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Some reflections on mathematics and its relation

to computer science

Liesbeth De Mol
∗

“No paradigm should ever be allowed to dominate education”

Benôıt Mandelbrot, 2002

In [24, p. 325] Knuth recounts the following story:

[At some time,] I wondered how to calculate the greatest common
right divisor of two given matrices. A few days later I happened
to be attending a conference where I met the mathematician H.B.
Mann, and I felt that he would know how to solve this problem. I
asked him, and he did indeed know the correct answer; but it was a
mathematician’s answer, not a computer scientist’s answer! He said,
“Let R be the ring of n × n integer matrices; in this ring, the sum
of two principal left ideals is principal, so let D be such that

RA + RB = RD

Then D is the greatest common right divisor of A and B.” This
formula is certainly the simplest possible one, we need only eight
symbols to write it down; and it relies on rigorously-proved theorems
of mathematical algebra. But from the standpoint of a computer
scientist, it is worthless

Knuth used this story to explain how he considered mathematics and computer
science to be distinct from each other: it illustrates very clearly the different
ways by which mathematicians and computer scientists approach a given prob-
lem. Despite these differences in thinking, it is not uncommon for computer
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scientists to stress also the similarities between their discipline and mathemat-
ics. For instance, Dijkstra has argued that the methods of programming are
mathematical in nature [15] and Wegner has emphasized on several occasions
that computer science is “in part a mathematical discipline” [39].

These reflections on the relation between mathematics and computer science
usually take place in a computer science context since, today, most mathemati-
cians do not really feel the need to define their discipline with respect to another.
However, since the significance of the computer is increasing within mathemat-
ics, some mathematicians have started to reflect on this issue by considering the
question how mathematics is being affected by the use of the computer. Most
well-known at this time is probably the work by mathematicians like Borwein
who have extensive experience with so-called computer-assisted experimental
mathematics and who has argued on multiple occasions that “[t]he computer is
changing the way we are doing mathematics”.

The aim of this paper is to revisit the historically-developed question on the
nature of the relation between mathematics and computer science by (mainly)
focusing on mathematical practices that involve the use of the computer. This
will allow me to highlight some aspects of mathematics that are being affected
by what I like to call a computer-science way of thinking. By doing so I not
only want to place this “way of thinking” into a broader historical context of
mathematics but also offer some reflections on the computer science discipline
itself.

Considering this relation between mathematics and computer science, it is
unavoidable to represent things as if they were black and white whereas in real
practice this is only rarely ever true. It is for this reason that I would like to
recall here, as a kind of appeal to the reader, the words by Hamming who stated
during his Turing award lecture [22]:

We live in a world of shades of grey, but in order to argue, indeed
even to think it is often necessary to dichotomize and say “black”
or “white”. Of course in doing so we do violence to the truth, but
there seems to be no other way to proceed. I trust, therefore, that
you will take many of my small distinctions in this light – in a sense,
I do not believe them myself, but there seems to be no other simple
way of discussing the matter.”

1 Mathematical logic, the computer and math-
ematics

Several decades before computer science was recognized as a discipline, mathe-
matics was already inexorably tied up with what were to become some of the
foundational sources for computer science. The papers by mathematicians like
Church, Curry, Gödel, Hilbert, Kleene, Post and Turing are nowadays con-
sidered as fundamental sources of (theoretical) computer science but resulted
in a context of reflections on the foundations of mathematics. Hilbert’s for-
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malistic and finitist program was one important school of thought within this
foundational context.1 He understood formalism and the method of finite ax-
iomatization as a way to tackle several foundational problems of mathematics,
viz., problems about all possible assertions in mathematics, most notably, con-
sistency. He believed that by addressing such problems through finitist and
formalist means, mathematics could be provided with a firm foundation (See
for instance [32]).

One important conviction of Hilbert was that within mathematics, there is
no Ignorabimus. Indeed, as Hilbert famously stated during a lecture in 1930 in
Königsberg2 (translated from [23, p. 963]):3

The true reason why Comte could not find an unsolvable problem,
lies in my opinion in the assertion that there exists no unsolvable
problem. Instead of the stupid Ignorabimus, our solution should be:
We must know. We shall know.

Others however were less positive about the prospect of having a mechanical
solution to decide any mathematical proposition. As Von Neumann stated in
1927 (quoted from [17]):

[T]he contemporary practice of mathematics, using as it does heuris-
tic methods, only makes sense because of this undecidability. When
the undecidability fails then mathematics, as we now understand it,
will cease to exist; in its place there will be a mechanical prescription
for deciding whether a given sentence is provable or not.

As we all know now, Hilbert was in fact too optimistic: in 1930-31 Gödel
proved the limitations of the method of finite axiomatization and formalization
through his incompleteness theorems and in 1936 Church and Turing indepen-
dently proved the undecidability of the decision problem for first-order logic.4

These results are often interpreted as the death-knell to Hilbert’s finitist and
formalist program. They certainly were for his dream of a mathematics without
Ignorabimus!

Ironically, it were exactly the different formalist devices and techniques used
and/or developed as tools to obtain such impossibility results, that would turn
out to be very useful instruments for developing (some of) the theoretical foun-
dations of and tools for the machine that can be seen as thé formalist device
per se, viz. the computer. The computer is not only finite per definition but its
actions are those of the cliché formalist practice, viz. the blind manipulation
of meaningless symbols according to some rules. It was exactly for this reason

1One other such school is Brouwer’s intuitionism which today surely also has an important
impact on computer science by means of constructive type theory.

2Ironically, Gödel would announce his incompleteness results at the same meeting!
3Hilbert repeated his belief in the non-existence of Ignorabimus in mathematics on several

occasions.
4It is less well-known that Emil Post had already obtained incompleteness and undecid-

ability results in the early 20s in the context of so-called normal systems. These results were
later published as [35].
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that people like Dijkstra made a plea on multiple occasions for the significance
of formalism in the context of computer science [16]:

The manipulation of uninterpreted formulae is [...] a most famil-
iar operation for the computing scientist: it is the one and only
operation computers are very good at. [...] The manipulation of
uninterpreted formulae requires unambiguous formalisms [...] Our
disappointing experiences with formality should not be interpreted
as something being wrong with formality; the experiences were dis-
appointing because we were incompetent amateurs. But this has
been changed by our exposure to computing

Today, the idea to use formalist techniques as a tool has become part of the stan-
dard practice within computer science. A leading thought is that of controlling
problems of unreliability, unpredictability and complexity which frequently oc-
cur in the context of computing and is rooted in a belief that, to quote Dijkstra
again, “[m]astery of the reaction of the computer must not only be a theoretical
possibility but a real, practical one” [14]. As such, formal verification, denota-
tional semantics, Chomsky grammars etc are today used within (the develop-
ment of) programming languages and compilers in order to deal with problems
of error, non-termination, security, etc. Also within mathematics, this formal
approach is applied: proof assistants like Coq, which help to formally specify
and verify mathematical proofs, have been used or are being used to formalize
contested mathematical results, like the four-color theorem or the sphere pack-
ing problem. Such formalized proofs allow to control and verify that the steps
taken by the machine are correctly executed and indeed lead to a given theorem.

