane starting at the origin of a fixed
Cartesian coordinate system, ending somewhere on the x-axis, never going below the x-axis and
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using only a prescribed set of steps Γ. We will refer to such paths as Γ-paths. This definition is
extremely restrictive if compared to what is called a lattice path in the literature, but it will be
enough for our purposes. Observe that a Γ-path can be alternatively described as a finite word
on the alphabet Γ obeying certain conditions. Using this language, we say that the length of a
Γ-path is simply the length of the word which encodes such a path. Among the classical classes
of lattice paths, the most common are those using only steps U(p) = (1, 1), D(own) = (1,−1)
and H(orizontal) = (1, 0); with these definitions, Dyck, Motzkin and Schröder paths correspond
respectively to the set of steps {U,D}, {U,H, D} and {U,H2, D}.

Consider the class PΓ of all Γ-paths, for some choice of the set of steps Γ. Given P,Q ∈ PΓ

having length k and n respectively, we say that Q contains (an occurrence of) the pattern P

whenever P occurs as a (non-contiguous) subword of Q. So, for instance, in the class of Dyck
paths, UUDUDDUDUUDD contains the pattern UUDDUD, whereas in the class of Motzkin
paths, UUHDUUDHDDUDHUD contains the pattern UHUDDHUD. When Q does not
contain any occurrence of P we will say that Q avoids P . In the Dyck case, the previously
considered path UUDUDDUDUUDD avoids the pattern UUUUDDDD.

This notion of pattern gives rise to a partial order in a very natural way, by declaring
P ≤ Q when P occurs as a pattern in Q. In the case of Dyck paths, the resulting poset will be
denoted by D. It is immediate to notice that D has a minimum (the empty path), does not have
a maximum, is locally finite and is ranked (the rank of a Dyck path is given by its semilength).
As an example, in Figure 1 we provide the Hasse diagram of an interval in the Dyck pattern
poset.

Figure 1: An interval of rank 3 in the Dyck pattern poset.

Observe that this notion of pattern for paths is very close to the analogous notion for
words (considered, for instance, by Björner in [2], where the author determines the Möbius
function of the associated pattern poset). Formally, instead of considering the set of all words
of the alphabet {U,D}, we restrict ourselves to the set of Dyck words (so what we actually
do is to consider a subposet of Björner’s poset). However, the conditions a word has to obey
in order to belong to this subposet (which translate into the fact of being a Dyck word) make
this subposet highly nontrivial, and fully justify our approach, consisting of the study of its
properties independently of its relationship with the full word pattern poset.
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Our paper is organized as follows. In Section 2 we give two explicit formulas for the number
of paths covering/covered by a given Dyck path in the Dyck pattern poset. Sections 3 and 4
are devoted to the exact enumeration of some classes of Dyck paths avoiding a single pattern.
Our starting results concerns certain types of arbitrarily long patterns; we then find a set of
recursive formulas which allows to automatically determine a closed form for the number of Dyck
paths of a given length avoiding a single Dyck path. Further results not specifically focused on
exact enumeration are contained in Section 5, namely we describe the asymptotic behavior
of the number of Dyck paths avoiding a single pattern. Finally, Section 6 contains the proof
that in the Dyck pattern poset there are no infinite antichains, as well as some conjectures,
both enumerative and structural, suggesting that the Dyck pattern poset deserves to be better
investigated.

Part of the results of the present paper (some of them without proofs) has appeared in the
proceedings of the conference FPSAC 2013 [1].

2 The covering relation in the Dyck pattern poset

In the Dyck pattern poset D, following the usual notation for covering relation, we write
P ≺ Q (Q covers P ) to indicate that P ≤ Q and the rank of P is one less than the rank of Q

(i.e., rank(P ) = rank(Q)− 1). Our first result concerns the enumeration of Dyck paths covered
by a given Dyck path Q. We need some notation before stating it. Let k + 1 be the number of
points of Q lying on the x-axis (call such points p0, p1, . . . , pk). Then Q can be factorized into
k Dyck factors F1, . . . , Fk, each Fi starting at pi−1 and ending at pi. Let ni be the number of
ascents in Fi (an ascent being a consecutive run of U steps; ni also counts both the number
of descents and the number of peaks in Fi, where a peak in a Dyck path consists of a U step
immediately followed by a D step). Moreover, we denote by p(Q) and v(Q) the number of
occurrences in Q of a consecutive factor UDU and DUD, respectively. In the path Q of Figure
2, we have n1 = 2, n2 = 1, n3 = 2, p(Q) = 3, and v(Q) = 2.

F
1

p
0

p
1

F
2

p
2

p
3

F
3

Figure 2: A Dyck path having three factors.

