Dynamic Dataflow Modeling
Based on a Model of Computation introduced by Lee and Parks in 1995 called Dataflow Process Network (DPN).

Efficient Software Synthesis
The synthesis translates dataflow descriptions into procedural code:

FIFO channels

```
struct fifo_s {
    uint readIndex;
    uint writeIndex;
    type buffer[SIZE];
};
```

Circular buffers

```

```

Actors States Firing rules (FSM, guards)
Variables Internal schedulers Procedures (Access buffer + Update index)

The software synthesis of dynamic dataflow programs has been enhanced by:
- Using relative indexes for the circular buffer to avoid costly conditional branching when accessing to data.
- Computing directly from/to FIFO channel whenever it is possible: This removes additional data copies within multi-rate actions.
- Detecting automatically when data are accessed in circular buffers: This detection accelerates FIFO accesses and allow auto-vectorization from the compiler.

Multicore Runtime
Our runtime allows the execution of any dynamic dataflow programs on multi-core platforms.

The runtime can be decomposed in 3 parts:
- A lightweight profiling is performed at runtime in order to determine the computational loads and the communication rates in the application.
- The mapping system assigns at runtime the actors to the processor cores according to the profiling results. As a result, the application can be equitably balanced on the platform. The mapping is only performed at predefined synchronization point to reduce the overhead of actor migration.
- The distributed schedulers order and time the actor execution on each processor core according to the flow of data. The actors are executed until they cannot fire anymore to benefit from temporal and spatial locality.

Reconfigurable Video Coding
Reconfigurable Video Coding (RVC) is a development framework for video coding tools based on dataflow programming. The objectives of RVC are:
- Accelerating the standardization process of video coding technologies.
- Increasing flexibility of coding devices

The framework has been standardized by MPEG in 2009 and can be considered as the first large-scale experimentation on dynamic dataflow programming based on a subset of CAL Actor Language. Several video decoders, among other applications, have been developed using the RVC standard, such as the following HEVC decoder:

Results

Desktop implementation
- Intel Xeon @ 3.2GHz // 720P sequence
 - MPEG-4 Visual: 95 FPS -- 3x (4 cores)
 - MPEG-4 AVC: 14 FPS -- 3x (6 cores)
 - HEVC: 52 FPS -- 2x (4 cores)
- Good frame-rate → High freq. / Assembly opt. Limited speed-up → Communication cost

Embedded implementation
- TTA multicore platforms with distributed mem.
 - Simulation @ 1GHz // 720P sequence
 - MPEG-4 Visual: 40 FPS -- 8x (16 cores)
 - HEVC: 5 FPS
- Bad frame-rate → Low freq. / No opt.
- Good speed-up → Pipeline parallelism

Orcc : Dataflow Programming Made Easy
Orcc is an open-source Integrated Development Environment based on Eclipse and dedicated to dataflow programming:
- Assisted writing of the applications: A advanced editor for writing dataflow actors in CAL, and a intuitive graph editor for designing dataflow networks.
- Fast debug and validation: Orcc introduces innovative features for the debugging of dataflow programs, and integrates a simulator which allows quick functional verification.
- Develop once, run everywhere: The embedded compiler is able to generate both hardware or software code from a single description. Then, generated implementations can be executed on large panel of platforms (GPP, DSP, FPGA, etc) thanks to the available runtime libraries.

Freely available at http://orcc.sf.net