However, such practical realizations of formalism(s) are just one aspect of
the computer and its surrounding practices. There is also a “non-rigorous”
side which relies on experimentation, statistics, etc. to deal with problems of
unpredictability, unreliability and complexity on the level of hardware, software,
the humans that rely on it and the problems that are studied with it. For
instance, in compiler design, experiments have been executed to determine the
optimal size of a hash table; within hardware design statistical methods are used
to regulate the cache memory; during programming, the debugging and testing
of code is often preferred over formal verification, etc. The interplay between
the different levels involved in computing is often too complex to permit for a
feasible formal method and is thus bound to escape its formal control (practically
or theoretically speaking). This more “ugly” side of computing, is, in a certain
sense, more in line with von Neumann’s preference for a mathematical practice
which relies on heuristics.

It is exactly within this historically developed mathematical practice that
we find another fundamental connection between mathematics and computer
science, viz. computations and algorithms as the means to execute them. In-
deed, algorithms and computations have always been a part of mathematics.
However, this significance of computation and algorithms within mathematics,
evident though it may seem from our contemporary perspective, has not always
been properly acknowledged. Indeed, many of us have been educated with a
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mathematics that is more about abstract and general structures and theories
than about concretely computed objects. The reason for this is that for a long
time, a majority of mathematicians simply preferred general and abstract re-
sults over particular computation-based results.5 As is suggested in [10], the
separation between “pure” mathematics, on the one hand, and computation-
intensive mathematics on the other, became sharper over the course of the 19th
century and the beginning of the 20th century. Interestingly enough, Hilbert
played an important role in this trend of treating “computation” rather pejora-
tively: in an influential report on algebraic number theory, known as Zahlbericht
and published in 1897, Hilbert favors a more conceptual approach over a more
algorithmic approach and certainly preferred “pure” ideas over computation
(Quoted from [10]):

I have tried to avoid Kummer’s elaborate computational machinery,
so that here too Riemann’s principle may be realized and the proof
completed not by computations but purely by ideas

This idea to obtain results purely by ideas rather than “computational machin-
ery” is still quite popular within mathematics. However, with the rise of the
computer one also sees a slow renaissance of computations and algorithms: so-
called “experimental” or “explorative” mathematics is becoming more popular,
curricula no longer shy away from discrete mathematics and a growing number
of mathematicians is focusing on mathematics of computation. Interestingly
enough, it is exactly this “style” of mathematics that von Neumann, who him-
self was for a long time a clear supporter of the formalist school of thought (See
e.g. [38]), promoted and practiced in the last 10 to 15 years of his life, viz.
a mathematics that is rooted in computational results. In fact, von Neumann
understood this possibility which the new computing machines were offering
to the mathematician as a way to escape from a mathematics “in danger of
degeneration [after] much “abstract inbreeding” [36].

As becomes clear through this account, the computer and with it, computer
science, incarnates (at least) two different “styles” or “approaches”: on one
side of the spectrum one finds a more Hilbertian style which we can associate
with abstract, elegant, rigorous and formal approaches on computation, on the
other side, we find a late-von Neumann style which is usually considered more
ugly, computation-intensive and more experimental. Evidently, in the context of
computer science, both approaches are strongly connected through the computer
and its computations. As such, they cannot be strictly separated from one
another. Both can also be traced within the history of mathematics, even though
the first seems to express the current more dominant view on mathematics.

Today, a growing community of mathematicians is embracing the computer
to advance their work and, with it, the so-conceived less elegant style of doing
mathematics. Indeed, despite the fact that the computer is, from a certain

5This does not necessarily mean that for some period in the history of mathematics, com-
putations and algorithms were no longer used or developed. Rather it means that they were
not explicitly a part of the general mathematical discourse.
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point of view, a formalist device, its effect on mathematics proper6 apparently
lies exactly in the opposite of being formal. So what exactly is it with the
computer which encourages this style of mathematics and how does it relate to
more formalist approaches within computer science? More generally, how is the
computer affecting mathematics?

2 A number-theorist’s point of view

What is the impact of the computer on mathematics? An important source
of inspiration for my own work on this question is Derrick H. Lehmer: he was
one of the first mathematicians, a number theorist, to use a computer for doing
mathematics and he has written on several occasions on the potential of exten-
sive computation for mathematics. He identified two schools of thought within
mathematics [31, p. 745]:

The most popular school now-a-days favors the extension of exist-
ing methods of proof to more general situations. This procedure
tends to weaken hypothesis rather than to strengthen conclusions.
It favors the proliferation of existence theorems and is psycholog-
ically comforting in that one is less likely to run across theorems
one cannot prove. Under this regime mathematics would become
an expanding universe of generality and abstraction, spreading out
over a multi-dimensional featureless landscape in which every stone
becomes a nugget by definition. Fortunately, there is a second school
of thought. This school favors exploration [m.i.] as a means of dis-
covery. [B]y more or less elaborate expeditions into the dark math-
ematical world one sometimes glimpses outlines of what appear to
be mountains and one tries to beat a new path. [N]ew methods,
not old ones are needed, but are wanting. Besides the frequent lack
of success, the exploration procedure has other difficulties. One of
these is distraction. One can find a small world of its own under
every overturned stone.

Lehmer clearly had a preference for the more “experimental” school of thought:
having been raised by Derrick N. Lehmer, also a number theorist and well-known
table-maker of prime numbers and factors, he was convinced of the experimental
nature of mathematics and especially number theory. As he explains himself:
“My father did many things to make me realize at an early age that mathematics,
and especially number theory, is an experimental science” Such experimental
approach usually requires exploration and hence also something to explore. It
is thus not surprising that Lehmer – and with him several other mathematicians
– regard(ed) the computer as the perfect partner to support the “exploratory-
minded”. Indeed, the increase of “several orders of magnitude” in speed and
memory combined with the capability of the machine to deal with combinatorial

6Viz., not a mathematically-oriented computer science
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complexities on the executional level of a program, makes it possible “to explore
the terrain that has been staked out so freely and that something worth proving
will be discovered in the rapidly expanding universe of mathematics” [30, p. 146].

But what kind of mathematics is such “explorative” computer-assisted math-
ematics? Let us first look at a simple example and then relate it to Lehmer’s
view on this. The example comes from the early history of computer-assisted
mathematics and concerns the study of the decimal expansion of π and e on
ENIAC, one of the first electronic and (externally) programmable machines.7 It
is rather well-known that one of the applications of ENIAC was the computation
of multiplication rates of neutrons in fission devices to estimate the size of the
device for triggering fusion in an H-bomb. One of the people involved with this
project was John von Neumann. He was convinced that a more experimental
approach was the most suitable for studying this problem and it was decided
to let ENIAC “numerically simulate”, amongst others, the multiplication rates.
It was in this context that the now so widely used but rarely questioned Monte
Carlo method was introduced by Ulam. Of course, in order to compute with the
Monte Carlo method one needs a source of random numbers. The most obvious
method at the time was to use numbers generated by some other device (e.g.
a roulette wheel) but, since electronic memory was limited at the time, these
numbers had to be fed mechanically to the machine and significantly slowed
down the computational process. Von Neumann and others started to reflect
on the possibility of letting the machine generate its own random numbers re-
sulting in the construction of so-called pseudo-random generators. However,
how should one construct an algorithm for generating random numbers? Isn’t
it paradoxical to generate randomness through deterministic procedures? It is
against this background that one should understand the computation of 2,000
digits of π and e by ENIAC: the aim was to investigate the statistical distri-
bution of these numbers.8 ENIAC was used to compute these digits and then
a team of human computers was used to perform the statistical analysis. Also
other methods were studied, including von Neumann’s middle square method9 –
which was eventually used – and the quadratic iterator (xi = ax(1xi−1)) which
is now known as one of the paradigmatic cases of chaotic non-linear equations.