Proposition 2.1 If Q is a Dyck path with k factors F1, . . . , Fk, with Fi having ni ascents, then
the number of Dyck paths covered by Q is given by

∑

1≤i≤j≤k

ninj − p(Q) − v(Q) . (1)

Proof. We proceed by induction on k. If Q is any Dyck path having only one factor (and
so necessarily n1 ascents), then a path P such that P ≺ Q is obtained by choosing (and then
removing) a U step and a D step from an ascent and a descent of Q, respectively. This can be
done in n2

1 different ways. Note that the path P does not depend on which U from a given ascent
is chosen and which D from a given descent is chosen. Moreover, for each UDU occurring in Q,
removing the D step from the UDU and a U step from the ascent either immediately before D
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or immediately after D produces the same path P covered by Q. An analogous argument can be
used with the pattern DUD in place of UDU . Therefore, these paths would be counted twice if
the term n2

1 were not corrected by subtracting both p(Q) and v(Q). This leads to formula (1)
in the case k = 1.

Now suppose that Q̃ is a Dyck path which has k > 1 factors F1, . . . , Fk, each factor Fi

having ni ascents. Let l be the total number of UDU and DUD (i.e. l = p(Q̃) + v(Q̃)) in Q̃.
If a new factor Fk+1 having nk+1 ascents and a total number lk+1 of UDU and DUD factors
is appended to Q̃ (after Fk), then the paths covered by the new path Q can be obtained by
removing a D step and a U step either both belonging to Q̃, or both belonging to Fk+1, or one
belonging to Q̃ and the other one belonging to Fk+1.

We start by supposing that the two factors Fk and Fk+1 are both different from UD. In
the first of the above cases, the number of covered paths is given by formula (1) thanks to our
inductive hypothesis (since the removal of the steps U and D involves only the first k factors
of the Dyck path). The second case is easily dealt with using the induction hypothesis as well,
namely applying the base case (k = 1) to the last factor Fk+1. Finally, concerning the last
case, notice that the step D must be removed from Q̃, and the step U must be removed from
Fk+1, otherwise the resulting path would fall below the x-axis. Then, the D step can be selected
from

∑k
i=1 ni different descents of Q̃, while the U step can be chosen among the steps of the

nk+1 ascents of Fk+1, leading to nk+1 ·
∑k

i=1 ni different paths covered by Q. Summing the
contributions of the three cases considered above, we obtain:

∑

1≤i≤j≤k

ninj − l + n2
k+1 − lk+1 + nk+1

k
∑

i=1

ni

=
∑

1≤i≤j≤k+1

ninj − l − lk+1 . (2)

However, we still have to take into account the cases in which Fk and/or Fk+1 are equal to
UD. If Fk = Fk+1 = UD, then in formula (2) we have to subtract 2 (since we have one more
factor UDU and one more factor DUD than those previously counted). In the remaining cases,
there is only one more factor (either UDU or DUD), thus in formula (2) we have to subtract
1. In all cases, what we get is precisely formula (1). �

In a similar fashion, we are also able to find a formula for the number of all Dyck paths
which cover a given path.

Proposition 2.2 If P is a Dyck path of semilength n with k factors F1, . . . , Fk, with Fi having
semilength fi, then the number of Dyck paths covering P is given by

1 +
∑

i≤j

fifj . (3)

Proof. A path Q covers P if and only if it is obtained from P by suitably inserting an up
step U and a down step D. Thus the set of all Dyck paths covering P can be determined by
choosing, in all possible ways, two positions (inside P ) in which to insert an up step and a down
step. Clearly, in performing these insertions, we must take care not to fall below the x-axis.

Given a Dyck path P , construct each Dyck path Q covering P by adding a U step and a
D step in the rightmost possible places. Concerning the U step, we can place it either at the
end of P or before one of the D steps of P . If we place it at the end of P , then necessarily also
the D step must be placed at the end (after the added U step), which generates only one path
Q covering P . Otherwise, suppose the U step is placed into the i-th factor of P . Then the D
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step must be placed either at the end of P or before a U step in the j-th factor, with j ≥ i,
except of course before the first U step of the i-th factor of P (otherwise we would not get a
Dyck path). Therefore the total number of possibilities is

1 +
∑

i≤j

fifj ,

as desired. �

3 Enumerative results on pattern avoiding Dyck paths

In the present section we will be concerned with the enumeration of some classes of pattern
avoiding Dyck paths. Similarly to what has been done for other combinatorial structures, we are
going to consider classes of Dyck paths avoiding a single pattern, and we will start examining
the cases of simple patterns. Specifically, we will count Dyck paths avoiding any single path
of semilength ≤ 3; each case will arise as a special case of a more general result concerning
a certain class of patterns, except for the pattern UDUUDD, whose enumerative properties
immediately follows from the study of its mirror image UUDDUD.

Given a pattern P , we denote by Dn(P ) the set of all Dyck paths of semilength n avoiding
the pattern P , and by dn(P ) the cardinality of Dn(P ).

