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ABSTRACT1

If and how the genetic load affects population size has been long debated2

as on one hand it has been suggested that a high genetic load leads to ex-3

tinction, and on the other hand, if selection during the life-cycle takes place4

before density dependence has acted, then population size should not be af-5

fected by its genetic load. Explicitly considering the life cycle and the timing6

of selection is therefore a factor that cannot be ignored when quantifying the7

effect of deleterious mutations on population size. In addition, population8

genetics models calculating the expected genetic loads and levels of inbreed-9

ing depression ignore the potential effects of demography on these variables.10

Here we propose a deterministic model in continuous time where deleterious11

mutations affect individual fitness in one of four ways: by decreasing mating12

success, fecundity and adult or zygote survival. The genetic load, inbreeding13

depression and population size are variables that emerge from the model.14

Our results are compared to the expectations from the fundamental model15

of natural selection. We find that changing the timing of selection mostly16

affects population size, but also leads to genetic loads and inbreeding depres-17

sion that diverge from the fundamental model. Our results emphasize the18
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importance of integrating both population demography and genetics in order19

to study the demographic impact and, more generally, the fate of deleterious20

mutations.21
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INTRODUCTION22

Deleterious mutations are constantly introduced into populations at rela-23

tively high rates (Keightley and Lynch, 2003). In spite of their deleterious24

effect, these alleles are not always immediately eliminated by selection from25

the genetic pool but can persist for several generations and, in the case of26

stochasticity, can even go to fixation. These mutations decrease mean popu-27

lation fitness by engendering a genetic or mutational load, and are responsible28

for inbreeding depression. In the field of population genetics, the evolution of29

load and inbreeding depression as a function of population size and structure30

has been greatly explored (Bataillon and Kirkpatrick, 2000; Roze and Rous-31

set, 2004; Glémin, 2003). However, these models do not consider an explicit32

interaction between the two, as population size is considered to be a parame-33

ter. If and how these mutations affect population size remains unclear; while34

inbreeding depression is a major concern in conservation biology, whether the35

genetic load of populations affects population size and viability is debatable.36

In the case of very small populations, it is widely accepted that they can be37

at risk of a mutational meltdown (extinction due to the fixation of deleterious38

alleles at an accelerating rate; Lande, 1994; Lynch et al., 1995; Coron et al.,39
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2013), but there is little understanding of how the genetic load affects the40

demography of populations that are not at risk of extinction. We find two41

opposing views in literature (reviewed in Agrawal and Whitlock, 2012); some42

authors argue that populations cannot persist with high mutation or genetic43

loads (Kondrashov, 1995), whereas others have insisted that load has little or44

no ecological consequences (Turner and Williams, 1968; Wallace, 1970). In45

the latter case, authors have argued that due to density dependence, deaths46

of individuals due to selection simply replace the unavoidable deaths due to47

a lack of resources (soft selection), whereas in the former case, the genetic48

load is expected to directly decrease population size, independently of density49

dependent factors (hard selection). The main difference between these two50

types of selection is the timing of the elimination of individuals via selection,51

either before resource consumption (soft selection) or after these resources52

have been used and rendered inaccessible (hard selection). In a model pro-53

posed by Agrawal and Whitlock (2012), the authors came to the conclusion54

that if individuals are eliminated by selective death before having consumed55

any resources (i.e. at the zygote stage), then the genetic load would not af-56

fect population size, as the loss of juveniles would be “masked by ecological57

compensation”.58

6



The life stage at which selection takes place, or as we refer to it, the59

timing of selection, is therefore non-negligible when considering the effect60

of the genetic load on population size (Wallace, 1970; Charlesworth, 1971;61

Clarke, 1973). However, population size is not only affected by the timing62

of resource consumption but more generally by the ecological trait affected63

(Clarke, 1973). Models that have studied the ecological consequences of64

differences in fitness related traits between individuals and/or species (such65

as competitive abilities, death rates and reproductive rates) have come to66

the conclusion that they can affect population size (for example Abrams,67

2003; Abrams et al., 2003; Schreiber and Rudolf, 2008). However, these68

models consider only phenotypic traits and do not take into account the69

genetics that could be behind the differences in phenotypes. The only work70

to our knowledge to explicitly consider ecology and genetics is a paper by71

Clarke (1973) in which the author coined the term ”numerical load” (the72

demographic equivalent of the genetic load) the decrease of population size73

due to the presence of deleterious mutations, a term which we will be using74

throughout this paper. Clarke (1973) proposed a model where population size75

is a consequence of the effect of the genetic load on different life traits, and76

where selection takes place either before or after density-dependent factors77
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come into play. He found that in both cases, the genetic load leads to a78

numerical load, but in the former case density-dependent factors partially79

compensate for density-independent mortality, leading to a smaller numerical80

load. His overall conclusions agree with the results of ecological models; if81

the genetic load affects ecological traits, then population size is also affected.82