This example is a very simple but clear example of explorative mathematics:
not only because it explicitly concerns the exploration of the digits of π and e but
also because of the wider background: the search and study of pseudo-random
generators by exploring several possible instances. This act of exploration as-
sumes several other activities. Amongst others, it necessitates the development

7ENIAC in its initial form was not a stored-program computer. Instead one had to manu-
ally wire the machine for each computation. Nonetheless, it was Turing complete in the same
sense as modern machines are, viz., making abstraction from its memory limitations, it could
simulate any Turing machine (amongst others, it had a conditional). For a detailed example
of a program that was actually ran on ENIAC see [6].

8The exact nature of the distribution of these numbers is still unknown today even though
it has been surmised more than once that they are normal.

9This method is known to be a very bad random generator in general. It functions as
follows: pick a number with n digits, square it, resulting in a number of 2n digits, take its n

middle digits, square it, etc.
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of several special techniques: the development or selection of feasible approxi-
mating iterative algorithms that are fitted to the digital ENIAC; techniques to
check for possible errors in the computation; etc.

This type of study of the decimal expansion of πand e was not new but
in fact fits into a wider computational and explorative tradition: long before
ENIAC, expansions of π and e were computed for several different reasons – as
an exploration or test of good approximation algorithms, as a study of whether
π is rational are not, etc10 In other words, even though the local context changes
greatly, there is an almost natural bond between this type of explorative mathe-
matics and extensive computation. Since the electronic computer is the machine
which opens up the path of extensive computation, its usage in such explorative
contexts is certainly not surprising. However, by using the computer, the mathe-
matician also engages with a particular type of thinking summarized by Lehmer
as follows [31]:

I should like to speculate briefly on the overall impact of mechaniza-
tion upon mathematics of the not too distant future. Mechaniza-
tion tends to emphasize practice rather than theory, deeds rather
than words, explicit answers rather than existence statements, def-
initions that are formalized rather than behavioristic, local rather
than global phenomena, the limited rather than the infinite, the
concrete rather than the abstract, and one could almost say, the sci-
entific rather than the artistic [...] The computer is the instrument
of our observatory, our window to the hard facts of the world of
mathematics.

If one were to differentiates computer science from mathematics, the finite vs.
the infinite, the concrete vs. the more abstract, etc are indeed the kind of typical
differences one immediately comes up with. Even though abstraction from the
machine, the development of formal and uniform methods and infinite models
are a part of the usual practice in computer science, the object remains limited,
discrete, local, concrete and practical. It is perhaps for this reason that, as
Knuth explains, computer scientists are more familiar with non-uniformity and
case-by-case analyses [27]:

If I had to put my finger on the greatest difference between mathe-
maticians and computer scientists, I would say that mathematicians
have a strong preference for non-uniform rules, coupled with a strong
dislike for case-by-case analysis; computer scientists, by contrast, are
comfortable and fluent with highly non-uniform structures (like the
different operations performed by real computers, or like the various
steps in long an complex algorithms).

It is also this type of thinking that fits well with exploration: one needs to define
local methods or algorithms that work in the particular context, the methods

10It was only in the 18th century that Legendre and Lambert proved the irrationality of π
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need to be finite (one cannot “explore” the infinite as such, only its finite ap-
proximations) and one often needs to proceed on a case-by-case basis. In other
words, what I claim here and what Lehmer claims is that some of the typical
features of what one could tentatively call a computer science way of thinking
has a common basis with that fraction of the mathematical discourse which is
usually associated with exploration and computation. It is thus not surprising
that, in view of a supposed increasing significance of the computer, Lehmer
makes the following two possible predictions about the future of mathematics
[31]:

It would be a pleasure to predict that, as time goes on, the use of
the instrument will become widespread and the nature of mathe-
matics will slowly change from the dangerously unstable fluid art
that it is apparently approaching today to a more and more struc-
tured and explicit science. There is an alternate prediction. Already
we see, instead, a splitting from mathematics of a new branch com-
monly called computer science, which includes enough technology
to frighten away your topologist or functional analyst. Soon disci-
plinary fences will be erected. It has been said that the invention
of photography relieved the graphic artist of his obligation to depict
nature and drove him into impressionism and finally to abstraction.
This, it seems to me, is apt to be also the future of mathematics.

It is impossible at this point in history to verify which of these two predictions
is the most correct one – time will have to tell. However, what we can do is
to partially verify the current tendencies within mathematics with respect to
computing and exploration.

3 The impact of the computer on mathematics:

some quantitative results

In order to find at least a heuristic guide to trace the impact the computer is
having on mathematics, I studied the quantitative impact of the computer on
mathematics.The method consists in measuring the frequency by which partic-
ular terms are being used within the mathematics discipline as represented in
databases such as MathSciNet and Zentralblatt. This study is not completed
yet, but some initial results at least give some indications of this overall im-
pact. This far, I focused on MathSciNet and three groups/clusters of terms:
Group I consists of the words: comput∗, calcula∗, machine∗; group II consists
of: experiment∗, heurist∗, conject∗, explor∗, inspect∗ and, finally, group III con-
sists of: Algorith*, program∗, automat∗, digital∗, simulation∗. Fig. 1–3 show
a plot of the evolution of the frequency of these three groups of terms as used
within title or review text of items listed in MathSciNet between 1940–2010.
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Figure 1: Evolution of the frequency of the terms comput∗, calcula∗, machine∗
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Figure 2: Evolution of the frequency of the terms experiment∗, heurist∗,
conject∗, explor∗, inspect∗ in MathSciNet 1940–2010

As is clear from these plots, the significance of these three groups increases
as a function of time: by 2010, almost 10% of all items listed in MathSciNet
explicitly refer to terms that are connected to computers and computing in
title or review text. Also the usage of terms that are often associated with
exploration, terms such as experiment, conjecture, etc, show a steady increase
with about 7% in 2010. But most interestingly is the evolution of group III with
no less than +/- 13% of the publications included in MathSciNet containing
one of the terms of group III in its title or abstract by 2010. A more detailed
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Figure 3: Evolution of the frequency of the terms Algorith∗, program∗,
automat∗, digital∗, simulation∗ in MathSciNet 1940–2010

analysis of the results also shows that within each of the three groups there
are always one or two terms that take up most of the percentages. In group
I, the terms starting with comput∗ and calcula∗ are the most dominant, with
comput∗ steadily taking over from calcula∗. For group II, the dominant terms
are conjecture∗ and experiment∗. Finally, for group II, it are algorith∗ and
program∗ that are very dominant (by 2010, they take up about 9%) though one
can observe a steady increase also in the usage of simulation∗ starting around
1980.