3.1 The pattern (UD)k

This is one of the easiest cases.

Proposition 3.1 For any k ∈ N, Q ∈ Dn((UD)k) if and only if Q has at most k − 1 peaks.

Proof. For any positive ai’s and bi’s, a Dyck path Q = Ua1Db1Ua2Db2 · · ·UahDbh contains
the pattern (UD)k if and only if h ≥ k, that is Q has at least k peaks. �

Since it is well known that the number of Dyck paths of semilength n and having k peaks
is given by the Narayana number Nn,k (sequence A001263 in [14]), we have that dn((UD)k) =
∑k−1

i=0 Nn,i (partial sums of Narayana numbers). Thus, in particular:

- dn(UD) = 0;

- dn(UDUD) = 1;

- dn(UDUDUD) = 1 +
(

n
2

)

.

3.2 The pattern U
k−1

DUD
k−1

Let Q be a Dyck path of length 2n and P = Uk−1DUDk−1. Clearly if n < k, then Q avoids
P , and if n = k, then all Dyck paths of length 2n except one (Q itself) avoid Q. Therefore:

• dn(P ) = Cn if n < k, and

• dn(P ) = Cn − 1 if n = k,
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where Cn is the n-th Catalan number.
Now suppose n > k. Denote by A the end point of the (k − 1)-th U step of Q. It is easy to

verify that A belongs to the line r having equation y = −x+2k−2. Denote with B the starting
point of the (k− 1)-th-to-last D step of Q. An analogous computation shows that B belongs to
the line s having equation y = x − (2n − 2k + 2).

Depending on how the two lines r and s intersect, it is convenient to distinguish two cases.

Lemma 3.1 If n ≥ 2k − 3, then
dn(P ) = C2

k−1. (4)

Proof. If 2n−2k +2 ≥ 2k−4 (i.e. n ≥ 2k−3), then r and s intersect at height ≤ 1, hence
xA ≤ xB (where xA and xB denote the abscissas of A and B, respectively). The path Q can be
split into three parts (see Figure 3): a prefix QA from the origin (0, 0) to A, a path X from A

to B, and a suffix QB from B to the last point (2n, 0).

k − 1    D
 steps

k−
 −

1 
U

 st
ep

s

(2n,0)

P

AQ

Q B

X

(2k − 4,0)

r

s

(2k − 2,0)

2n − 2k + 2

A
B

Figure 3: Avoiding Uk−1DUDk−1, with n ≥ 2k − 3

We point out that QA has exactly k − 1 U steps and its last step is a U step. Analogously,
QB has exactly k− 1 D steps and its first step is a D step. Notice that there is a clear bijection
between the set A of Dyck prefixes having k − 1 U steps and ending with a U and the set B of
Dyck suffixes having k − 1 D steps and starting with a D, since each element of B can be read
from right to left thus obtaining an element of A. Moreover, A is in bijection with the set of
Dyck paths of semilength k − 1 (just complete each element of A with the correct sequence of
D steps), hence |A| = Ck−1.

If we require Q to avoid P , then necessarily X = U iDj , for suitable i, j (for, if a valley
DU occurred in X, then Q would contain P since Uk−1 and Dk−1 already occur in QA and
QB, respectively). In other words, A and B can be connected only in one way, using a certain
number (possibly zero) of U steps followed by a certain number (possibly zero) of D steps.
Therefore, a path Q avoiding P is essentially constructed by choosing a prefix QA from A and
a suffix QB from B, hence dn(P ) = C2

k−1, as desired. �

Lemma 3.2 If k + 1 ≤ n < 2k − 3, then

dn(P ) =





n−k+1
∑

j=0

bk−2,j





2

+
∑

j≥2

b2
k−j,n−k+j (5)

Proof. If k+1 ≤ n < 2k−3, then r and s intersect at height > 1. It can be either xA ≤ xB

or xA > xB.
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a) If xA ≤ xB, then we can count all Dyck paths Q avoiding P using an argument analogous
to the previous lemma. However, in this case the set of allowable prefixes of each such
Q is a proper subset of A. More specifically, we have to consider only those for which
xA = k − 1, k, k + 1, . . . , n (see Figure 4). In other words, an allowable prefix has k − 1
U steps and 0, 1, 2, . . . or n − k + 1 D steps. If bi,j denotes the numbers of Dyck prefixes

k 
− 1

 U
 st

ep
s k − 1   D

 steps

P

A

B

X=U  D
i j

Q
B

Q
A

r
s

2n − 2k + 2

(2k − 4,0) (2k − 2,0) (2n,0)

Figure 4: Avoiding Uk−1DUDk−1, with xA ≤ xB

with i U steps and j D steps (i ≥ j), then the contribution to dn(P ) in this case is

d(1)
n (P ) =





n−k+1
∑

j=0

bk−2,j





2

.