The magnitude of the effect of the genetic load on the numerical load in83

turn depends on the traits affected by selection (i.e. a same genetic load on84

different traits can lead to different numerical loads).85

A limitation of the model proposed by Clarke (1973) is that it consid-86

ers a genetic load that evolves independently of the demographic model and87

the timing of selection. The relative selective values he proposed were con-88

structed so as to ensure that the genetic load remains equal to that expected89

from the fundamental model of population genetics (Gillespie, 1998, p.61).90

The genetic load is expected to directly affect a measure of individual or pop-91

ulation fitness and fitness has been defined as being an individual’s (or geno-92

type’s) mating success, fecundity or survival (Agrawal and Whitlock, 2012).93

While expected to be of great importance in demographic models (Haldane,94

1957; Agrawal and Whitlock, 2012), the timing of selection is considered to95

be of no importance when calculating the genetic load or inbreeding depres-96
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sion in population genetics models, and selection has been interpreted as97

affecting either zygote survival (e.g. Gillespie, 1998) or reproductive success98

(e.g. Roze and Rousset, 2004). However, explicitly considering the life cycle99

could affect how selection acts, leading to a genetic load and an amplitude100

of inbreeding depression that depend on the timing of selection. Indeed, it101

has been observed in several species that the amplitude of inbreeding depres-102

sion expressed can vary between traits (Frankham et al. 2010, Chapter 13;103

Angeloni et al. 2014).104

It has been suggested that the ambiguity of what is found in literature105

concerning the effect of the genetic load on population size could be due106

to a lack of theoretical works that attempt to address this question using107

”explicit ecological models” (Agrawal and Whitlock, 2012). In this present108

work we attempt to address the question of how the introduction of recurrent109

deleterious mutations into a population (whose size is affected by selection)110

influences the genetic load, the numerical load and inbreeding depression. We111

propose a deterministic model where the number of individuals carrying each112

genotype is considered explicitly. In the presence of selection, genotypes differ113

in their selective values at a single trait, and there is no density or frequency-114

dependent effect on fitness. We consider selection at four traits considered115
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to represent fitness: mating success, fecundity, zygote survival and adult116

survival. Population size, the genetic load and inbreeding depression are all117

emerging properties of the model.118

ANALYTICAL MODEL119

We consider the evolution of a population with a varying population size and120

a single bi-allelic locus, where A is the wild-type and a the mutant allele. The121

population is panmictic and made up of sexually reproducing hermaphrodite122

individuals. The environment is stable, and the population is isolated and123

spatially unstructured. Three genotypes can be found in the population, aa,124

Aa and AA, which, from here onwards, are denoted X , Y , and Z respectively.125

At a given time t, the population is made up of three kinds of individuals,126

Xt, Yt and Zt representing the number of individuals carrying the respective127

genotype. We denote the population size Nt = Xt + Yt + Zt. In a large128

population setting, these quantities can be considered as continuous, and129

the evolution of the number of individuals of each genotype is described in130

continuous time using ordinary differential equations. Three processes affect131

the change in the number of individuals of each genotype, births (occurring132
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with rate RV
t , where V can be either X , Y or Z), deaths (at a rate MV

t )133

and mutation. Selection and density dependence are introduced in these134

processes. We consider that the mutation from A to a is unidirectional and135

occurs with a probability µ at the gamete stage.136

We first introduce the demographic and mutational properties of the137

model without considering selection and show that this model respects the138

genotypic frequencies predicted by the Hardy-Weinberg model for neutral139

alleles (and no mutation). Selection is then introduced during different mo-140

ments of the life cycle and we define the variables measured in order to esti-141

mate the effect of the recurrent introduction of deleterious mutations on the142

numerical load, the genetic load and inbreeding depression. In order to facil-143

itate the reading of the following sections, all the notations used throughout144

the text have been summarized in Table 1.145

Model without selection146

As we consider mutations occurring during gamete formation, the proportion147

of a gametes produced per genotype are 1, 1+µ

2
and µ for X , Y and Z148

individuals respectively. Mutational events are therefore integrated into the149

birth rate RV
t ; for example, as Z individuals produce a proportion µ of a150
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Table 1: Notations.

Λ, L, δ The numerical load, the genetic load and inbreeding depression.

Nt, Neq Population size at time t with or with selection, and population size at

equilibrium when there is no selection.

Vt, Ṽt The total number of either X, Y or Z individuals (with genotypes aa,

Aa and AA respectively) at time t, and the number of individuals at

time t that contribute to the genetic pool.

Nmut, Vmut Population size and number of V individuals at mutation-selection

balance.

Rt,Mt The total birth and death rates of the population at time t.