So what do these results indicate? Even though further analysis is required
combined with an extension to other databases, the results at the very least
indicate that one cannot neglect the impact of the computer on mathematics
by arguing that there is a neglectable fraction of mathematicians interested in
computing: both groups I and III, which concern a terminology that is imme-
diately related to computer science, show a significant increase since the early
years of digital general-purpose computing. This increase cannot be explained
by the development of the computer science discipline alone: a more detailed
study of the distribution of group I over the disciplines, using the MSC 2010
classification of disciplines, shows that for the computer science related disci-
plines like MSC 65 (Numerical Analysis) or MSC 68 (computer science) there
is in fact a decrease in the significance of Group I which starts already around
1950 and then stabilizes around 1970. This decrease can be explained by a
complementary increase in the usage of the terms algorith∗ and program∗ as is
shown in Fig. 4. Whereas the results for Groups I and III are explicitly related
to the impact of the computer on mathematics, the results for Group II are
not. Nonetheless it cannot be neglected that the usage of terms associated with
“experimental” mathematics shows a steady increase which parallels the one for
Group I.
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These results are what they are: a mere quantitative argument showing that
there is a significant impact of the computer on mathematics. For now they do
serve the purpose of testing Lehmer’s two alternative predictions in our time:
even though it is indeed true that, in the meantime, disciplinary fences have
been built there is a clear indication that computation, calculation, algorithms,
programs, conjectures and experimentation have become much more important
over the years also within mathematics. However, these quantitative results
do not allow us to directly tackle the question of the qualitative impact of the
computer on mathematics but can at best serve as a heuristic guide to detect
more carefully the impact of the computer on mathematics.

4 Computer-assisted explorative mathematics:

Characteristics and problems

How is the computer changing mathematics, if at all? This far I have looked at
this question mostly from the perspective of mathematics itself rather than from
the computer, focusing first on the particular views of Derrick H. Lehmer and
then at some more global developments we can detect within mathematics. But
what is it exactly that the computer brings to mathematics besides extensive
computational results to be explored? What particular characteristics are there
to the computer that help to understand or clarify its (potential) effect on
mathematics? In [13] I discuss three features which I consider as characteristic
to computer-assisted explorative mathematics: human-computer interaction;
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the significance of time and processes and the internalization of mathematics
into the machine.

4.1 Human-computer interaction

If there is one characteristic which is typical of computer-assisted explorative
mathematics, it is the interaction with the computer. Of course, the history
of mathematics is full of interactions between mathematicians and non-human
instruments. The most frequently used is the pencil-and-paper method: one
writes and develops a notation in order to develop some technique, in order to
communicate a result, in order to make a computation etc. This writing act
always involves a “coding” practice – the use of symbols, of drawings, of abbre-
viations etc – which is historically determined and depends on the reason(s) why
one is using paper and pen. Also within computer-assisted explorative math-
ematics coding practices are involved. However, there is one major difference:
whereas in the former case, the interpreter is always a human, the interpreter
in the latter case is a non-human, viz., the computer. It is exactly this dif-
ference which affects the coding practice and hence also the interaction. Most
importantly, one is in need of a complex of interfaces – programming interfaces
and output interfaces – which are used as communication devices in between
the computer and the human. This requires new specialized kinds of knowledge
and skills which take into account the fact that one is communicating with a
non-human. First of all, one needs (a) suitable “language(s)” for the commu-
nication. It is exactly for this reason that we have seen the development of
specialized software packages like Mathematica or Maple. It is also exactly for
this reason that extensive use is being made from visualization techniques that
allow the mathematician to come to terms with the vast amount of data gen-
erated by the computer. Secondly, and perhaps more importantly, one needs a
good “format” to talk with the machine, viz. one needs good algorithms that
are adapted to what the machine is good at and what it is bad at. I already
provided the example of the development of pseudo-random generators, a type
of algorithms that, except for some very rare instances, was never really consid-
ered before in the history of mathematics. Lehmer talks in this context about
the need for an “idiot” approach: one needs algorithms that are executable by
an idiot who cannot rely, for instance, on educated guesses and hence needs to
be given instructions for every possible “behavior”. In this context, one can,
for instance, think of the SRT algorithm for division: it replaces the educated
guessing we rely on for long division by a numerical table. Hartree, another
computer pioneer, understood this new way of developing algorithms for the
idiot as a real challenge for the future:

[I]n programming a problem for the machine, it is necessary to take
a “machine’s-eye view” of the operating instructions, that is to look
at them from the point of view of the machine which can only follow
them literally, without introducing anything not expressed explicitly
by them, and try to foresee all the unexpected things that might oc-
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cur in the course of the calculation, and to provide the machine with
the means of identifying each one and with appropriate operating in-
structions in each case. And this is not so easy as it sounds; it is
quite difficult to put oneself in the position of doing without any
of the hints which intelligence and experience would suggest to a
human computer in such situations

Today, part of these problems are already dealt with through developments in
programming. For instance, the compiler allows to detect a whole range of
syntactical and semantical errors by means of parsers, the symbol table and
the semantic analyzer. Viz., part of these problems have already found a formal
solution. However, some of them haven’t and require the development of special
more heuristic and statistical techniques. For instance, on the hardware level,
it are the laws of statistics that govern part of how the memory is cached.

This requirement to look at a problem also from the machine’s eye has
resulted in important progress both within computer science and mathematics.
In computer science, for instance, the development of compiler techniques allow
to help the programmer to specify his algorithm in the machine’s language.
Within mathematics, an obvious example are the advances being made within
numerical analysis since the rise of electronic computing: it fills the need for good
and efficient iterative approximation techniques that “work” for the machine.
For instance, in the 50s, when electronic memory was still very limited, new
iterative algorithms were being used that allow to reduce the size of the memory
needed during computation (see e.g. [9]).

4.2 Internalization

In the early years of digital general-purpose computing there were two major
bottlenecks. The first was the programming bottleneck: even though computa-
tion speed was increased with several others of magnitude, the lack of program-
ming languages and compilers meant that the setting up of a problem could take
several days if not weeks. The second bottleneck was the memory bottleneck:
electronic memory was very limited so one had to rely mostly on external mem-
ory devices like the punched cards. If additional memory was required during
computation, this reliance on mechanical memory seriously slowed down the
computation. Viz., the speed of memory storage and retrieval wasn’t adapted
at all to that of the computation. 11 As these two bottlenecks got steadily
and partially resolved, it became possible to store internally into the machine
more and more subroutines and the process of the so-called “algorithmization”
of knowledge could be started. Also within mathematics one can observe a
steady “algorithmization” of mathematical knowledge and skills. Some famous
examples are the Zeilber-Gosper algorithm and the PSQL algorithm. The result
of this is that today we have huge libraries of mathematical subroutines at our
availability where algorithms like the Zeilberger-Gosper algorithm, can simply
be called by their name.