The coefficients bi,j are the well-known ballot numbers (sequence A009766 in [14]), whose
first values are reported in Table 1.

b) If xA > xB, then it is easy to see that Q necessarily avoids P , since A clearly occurs after
B, and so there are strictly less than k−1 D steps from A to (2n, 0). Observe that, in this
case, the path Q lies below the profile drawn by the four lines y = x, r, s and y = −x+2n.
In order to count these paths, referring to Figure 5, just split each of them into a prefix
and a suffix of equal length n and call C the point having abscissa n.

P

A

B

C

(n, 2k−2)

(2n,0)

s

r

Figure 5: Avoiding Uk−1DUDk−1, with xA > xB

Since C must lie under the point where r and s intersect, then its ordinate yC equals
−n + 2k − 2− 2t with t ≥ 1 (and also recalling that yC = −n + 2k − 2− 2t ≥ 0). A prefix
whose final point is C has k − j U steps and n− k + j D steps, with j ≥ 2. Since, in this
case, a path Q avoiding P is constructed by gluing a prefix and a suffix chosen among
bk−j,n−k+j possibilities (j ≥ 2), we deduce that the contribution to dn(P ) in this case is:

d(2)
n (P ) =

∑

j≥2

b2
k−j,n−k+j .
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❍
❍

❍
❍

❍❍
i

j
0 1 2 3 4 5 6 7 8 9

0 1
1 1 1
2 1 2 2
3 1 3 5 5
4 1 4 9 14 14
5 1 5 14 28 42 42
6 1 6 20 48 90 132 132
7 1 7 27 75 165 297 429 429
8 1 8 35 110 275 572 1001 1430 1430
9 1 9 44 154 429 1001 2002 3432 4862 4862

Table 1: The sum of the gray entries gives the bold entry in the line below. The sum of the
squares of the bold entries gives an appropriate element of Table 2.

Summing up the two contributions we have obtained in a) and b), we get:

dn(P ) = d(1)
n (P ) + d(2)

n (P )

=





n−k+1
∑

j=0

bk−2,j





2

+
∑

j≥2

b2
k−j,n−k+j .

which is the thesis. �

Notice that formula (5) reduces to the first sum if n ≥ 2k−3, since in that case n−k + j >

k−j, for j ≥ 2. We then have a single formula including both formulas of the two above lemmas:

dn(P ) =





n−k+1
∑

j=0

bk−2,j





2

+
∑

j≥2

b2
k−j,n−k+j , if n ≥ k + 1 . (6)

Formula (6) can be further simplified by recalling a well known recurrence for ballot num-
bers, namely that, when j ≤ i + 1,

bi+1,j =

j
∑

s=0

bi,s.

Therefore, we get the following interesting expression for dn(P ) in terms of sums of squares
of ballot numbers along a skew diagonal (see also Tables 1 and 2):

Proposition 3.2 For n ≥ k + 1,

dn(P ) =

{

C2
k−1 if n ≥ 2k − 1;

∑

j≥1 b2
k−j,n−k+j otherwise.

(7)

Therefore we obtain in particular:

dn(UUDUDD) = 4, when n ≥ 3.
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❍
❍

❍
❍❍

k

n
0 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . .
3 1 1 2 4 4 4 4 4 4 4 4 4 4 4 . . .
4 1 1 2 5 13 25 25 25 25 25 25 25 25 25 . . .
5 1 1 2 5 14 41 106 196 196 196 196 196 196 196 . . .
6 1 1 2 5 14 42 131 392 980 1764 1764 1764 1764 1764 . . .
7 1 1 2 5 14 42 132 428 1380 4068 9864 17424 17424 17424 . . .
8 1 1 2 5 14 42 132 429 1429 4797 15489 44649 105633 184041 . . .
9 1 1 2 5 14 42 132 429 1430 4861 16714 56749 181258 511225 . . .

Table 2: Number of Dyck paths of semilength n avoiding Uk−1DUDk−1. Entries in boldface are
the nontrivial ones (k + 1 ≤ n < 2k − 3).

❍
❍

❍
❍❍

k

n
0 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 . . .
3 1 1 2 4 4 0 0 0 0 0 0 0 0 0 . . .
4 1 1 2 5 13 25 25 0 0 0 0 0 0 0 . . .
5 1 1 2 5 14 41 106 196 196 0 0 0 0 0 . . .
6 1 1 2 5 14 42 131 392 980 1764 1764 0 0 0 . . .
7 1 1 2 5 14 42 132 428 1380 4068 9864 17424 17424 0 . . .
8 1 1 2 5 14 42 132 429 1429 4797 15489 44649 105633 184041 . . .
9 1 1 2 5 14 42 132 429 1430 4861 16714 56749 181258 511225 . . .