11Today the speed of read and write operations is still a major topic in hardware design.
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This steady process of internalization evidently goes hand-in-hand with human-
computer interaction: since more and more processes are assigned to the ma-
chine rather than to the human, the boundaries between what is done by the
machine and what is done by the human are more and more blurred. For in-
stance, in the early years of digital general-purpose computing the machine was
concerned only with brute-force mathematical calculations and the human did
most of the exploration. Nowadays, part of this exploration is internalized into
the machine. Indeed, going back to our simple example of the ENIAC compu-
tations of the digits of π and e, it is clear that today, no human would bother
to do the statistics on the digits. The machine will generate both the digits as
well as analyze and study them before something is returned to the human.

4.3 Time and processes

One final characteristic that I would like to consider briefly here, is the signifi-
cance of time and processes within computer-assisted mathematics.12 In a study
which attempts at differentiating between so-called “computer science thinking”
and “classical” mathematical thinking, Knuth sampled nine mathematical text
books in order to get a firmer grip on the possible differences. His conclusions
are [26]:

Computer scientists will notice [...]that two types of thinking are
absent from the examples we have studied [...] In the first place,
there is almost no notion of “complexity” or economy of operation
in what we have discussed. Bishop’s mathematics is constructive,
but it does not have all the ingredients of an algorithm because
it ignores the “cost” of the constructions. [...] The other missing
concept is related to the “assignment operation” :=, which changes
values of quantities. More precisely, I would say the missing concept
is the dynamic notion of the state of a process: “How did I get here?
What is true now? What should happen next if I’m going to get to
the end?” Changing states of affairs, or snapshots of a computation,
seem to be intimately related to algorithms and algorithmic thinking.
Many of the concepts of data structures [...] depend very heavily on
an ability to reason about the notion of process states, and we rely
on this notion also when studying the interaction of processes that
are acting simultaneously.

Knuth’s conclusion is in a certain sense not surprising: whereas “classical” math-
ematics seems to have no notion of process or time, within computer science
everything is about time and processes! Indeed, a computation is executed as
a dynamical process that develops and changes over time. One of the reasons
why time is really an issue within computing is the fact that all computations
on a standard computer are finite both with respect to time and space. This

12I am in fact very much indebted to Maurice for having drawn my attention to this fun-
damental difference between mathematics and computer science in a report he wrote for my
dissertation.
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stands in sharp contrast with mathematics where the infinite rules. In a report
describing the state of computer science and engineering research this difference
is described as follows [1, p. 9]:

Mathematics deals with theorems, infinite processes, and static re-
lationships, while computer science emphasizes algorithms, finitary
constructions, and dynamic relationships. If accepted, the frequently
quoted mathematical aphorism, the system is finite, therefore trivial,
dismisses much of computer science.

This time dimension of computations becomes more explicit in the light of the
fact that most computational processes are often not reversible and this in sharp
contrast to mathematics. As Margenstern explains [33, p. 645]:

Mathematical theories make use of reversible time; how can they
exhaust nature, which is not at all reversible? Let us note that in our
discrete time of computations, time is irreversible: it is very often
extremely difficult to run an algorithm backward. At the highest
level of generality it is impossible.

The introduction of the arrow of time into computations combined with the
finiteness of the machine also affects the mathematics that is done with such
computations. For instance, if one is working with iterations over the reals, the
fact that one has to work with finite approximations of these reals, combined
with the fact that one is squeezing thousands or even millions of computations in
a short time span, necessitates a study of the error propagations that may occur
along the process. In fact, it is this problem that lies at the very foundation of
the study of, for instance, non-linear equations like the quadratic iterator that
I mentioned before: it was studied by Ulam and von Neumann (See e.g. [?,
pp.3–4]). The processual and dynamical character of computation is reflected
both on the hardware as well as on the programming level. We already saw
the example of the assignment statement on the programming level in Knuth’s
quote. That this processual character of computations needs to be reflected also
on the programming level, was already understood by von Neumann. Indeed,
in a series of reports which introduces the well-known flowchart notation, he
explains:

[C]oding is not a static process of translation, but rather the tech-
nique of providing a dynamic background to control the automatic
evolution of a meaning”

In fact, as he explains elsewhere, it is exactly this dynamical nature of compu-
tation that results in the need for logical control:

[C]ontemplate the prospect of locking twenty people for two years
during which they would be steadily performing computations. And
you must give them such explicit instructions at the time of incar-
ceration that at the end of two years you could return and obtain
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the correct result for your lengthy problem! This dramatizes the ne-
cessity for high planning, foresight, and consideration of the logical
nature of computation. This integration of logic in the problem is a
consequence of the high speed.

On the hardware level, standard CPU design relies on a central clock signal that
is emitted to all the hardware units. Without that central pulse which is used
to control time, our current architectures would not be able to sequence and
synchronize their operations let alone be able to “remember something”.

5 Some (new and open) problems

Faced with a new situation created by the introduction of the computer, it
becomes necessary for the mathematician who wants to use a computer in his
research to reflect on a wide range of (new) problems or challenges that, at least,
partially integrate a way of thinking that is more akin to computer science be-
cause it is rooted in characteristics which are typical of “using a computer”. I
already indicated some important developments within mathematics that are
directly rooted in this new situation, like for instance within the field of numer-
ical analysis or the study of randomness. In what follows I will sketch some
(new and open) problems that (can) arise within a context of computer-assisted
mathematics in more detail.

5.1 Mathematical understanding

It is well-known that results coming from computer-assisted mathematics, es-
pecially so-called computer-assisted proofs, are not very much appreciated by a
part of the mathematical community. One important reason for this is that it is
claimed that such results do not provide any understanding of the problem re-
solved with them. One famous example in this context is the computer-assisted
proof of the four color theorem. In this context, Bonsall, a mathematician at
the university of Edinburgh stated [?, p. 14]:

It is no better to accept without verification the word of a computer
than the word of another mathematician [...] We cannot possibly
achieve what I regard as the essential element of proof – our own
personal understanding – if part of the argument is hidden away in a
box. [...] Perhaps we are seeing the birth of a new kind of computer-
assisted quasi-mathematics, but is has no place in the science of
mathematics and if it is to survive must develop its own scientific
ethos – perhaps more akin to the experimental sciences.

Another mathematician, Ian Stewart, complains not only about the fact that
part of such proofs are hidden but also about their lack of structure, viz. (Quoted
from [29, p. 41]):
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[Such proofs do] not give a satisfactory explanation why the theorem
is true. This is [...] mostly because it is so apparently structureless.
The answer appears as a kind of monstrous coincidence. Why is
there an unavoidable set of reducible configurations [within the four-
color problem]? The best answer at the present time is: there just is.
The proof: here it is, see for yourself. The mathematician’s search
for hidden structure, his pattern-binding [sic] urge, is frustrated”

The fact that with computer-assisted proofs, part of the proof is generated
by a machine and mediated by a very lengthy code implies that, first of all,
such computer-assisted proofs are far from being “elegant” and very lengthy
and, secondly, that part of the proof is in fact not “surveyable” by a human.
Moreover, such proofs are mostly based on a case-by-case analysis and, as such,
are in need of a more non-uniform approach which is usual business in computer
science but not in mathematics. For instance, for the four-color theorem over
1500 cases were derived! Add to this that such proofs are considered to be
more error-prone because of their length and the programming and hardware
involved and the mathematician is left with a feeling that this cannot be a
“good” insightful proof. It is certainly true that the understanding one gains
from, say, one of the classical proofs of the Pythagorean theorem cannot be
identical to the understanding one gains from a proof that contains hundreds
of pages of programs and millions of computations. And it is indeed not very
insightful to “have a look” at the over 1500 cases of the original proof of the
four color theorem just as there is no insight into why there are x cases rather
that x − 1 cases!

Does this mean that there is no understanding whatsoever to be found in
proofs such as that of the four color theorem? I do not think so. Rather it is
my view that they provide a different kind of understanding. Indeed, from the
perspective of a computer-assisted proof, it makes no sense to ask why a given
problem reduces to x cases and not to y but it does make sense to follow the
overall structure of such proofs as sketched in their published versions and to
see how and why this semi-algorithmic structure works. To put it in the words
of Borwein, a well-known advocate of experimental mathematics [3]: “[T]he act
of programming – if well performed – always leads to more insight about the
structure of the problem.”

This problem of what kind of understanding computer-assisted proofs such
as the four-color theorem convey is a non-trivial problem which will have to
be addressed properly by the mathematical community especially if, in the the
future, more and more mathematical results would be proven in this way.

5.2 Hidden algorithms and explorations

One important characteristic of computer-assisted mathematics is that part of
the mathematics required in tackling a given problem is internalized into the
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machine. I discuss two of them in more detail here.13 First of all, with current
programming environments, much of the algorithms being used are no longer
explicitly programmed by the mathematician who uses them but are instead
called by their name. This means that part of the knowledge that is used
within computer-assisted mathematics is unknown to the mathematician unless
he/she has bothered him/herself with looking at the details of the subroutines
called by the main program. This is even more problematical in the light of
software that is not open source, like Mathematica. As Joris van der Hoeven,
mathematician and developer of GNU TeXmacs and Mathemagix explains:14

As a mathematician, I am deeply convinced that only free programs
are acceptable from a scientific point of view. I see two main reasons
for this:

• A result computed by a “mathematical” system, whose source
code is not public, can not be accepted as part of a mathemat-
ical proof.

• Just as a mathematician should be able to build theorems on
top of other theorems, it should be possible to freely modify
and release algorithms of mathematical software.

However, it is strange, and a shame, that the main mathematical
programs which are currently being used are proprietary. The main
reason for this is that mathematicians often do not consider pro-
gramming as a full scientific activity. Consequently, the develop-
ment of useful software is delegated to “engineers” and the resulting
programs are used as black boxes.

In a certain sense, the use of algorithms without having gone through all of their
details is comparable to referring to common or accepted mathematical knowl-
edge without going through every of its details. However, if this knowledge is
simply not free to access because, then I think that the challenges posed by
computer-assisted proofs are rather small as compared to those posed by math-
ematical software that is not open-source! If in the future, computer-assisted
mathematics becomes more important, this problem of hidden knowledge in
combination with that of software licenses and patents will become a very im-
portant one, touching upon major issues such as scientific reproducibility and
patentability.

A second problem that I would like to discuss briefly here concerns the idea
of letting the computer do part of the exploration. It is a well-known practice
that, when one uses a computer today, one will probably instruct it not to
provide the mathematician with all data computed but with a certain selection
of them, be it by way of visualizations, plots, statistics, etc. One important

13Note that the above problem of mathematical understanding is also partially rooted in
the internalization of knowledge inside the machine.

14Extracted from http://www.texmacs.org/tmweb/manual/webman-about.en.html on
February 24, 2014.
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problem here is that the more of the exploration is delegated to the machine,
the more assumptions one might put into the programming hence running the
risk of missing out on some essential information. One example in this context
comes from Wolfram who was studying so-called mobile automata, a class of
computational devices which differ from cellular automata in that they do not
update all cells in parallel but one at a time. Instead of looking explicitly at
the “raw” behavior of these automata, Wolfram automated his search for a
particular type of behavior [40]:

[B]eing convinced that more complicated behavior must be possible,
[...] I wrote a program that would automatically search through large
numbers of mobile automata. I set up various criteria of the search,
based on how I expected mobile automata could behave. And quite
soon, I had made the program search a million mobile automata,
then ten million. But still I found nothing. So then I went back
and started looking by eye at mobile automata with large numbers
of randomly chosen rules. And after some time what I relayed was
that with the compression scheme I was using there could be mobile
automata that would be discarded according to my search criteria,
but which nevertheless had interesting behavior.

As becomes clear from this example, by internalizing part of the exploration
one is always making certain assumptions which can result in errors. Another
example is the use of Monte Carlo methods: since the 40s this has become a
standard method in computer-assisted science in general. However, contrary
to the early years of the Monte Carlo method, one only rarely questions the
statistical assumptions underpinning this method.

The internalization of knowledge inside of the machine implies a number of
problems that are far from trivial. The bottom line with these type of problems
seems to be this: the more knowledge and assumptions that are hidden inside
the machine, the more important it becomes for the mathematician to be critical
about the knowledge he/she is presupposing. I consider this problem as a real
treat to computer-assisted mathematics, at least as long as there is no critical
awareness of the problem amongst mathematicians.

5.3 Finiteness, time and unpredictability

Perhaps one of the most important differences between mathematics and com-
puter science is the fact that computer science deals with computational pro-
cesses that develop over and are limited by time and space. Hence, it should not
be surprising that this feature results in several problems for computer-assisted
mathematics.

One important side-effect of the time-sensitive character of computations is
their unpredictability. As Hamming explains [21]:

One often hears the remark that computers can only do what they are
told to do. True, but that is like saying that, insofar as mathematics
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is deductive, once the postulates are given all the rest is trivial.
[T]he truth is that in moderately complex situations, such as the
postulates of geometry or a complicated program for a computer, it
is not possible on a practical level to foresee all of the consequences.
Indeed, there is a known theorem that there can be no program
which will analyze a general program to tell how long it will run on
a machine without actually running the program.

This unpredictability is not just some theoretical problem or property. Indeed,
it is in fact this unpredictability that usually brings mathematicians to the com-
puter: it is because one cannot predict the outcome of a certain computational
problem that one needs to rely on and trust the machine’s abilities. However,
many such problems, when programmed, may contain infinite loops or need an
unreasonable if not infinite amount of time and/or space and such that this
cannot be predicted by the mathematician. This necessitates the need for de-
veloping local programming strategies that are often “experimental” in nature,
viz., they do not necessarily result in a (correct) solution and often require ad-
justments in the light of new computational results. For instance, Hales had
to experimentally determine several constants in the process of his proof of the
sphere packing problem [7]:

Hales remarks for instance that “The constant 2.51 was determined
experimentally to have a number of desirable properties”, and sim-
ilar experimental determinations recur repeatedly throughout the
paper. Several of the initial decisions had to be modified in the light
of later calculations.