Table 3: Number of Dyck paths of semilength n avoiding UkDk. Entries in boldface are the
nontrivial ones (k + 1 ≤ n < 2k − 3).

3.3 The pattern U
k
D

k

The case P = UkDk is very similar to the previous one. We just observe that, when
xA ≤ xB, the two points A and B can be connected only using a sequence of D steps followed
by a sequence of U steps. This is possible only if n ≤ 2k − 2, which means that r and s do not
intersect below the x-axis. Instead, if n ≥ 2k − 1, Q cannot avoid P . Therefore we get (see also
Table 3):

Proposition 3.3 For n ≥ k + 1,

dn(P ) =

{

0 if n ≥ 2k − 1;
∑

j≥1 b2
k−j,n−k+j otherwise.

In particular, we then find:

- dn(UUDD) = 0, when n ≥ 3;

- dn(UUUDDD) = 0, when n ≥ 5.

3.4 The pattern U
k−1

D
k−1

UD

This is by far the most challenging case.
Let Q be a Dyck path of length 2n and P = Uk−1Dk−1UD. If Q avoids P , then there are

two distinct options: either Q avoids Uk−1Dk−1 or Q contains such a pattern. In the first case,
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we already know that dn(Uk−1Dk−1) is eventually equal to zero. So, for the sake of simplicity,
we will just find a formula for dn(P ) when n is sufficiently large, i.e. n ≥ 2k − 3. Therefore, for
the rest of this section, we will suppose that Q contains Uk−1Dk−1.

The (k − 1)-th D step of the first occurrence of Uk−1Dk−1 in Q lies on the line having
equation y = −x + 2n. This is due to the fact that Q has length 2n and there cannot be
any occurrence of UD after the first occurrence of Uk−1Dk−1. The path Q touches the line of
equation y = −x + 2k − 2 for the first time with the end point A of its (k − 1)-th U step. After
that, the path Q must reach the starting point B of the (k − 1)-th D step occurring after A.
Finally, a sequence of consecutive D steps terminates Q (see Figure 6). Therefore, Q can be
split into three parts: the first part, from the beginning to A, is a Dyck prefix having k − 1 U

steps and ending with a U step; the second part, from A to B, is a path using n − k + 1 U

steps and k− 2 D steps; and the third part, from B to the end, is a sequence of D steps (whose
length depends on the coordinates of A). However, both the first and the second part of Q have
to obey some additional constraints.

k 
− 1

 U
 st

ep
s

n−
k+

1 
U

 s
te

ps

k−
2 D

 stepsP

y = − x + 2k − 2

( k−1) − th D step of the first occurrence of P
B

A

y = − x + 2n

Figure 6: A path Q avoiding P = Uk−1Dk−1UD

The height of the point A (where the first part of Q ends) must allow Q to have at least
k− 1 D steps after A. Thus, the height of A plus the number of U steps from A to B minus the
number of D steps from A to B must be greater than or equal to 1 (to ensure that the pattern
Uk−1Dk−1 occurs in Q). Hence, denoting with x the maximum number of D steps which can
occur before A, either x = k − 2 or the following equality must be satisfied:

(k − 1) − x + (n − k + 1) − (k − 2) = 1.

Therefore, x = min{n − k + 1, k − 2}. Observe however that, since we are supposing that
n ≥ 2k − 3, we always have x = k − 2.

Concerning the part of Q between A and B, since we have to use n − k + 1 U steps and
k− 2 D steps, there are

(

n−1
k−2

)

distinct paths connecting A and B. However, some of them must
be discarded, since they fall below the x-axis. In order to count these “bad” paths, we split
each of them into two parts. Namely, if A′ and B′ are the starting and ending points of the
first (necessarily D) step below the x-axis, the part going from A to A′, and the remaining part
(see Fig. 7). It is not too hard to realize that the number of possibilities we have to choose the
first part is given by a ballot number (essentially because, reading the path from right to left,
we have to choose a Dyck prefix from A′ to A), whereas the number of possibilities we have
to choose the second part is given by a binomial coefficient (essentially because, after having
discarded the step starting at A′, we have to choose an unrestricted path from B′ to B). After a
careful inspection, we thus get to the following result for the total number dn(P ) of Dyck paths
avoiding P :
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y = − x + 2k − 2

y = − x + 2n

Figure 7: A forbidden subpath from A to B.