Another problem that comes up in this context can be illustrated with the fol-
lowing example coming from my own computer-assisted research on a class of
computational devices known as tag systems. Also here it was the unpredictabil-
ity of the computational processes of these devices that made it necessary for
me to include certain limitations into the programs used to study these devices
and which instructed the computer when it should give up on a certain tag sys-
tem. For instance, in studying the behavior of tag systems with arbitrary initial
words of length 300, I included the limitation that the program should stop if (1)
after 10,000,000 computational steps the tag system had not halted or become
periodic and (2) one of the produced words became longer than 15,000,000.
Initial words that resulted in more than 10,000,000 computational steps were
tentatively classified as possible immortals. But what kind of derivations can
one make on the basis of information that is based only on a finite piece of
information of a (possibly) infinite dataset? In how far are, for instance, the
results from a statistical analysis based only on the first part of a computation
representative for the whole computation?

These kind of problems are not only characteristic for computer-based re-
search but for explorative mathematics in general: experimental research on the
Riemann-zeta function, the twin prime conjectures, the Goldbach conjecture or
the Collatz problem all suffer from the problem that one has information only
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about a finite subdomain of the (possibly) infinite domain. Consider for instance
the Collatz function C. Given an integer n0, if n0 is odd compute n1 = 3n0 + 1
if not, compute n1 = n0/2. If n1 is odd, compute n2 = 3n1 + 1, else, compute
n2 = n1/2, etc. The Collatz conjecture states that for any ni, there is an mj

such that after mj iterates of C on ni it will end in the loop 1, 2, 4. Now, assume
we want to compute C for some very large integer. We start the computation
on our computer but after weeks of iterations we have an overflow. What would
this tell us? Conversely, what can we derive from the fact that the conjecture
has been verified for 5×260 integers? It is in such experimental context that one
is in need of a “conduct of good behavior”, a certain standard of when one has
reasons to make a conjecture and when not and one should always be extremely
careful in making generalizations based on a finite number of instances.

Another problem, which is directly related to the finiteness of the computer,
comes up in the context of computations over the reals and is related to the
Mandelbrotset. Given the function:

c → c2 + c, c ∈ C

the Mandelbrot set is defined as:

M = {c ∈ C|c → c2 → c2 + c → . . . remains bounded}

The set is most well-known for its intricate boundary which gives rise to very
beautiful visualizations. One important question, that was formulated by Roger
Penrose, is whether it is decidable for any c whether or not it belongs to the
Mandelbrotset. There are now two major competing models of computation
over the reals to address this and other related problem:

[The bit model] reflects the fact that computers can store only finite
approximations to real numbers. Roughly speaking, a real function
f is computable in the bit model if there is an algorithm which, given
a good rational approximation to x, finds a good rational approxima-
tion to f(x). The second approach is the algebraic approach, which
abstracts away the messiness of finite approximations and assumes
that real numbers can be represented exactly and each arithmetic
operation can be performed exactly in one step. The complexity of
a computation is usually taken to be the number of arithmetic oper-
ations (for example, additions and multiplications) performed. The
algebraic approach applies naturally to arbitrary rings and fields, al-
though for modeling scientific computation the underlying structure
is usually R or C.

The second approach is most known through the work of Blum, Shub and Smale:
within their model, the Mandelbrotset turns out to be undecidable. However,
the drawback of the model is that functions which one would consider intuitively
as being decidable, like, for instance, a simple transcendental function such as
ex, also turn out to be undecidable under this model. This is not the case with
the bit model. In this latter model, the undecidability of the Mandelbrot set
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is still an open problem. One interesting consequence of this model is that if
a function f is uncomputable than there is no good rational approximation of
f . As such, the undecidability of the Mandelbrot would imply that we cannot
rely on our computer-generated visualizations of the set. Indeed, since any such
visualization is but a finite approximation of the “real” set, we cannot rely on
it and hence also not on the numerous conjectures that surround the set and
which are based on these visualizations.

5.4 Unreliability

From the previous sections it becomes clear that some of the characteristics
of computing on a machine result in a number of problems within computer-
assisted mathematics that need to be taken into account in some or the other
way by the mathematician who uses the computer in his/her research. All of
these different problems contribute to a feeling that the results from computer-
based research are quite unreliable. The fact that usually hundreds or thousands
of lines of code are involved, the fact that the human him/herself can often only
wait and see, the fact that one does not have access to all data generated during
the process, the fact that one may encounter truncation errors, etc indeed do
not give an impression of high reliability. Add to this that many results are “ex-
perimental” results and it becomes understandable that many a mathematician
turns his/her back to the results that are machine-aided. On the other hand,
however, one cannot deny that the computer in fact gives us the possibility, to
state it again in Lehmer’s words, “to explore the terrain that has been staked
out so freely and that something worth proving will be discovered in the rapidly
expanding universe of mathematics”. The choice is there to make for the math-
ematician but if the choice is in favor of the machine it is clear that one needs
to deal in some or the other way with this problem of unreliability that becomes
so explicit in this context. Two extreme positions have been proposed in this
context and relate back to the tensions I recounted in Sec?? those between for-
malism vs. experimentalism; rigorous vs. non-rigorous math, etc as highlighted
in the contrast between Hilbert’s work and that of the late von Neumann.

One extreme position is represented by Doron Zeilberger, a well-known
mathematician and strong supporter of computer-assisted mathematics. He
has claimed that, even though today [41]:

the mathematical faith is thou shalt prove everything rigorously [...]
a new testament is going to be written. Although there will always
be a small group of “rigorous” old-style mathematicians [...] who will
insist that the true religion is theirs, and that the computer is a false
Messiah, they may be viewed by future mainstream mathematicians
as a fringe sect of harmless eccentrics [...] In the future, not all math-
ematicians will care about absolute certainty, since there will be so
many exciting new facts to discover. We will have (both human and
machine) professional theoretical mathematicians, who will develop
conceptual paradigms to make sense out of the empirical data, and
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who will reap Fields medals along with (human and machine) ex-
perimental mathematicians. [...] As absolute truth becomes more
and more expensive, we would sooner or later come to grips with the
fact that few non-trivial results could be known with old-fashioned
certainty. Most likely we will wind up abandoning the task of keep-
ing track of price altogether, and complete the metamorphosis to
non-rigorous mathematics.

This is quite a strong claim: Zeilberger is convinced that human “proofs” as
certificates of truth will be abolished and replaced by a non-rigorous mathe-
matics because few non-trivial truths that can be proven by short and human
proofs will be left. Again, it is impossible at this point to evaluate this predic-
tion, but the idea that mathematics would completely abandon the very idea of
proof as a guarantee of certainty, is precarious. This, however, does not mean
that there will be no situations where mathematical results, which are true only
to a very high degree of certainty, will be more easily accepted. It is already a
common practice to use for instance probabilistic algorithms and, in the context
of computer-assisted proofs, the idea of corroboration, where different groups
of researchers prove the same result independently from each other, has also
already been suggested. For instance, MacPherson, who was an editor of the
Annals of Mathematics at the time that Hales’ proof was being reviewed wrote
to Hales about Fejes Thoth, the head of the team of 12 human reviewers of the
proof [20]:

Fejes Toth thinks that this situation will occur more and more often
in mathematics. He says it is similar to the situation in experimental
science - other scientists acting as referees can’t certify the correct-
ness of an experiment, they can only subject the paper to consistency
checks. He thinks that the mathematical community will have to get
used to this state of affairs.

An opposite response to the challenges posed by the computer for mathematics,
is to take the side of full rigorous mathematics by means of formalized proofs
with the help of interactive proof assistants such us HOL or Isabel. The four-
color theorem, for instance, has been formalized in this way by Gonthier [18]
and also Hales and others are now working for some years on the so-called Fly-
Speck project which aims at formalizing the computer-assisted proof of Kepler’s
conjecture [19]. The reason why people like Gonthier and Hales are working
on such proofs is rooted in the uncertainty associated with lengthy computer-
assisted proofs. By means of formalization, it is believed that possible errors
are excluded since every single logical step is (supposedly) verified by the proof
assistant [19]:

A formal proof is a proof in which every logical inference has been
checked, all the way back to the foundational axioms of mathematics.
No step is skipped no matter how obvious it may be to a mathemati-
cian. A formal proof may be less intuitive, and yet is less susceptible
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to logical errors. Because of the large number of inferences involved,
a computer is used to check the steps of a formal proof.

This approach of formalized proofs however is not only applied to lengthy
computer-assisted proofs. The developments of automated verification and
proving has resulted in initiatives like the Mizar project which aim at formal-
izing the whole of mathematics. The motivations are the same: a believe that,
partially due to the introduction of the computer into mathematics, mathemat-
ical knowledge is becoming too complex and, as a consequence, that there might
be a tendency towards non-rigouresness. In the QED manifesto, which proposes
the formalization of all mathematics, this is stated as follows [37]:

[T]he increase of mathematical knowledge during the last two hun-
dred years has made the knowledge, let alone understanding, of all
of even the most important mathematical results something beyond
the capacity of any human. For example, few mathematicians, if
any, will ever understand the entirety of the recently settled struc-
ture of simple finite groups or the proof of the four color theorem.
Remarkably, however, the creation of mathematical logic and the
advance of computing technology have also provided the means for
building a computing system that represents all important mathe-
matical knowledge in an entirely rigorous and mechanically usable
fashion. The QED system we imagine will provide a means by which
mathematicians and scientists can scan the entirety of mathematical
knowledge for relevant results and, using tools of the QED system,
build upon such results with reliability and confidence but without
the need for minute comprehension of the details or even the ultimate
foundations of the parts of the system upon which they build.[...]

Also here it seems precarious to believe that, in the future, mathematical knowl-
edge will become completely formalized in some computer-based system. Be-
sides the fact that there is a problem here of infinite regress, indeed, “who will
control the controller”,15, “[i]t is a large labor-intensive undertaking to trans-
form a traditional proof into a formal proof ” [19]. Hence, just as one can won-
der whether your average mathematician will really bother about non-rigorous
mathematics à la Zeilberger, one can wonder whether he/she will be bothered
about formalizing their results.

These two opposite alternatives, formalized and non-rigorous mathematics,
are two sides of the same medal. They are both rooted in a believe that math-
ematics is becoming less reliable and rigorous, partially due to the introduction
of the computer. At this point, it is not really clear at all if any of these two
alternatives will really become a dominant practice of future mathematics in
one or the other from. But is it really desirable that we evolve to any of these
two alternatives? Faced with the new situation in mathematics, I believe that
mathematics can only gain if both sides, rather than one dominating the other,

15Remark from Maurice Margenstern during MCU 2013
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as was often the case in the past, would try and complement/advance each
others findings.

6 Some afterthoughts

Computer science has many different historical roots and mathematics is cer-
tainly one of them: formalization and algorithms were and are a part of the
mathematical discourse and this long before the computer inspired the for-
mation of a new discipline known as computer science. Today we see that a
converse influence is manifesting itself: the computer is also starting to affect
mathematics. Computer-assisted exploration is resulting in a revival of so-called
experimental mathematics, a practice which is certainly not new to the history
of mathematics but has been pushed to the background for at least the last two
centuries. It is within such practice that algorithms and non-uniform methods
rather than general theories are at play.

It is thus not surprising that explorative computer-assisted mathematics has
more in common with a computer science way of thinking than “classical” math-
ematics. The reason for this is not the mere fact that extensive computation is
now possible, but is also rooted in the use of a physical, finite machine. From a
contemporary perspective, the explicit focus in this paper on how the machine
itself affects mathematics may seem a bit old-fashioned. Indeed, today, there is
a tendency towards abstraction up to the development of interfaces which are
made as “user-friendly” as possible, hiding at the same time that one is using a
technological device. In fact, it has become rather common to see computation
as something that transcends the computer itself and can be found anywhere
(See e.g. [12]). Evidently, we are very much in need of such layers of abstrac-
tion. Amongst others, they allow us to overcome the programming bottleneck
that characterized the early machines. However, if the addition of such layers
goes hand-in-hand with forgetfulness about the constraints imposed by the ma-
chine or, more generally, the physicality of computation, on our (mathematical)
thinking, one also gives away control, not only to the machine, but also, more
importantly, to the developers of these different layers of abstraction

The usage of the computer implies that one needs to develop algorithms
that really work, also, from the machine’s eye and for which, as a consequence,
mathematical elegance is constrained by the need for procedures that have to be
scientific before becoming an art.16 It also means that a new range of problems
need to be faced by the mathematical community, problems that originate in,
amongst others, the time-based character of computations which has become

16I am referring here to Knuth’s Turing award lecture titled “Computer programming as
an art” in which he reflects on the multiple ways in which “science” and “art” can be used
in the context of programming, and beyond. During that lecture he stated: “Science is

knowledge which we understand so well that we can teach it to a computer; and if we don’t

fully understand something, it is an art to deal with it. Since the notion of an algorithm or

a computer program provides us with an extremely useful test for the depth of our knowledge

about any given subject, the process of going from an art to a science means that we learn

how to automate something.” [25]
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more explicit through their execution on a very fast but limited machine; the
internalization of procedures inside of the machine and the fact that part of the
work is, literally, out of control of the human. These problems result in two
extreme positions with respect to computer-assisted explorative mathematics
and the more general observation that mathematical knowledge is becoming
too complex to guarantee rigor: on one side, there are those who argue for
the complete formalization of mathematical knowledge and thus “automated
rigor”, on the other side, there are those who want the exact opposite, viz.
“automated non-rigor”. Interestingly, as I argued in Sec. ??, one can trace
a similar opposition within the short history of computer science itself, which,
very roughly speaking, boils down to the fact that computer science is as much
about engineering as it is about mathematics.17 The formal verification debates,
with its high point in the 80s, is perhaps one of the more explicit and harsh
exemplifications of this opposition. However, just as Lehmer’s two styles need
not be exclusive in mathematics, the same holds true for computer science.
In fact, within computer science, both engineering and formalization are so
intricately tied together through the physicality of computation that one can
only feel regret when these two “styles” are regarded as each others opposite.
One can only hope that as computer science matures, that the disciplinary
fences that have already been built, will not result in a complete separation of
both styles. This can only result in an impoverishment of the field.
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