❍
❍

❍
❍

❍❍
k

n
0 1 2 3 4 5 6 7 8 9

1 1 1 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 1
3 1 1 2 4 6 8 10 12 14 16
4 1 1 2 5 13 28 48 73 103 138
5 1 1 2 5 14 41 110 245 450 739
6 1 1 2 5 14 42 131 397 1069 2427

Table 4: Avoiding Uk−1Dk−1UD

Proposition 3.4 For n ≥ 2k − 3,

dn(P ) =

(

n − 1

k − 2

)

Ck−1

−

k−2
∑

s=2

bk−2,s ·

(

s−2
∑

i=0

bk−3−i,s−2−i

(

n − k − s + 3 + 2i

i

)

)

. (8)

Formula (8) specializes to the following expressions for low values of k (see also Table 4):

- when k = 3, dn(P ) = 2n − 2 for n ≥ 3;

- when k = 4, dn(P ) = 5n2−15n+6
2 for n ≥ 5;

- when k = 5, dn(P ) = 14n3−84n2+124n−84
6 for n ≥ 7.

4 On the generating function of Dyck paths avoiding one pat-

tern

The goal of this section is to compute the generating functions of Dyck paths avoiding
a certain pattern P in a recursive fashion. From these generating function, we get the exact
enumeration of these Dyck paths and automatically recover many of the previous results.

Let ∆P (x) be the generating function of Dyck paths avoiding P , where x takes into account
the length rather than the semilength (thus, ∆P (x) is an even power series). We also define
intermediate generating functions: let CP (x, y) be the bivariate generating function of smallest
Dyck prefixes containing the pattern P (i.e., such that no proper prefix contains P ), where x

takes into account the length and y the final height. Note that, for what concerns CP (x, y), the
pattern P can be any Dyck prefix (rather than a Dyck path). Finally, we denote with ǫ the
empty path.
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Theorem 4.1 The generating function CP (x, y) satisfies the following recurrence formulas:

Cǫ(x, y) = 1; (9)

CPU (x, y) =
yCP (x, y) − xCP (x, x)

y − x
xy; (10)

CPD(x, y) =
xy−1

1 − xy
CP (x, y) − xy−1CP (x, 0). (11)

Moreover, the generating function ∆P (x) is given by:

∆ǫ(x) = 0; (12)

∆PU (x) = ∆P (x) + CP (x, x); (13)

∆PD(x) = ∆P (x) + CP (x, 0). (14)

Proof. Let us start with the generating function CP (x, y). If P = ǫ, the only smallest
prefix containing P is the empty path, with generating function 1. For any fixed path P , let
now Q be a smallest Dyck prefix containing P U . Let Q′ be the smallest prefix of Q containing
P and let h be the final height of Q′. The path Q is of the form:

Q = Q′ Di U,

with 0 ≤ i ≤ h. Its final height is h − i + 1. In terms of generating functions, we have:

CPU (x, y) =





∑

h≥0

[yh]CP (x, y)





h
∑

i=0

xi+1yh−i+1,

which boils down to (10).
Similarly, let Q be a smallest Dyck prefix containing P D and let Q′ be its smallest prefix

containing P and let h be the final height of Q′. We have:

Q = Q′ U i D.

If h > 0, we have no restriction on i; however, if h = 0, we must have i > 0. This yields

CPD(x, y) = CP (x, y)
∑

i≥0

(xy)ixy−1 − CP (x, 0)xy−1,

which is equivalent to (11).
Consider now the generating function ∆P (x). As no path avoids the empty pattern, we

have ∆ǫ(x) = 0. Let Q be a Dyck path avoiding P U . We distinguish two cases: either it avoids
P , in which case it is enumerated by ∆P (x), or it contains P . In the latter case, let Q′ be the
smallest prefix of Q containing P . As Q avoids PU , we must have:

Q = Q′ Di,

which means that Q is enumerated by CP (x, x).
Finally, let Q be a path avoiding P D. If Q also avoids P , it is enumerated by ∆P (x); if not,

let Q′ be the smallest prefix containing P . As Q avoids PD, since a Dyck path must end with
a D step, we must have Q = Q′. This means that Q is enumerated by CP (x, 0). This completes
the proof. �

Using this theorem, we can recursively compute the generating function ∆P (x) for any
pattern P . We now show that we can use it to find a formula for the number dP (n) of Dyck
paths avoiding P .
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Corollary 4.1 For any pattern P , the generating function CP (x, y) is of the form:

CP (x, y) =
A(x, y)

(1 − x2)i(1 − xy)j
, (15)

where A(x, y) is a polynomial and i and j are nonnegative integers. Moreover, the generating
function ∆P (x) has the form:

∆P (x) =
B(x)

(1 − x2)k
, (16)

where B(x) is an even polynomial and k a nonnegative integer.

Proof. It is clear from Theorem 4.1 that the generating functions CP (x, y) and ∆P (x) are
rational.

Consider the denominator of CP (x, y). Using an inductive argument, it is immediate to see,
from Equations (10) and (11), that the denominator of the resulting generating functions can
contain in general the following factors: 1− x2, 1− xy, y − x, y. However, the two factors y − x

and y must be cancelled by the numerator, since CP (x, y) is well defined as a formal power
series in x and y, whence we get an expression as in (15).

An analogous argument shows that the denominator of ∆p(x) can contain only the factor
1− x2, thus obtaining an expression as in (16). Moreover, since ∆P (x) counts Dyck paths, it is
an even power series, which means that B(x) is an even polynomial. �

Equation (16) enables us to compute the number dP (n) for sufficiently large values of n.
Writing B(x) = B0 + B1x

2 + · · · + Bdx
2d,we have:

dP (n) =

d
∑

i=0

Bi

(

n − i + k − 1

k − 1

)

,

which shows that dP (n) is always given by a polynomial function of n for large values of n.
Finally, we note that it is easy to write a computer program that computes the generating

function ∆P (x) from the formulas of Theorem 4.1. From this generating function, finding the
polynomial giving dP (n) is also automatic, enabling us to automatically recover many of the
previous exact enumeration results.

5 On the asymptotics of pattern avoiding Dyck paths

In the present section we describe the asymptotic behavior of the integer sequences counting
Dyck paths avoiding a single path. Unlike what happens for permutations, we will be able to
prove a sort of “master theorem”, meaning that all the sequences which count Dyck paths
avoiding a single pattern P have the same asymptotic behavior (with some parameters, such as
the leading coefficient, depending on the specific path P ). Our result has a slightly more general
scope, since it concerns patterns which are unrestricted words on the alphabet {U,D} rather
than just Dyck words. We also remark that the coefficient αP appearing in the statement of the
next theorem is different from the conjectured value in [1].

Before stating the theorem, we need to give one technical definition.
Given any two unrestricted paths P and Q on {U,D} having the same length, we say that

Q is strictly higher than P whenever P lies below Q and the only contact points are the starting
and ending points of the two paths. Note that, if Q is strictly higher than P , then necessarily
Q starts with U and P starts with D, and analogously Q ends with D and P ends with U .
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Theorem 5.1 Let P be a word of {U,D}∗ of the form P = Ua P ′ Db, such that either P ′ is
empty or it starts with a D, ends with a U and has c up steps and d down steps (note that P

does not have to be a Dyck path). Let k = c + d− 2 and let αP be the number of paths with c up
steps and d down steps strictly higher than P ′. The number dn(P ) of Dyck paths of length 2n

avoiding P is asymptotic to:

dn(P ) ∼
Ca Cb αP

k!
nk.

Proof. We establish the result by induction on k. We first show the result for k = −2, i.e.
P = Ua Db. In this case, looking at the case P = UkDk from the previous section and using a
completely analogous argument, we know that there are finitely many P -avoiding Dyck paths,
which means that dn(P ) is asymptotic to zero; since αP is zero if P ′ is the empty path, the
theorem holds. Moreover, notice that the hypotheses imply that the case k = −1 can never
happen. Finally, the case k = 0 is again similar to the case Uk−1 D U Dk−1 treated in the
previous section; in this case we have αP = 1, and it is easy to see that dn(P ) ∼ CaCb, as
predicted by our formula.

Assume now that k > 0. Let P− be the pattern P with the final U step of P ′ deleted.
The induction hypothesis entails that the number of Dyck paths of semilength n avoiding P−

is o(nk); therefore, we can restrict ourselves to the paths that avoid P but not P−.
Let Q be a Dyck path avoiding P but containing P−. Let S be the smallest prefix of Q

containing the first a up steps and let T be the smallest suffix containing the last b down steps.
We have already shown in the previous section that there are Ca possible choices for S and Cb

possible choices for T . Moreover, since S and T have length at most 2a and 2b, respectively,
they do not intersect for sufficiently large n.

Now, write P ′ = p′1 · · · p
′
k+2 (i.e. p′i is the i-th step of P ′) and let Qi be, for 0 ≤ i ≤ k + 1,

the smallest prefix of Q containing the pattern Ua p′1 · · · p
′
i. By definition of S, we have:

Q0 = S. (17)

Moreover, for 1 ≤ i ≤ k + 1, the word Qi is equal to Qi−1 extended to the next occurrence of
the letter p′i. In other words, there exists a nonnegative integer ℓi such that:

Qi = Qi−1

{

DℓiU if p′i = U ;

U ℓiD if p′i = D.
(18)

Finally, since Q does not contain P and since p′k+2 = U , there cannot be a U step between the
end of the prefix Qk+1 and the start of the suffix T . Therefore, we have:

Q = Qk+1D
ℓk+2 T. (19)

Let m1, . . . ,mc and n1, . . . , nd be the sublists of ℓ1, . . . , ℓk+2 corresponding to the indices i such
that p′i = U and p′i = D, respectively. Let m̃1, . . . , m̃c and ñ1, . . . , ñd be their partial sums:

m̃i = m1 + · · · + mi, ñi = n1 + · · · + ni.

Equations (17), (18) and (19) show that Q is entirely determined by the words S and T and
the values m1, . . . ,mc and n1, . . . , nd (or, equivalently, by their partial sums). Moreover, since
Q has n up steps and n down steps, the complete sums m̃c and ñd are fixed; specifically:

m̃c = n − |S|D − b − d; ñd = n − a − |T |U − c + 1.

Note that both these values are asymptotic to n.
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Let X be the set {m̃1, . . . , m̃c−1, ñ1, . . . , ñd−1}. As we are dealing with asymptotics, we
assume that no two elements of X are apart by less than a + b + c + d (i.e. the length of P ),
since the number of possible sets X where this is not the case is of an order less than nk. Let R

be the path U r1 · · · rk D, with ri = D if the i-th element of X in ascending order is one of the
m̃j ’s and U if it is one of the ñj ’s. The path Q is thus determined by the paths S and T , the
set X , and the path R.

We now prove that Q is a Dyck path if and only if the path R is strictly higher than P ′.
First, we note that Q is a Dyck path if and only if the prefixes Q1, . . . , Qk+1 end at a positive
height (the local minima of Q not belonging to S occur only at these points). Let 1 ≤ i ≤ k + 1
and assume that the first i steps of P ′ consist of x up steps and y down steps. From the equations
(17) and (18), we get the number of U and D steps in Qi:

|Qi|U = a + x + ñy; |Qi|D = |S|D + y + m̃x.

Since m̃x and ñy are more than the length of P apart, the condition that Qi ends at a positive
height is equivalent to ñy > m̃x. This, in turn, is equivalent to say that there are at least x up
steps in the word r1 · · · ri−1, that is at least x + 1 up steps in the first i letters of R. Therefore,
Q is a Dyck path if and only if R is strictly higher than P ′.

Summing up, we can thus assert that the path Q is determined by:

• the paths S and T (there are Ca and Cb possible choices, respectively);

• the set X (the number of choices is asymptotic to
(

n
k

)

∼ nk

k! );

• the path R (there are αP choices, since a path strictly higher than P ′ must start with a U

and end with a D).

This gives the announced estimate. �

6 Conclusions and further works

In the present paper we have initiated the study of a new poset, the Dyck pattern poset,
whose introduction is motivated by trying to find a correct analog of the permutation pattern
poset in the case of Dyck paths. However we have only scratched the surface of this subject, and
many things still remain to be done. For instance, the poset structure of the Dyck pattern poset
certainly needs to be better understood. Our final result is a first step towards this direction.

Theorem 6.1 The Dyck pattern poset is a partial well order, i.e. it contains neither an infinite
properly decreasing sequence nor an infinite antichain.

Proof. This is a consequence of a theorem by Higman [9]. In fact, such a theorem implies
the following statement (see for instance [4]): the subword order over a finitely generated free
monoid is a partial well order. Since the Dyck pattern containment order is a subposet of the
subword order on a two-letter alphabet, the conclusion immediately follows. �

We close our work with a (not at all exhaustive) list of open problems, concerning both
enumerative and order-theoretical issues. Part of the items of the list have been suggested by
referees, who are warmly thanked for this.

• What about the enumeration of Dyck paths avoiding two or more patterns?
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• Similarly to what has been done for permutations, we may declare two Dyck paths P and
Q to be Wilf-equivalent whenever dn(P ) = dn(Q), for all n. The only case of a trivial Wilf-
equivalence comes from taking the mirror image of a Dyck path. Are there any nontrivial
examples of Wilf-equivalence relations?

• Dyck paths are members of the Catalan family, and so there is plenty of bijections be-
tween them and other important combinatorial structures. Can we transport the pattern
containment order on Dyck paths along some of these bijections in order to obtain in-
teresting order structures on different combinatorial objects? For instance, in the already
mentioned paper [12], Rowland defines (consecutive) patterns on binary trees, and he
explores some similarities between his notion and the notion of factor (i.e. consecutive
subword) on Dyck words. Since our patterns are not consecutive, there seems to be no
direct connection with the work of Rowland. It would probably be more interesting to
investigate possible analogies with the notion of (non consecutive) pattern on binary trees
provided in [5].

• What is the Möbius function of the Dyck pattern poset (from the bottom element to a
given path? Of a generic interval?)?

• How many (saturated) chains are there up to a given path? Or in a general interval? Can
we say anything more precise on the order structure of intervals (for instance, is it possible
to determine when they are lattices?)?

• In the same spirit of the present paper, one can address analogous problems on the posets
defined by different types of paths. What immediately comes into mind is to investigate
properties of what can be called the Motzkin pattern poset and the Schröder pattern
poset. A first look at these two cases shows that they actually constitute only one more
case, in the sense that the Motzkin pattern poset and the Schröder pattern poset are
isomorphic.
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