RV
t ,M

V
t The birth and death rates of individuals of genotype V at time t.

b, d The intrinsic birth and death rates of individuals.

s, h The coefficient of selection and dominance of allele a. The relative fit-

nesses of X, Y and Z individuals at a given trait are (1 − s), (1 − hs)

and 1 respectively.

µ, µfix The mutation rate from A to a and the threshold value of µ for which

there is deterministic fixation of a.
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gametes and (1−µ) of A gametes. When two Z individuals are crossed, they151

produce X , Y and Z offspring with proportions µ2, 2µ(1 − µ) and (1 − µ)2152

respectively. For each reproductive pair, the parents contribute both via the153

male and the female functions. We consider that the total number of female154

gametes produced by all individuals in the population is limited and, when155

there is no selection, depends only on the number of individuals, whereas male156

gametes are produced in very large quantities and are subject to competition.157

The probability that an individual reproduces via the male function depends158

on the proportion of male gametes contributed compared to the total amount159

of male gametes available. For example, when the X and Y individuals cross160

to give X individuals, X individuals contribute Xt ovules and a proportion161

of Xt

Nt
male gametes, while Y individuals contribute (1 + µ)Yt

2
ovules and a162

proportion of (1+µ) Yt

2Nt
male gametes (as only (1+µ)

2
of the gametes produced163

carry an a allele).164

Generally, the equation describing the change in the number of individuals

for each genotype is given by

dVt

dt
= RV

t −MV
t . (1)

For each of the genotypes, when there is mutation and no selection, the
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birth rate RV
t is given by

RX
t =

b

Nt

(
X2

t + 2XtZtµ+ Z2
t µ

2 +XtYt(1 + µ) + YtZtµ(1 + µ) +
1

4
Y 2
t (1 + µ)2

)

RY
t =

b

Nt

(
XtYt(1− µ) + 2XtZt(1− µ) + 2Z2

t (1− µ)µ+
1

2
Y 2
t (1− µ2) + YtZt

(
1 + µ− 2µ2

))

RZ
t =

b

Nt

(
1

4
Y 2
t (1− µ)2 + YtZt(1− µ)2 + Z2

t (1− µ)2
)
.

The birth rate depends on an intrinsic birth rate b, which, by default, holds

the same value for all genotypes, on the reproductive events that lead to the

production of new individuals with genotype V and on the mutation rate

µ. The death rate MV
t depends on an intrinsic death rate d and is density

dependent (we consider a carrying capacity K). The equation for MV
t is

given by

MV
t = d

Nt

K
Vt. (2)

When solving dN
dt

= dX
dt

= dY
dt

= dZ
dt

= 0 we find the optimal population size

is given by (see File S4 for the proof)

Neq =
bK

d
. (3)

If we consider that there is neither selection nor mutation (µ = 0), then we165

find that the frequencies of X , Y and Z are at Hardy-Weinberg equilibrium166

(see File S3). Explicitly considering the demography of a population leads167
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to the same genotypic frequencies at a neutral locus as those predicted by168

deterministic population genetics models. This implies that, once selection is169

introduced, any differences observed between our model and the fundamental170

model of natural selection are due to the interaction between the timing of171

selection and demography.172

Timing of selection173

174

Fitness can be defined as being an individual’s relative mating success, fe-175

cundity or survival either at the zygote or adult stages. We consider all four176

definitions of fitness. Selection can occur at different times during the life177

cycle, affecting either reproduction or survival. As a is deleterious, Z individ-178

uals always have the maximal fitness. The relative fitness of each genotype179

at a given trait (i.e. its reproductive rate or survival) is equal to (1 − s),180

(1 − hs) and 1 for genotypes X , Y and Z respectively, where s is the selec-181

tion coefficient and h the dominance of the mutant allele a. If we consider182

that a affects the inherent birth rate, then if the inherent birth rate of Z183

individuals is bZ and the inherent birth rate of X individuals is bX , then the184

relative fitness of X individuals is bX

bZ
= (1− s).185
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Selection on reproduction: In order to model the effect of the deleterious186

allele a on the reproductive success of individuals, we introduce a new term187

Ṽt instead of Vt in the RV
t function. This term represents the contribution188

of V individuals to the genetic pool, which is proportional to their fitness189

and can reduce their reproductive success (i.e. X̃t = (1 − s)Xt). There are190

two ways in which carrying a can affect reproductive success; it can reduce191

the mating success of individuals (i.e. for X individuals only a proportion192

of (1 − s) matings are successful or lead to fertilization) or by reducing the193

fecundity of individuals (i.e. X individuals produce a proportion (1 − s)194

gametes compared to Z individuals).195

Mating success: When mating success is reduced, all individuals produce the

same quantity of gametes and the proportion of male gametes an individual

V contributes to the next generation is Ṽt

Nt
. The probability of a successful

reproductive event is proportional to the parental fitnesses. For example, RX
t

for this model of selection is given by

RX
t =

b

Nt

(
X̃2

t + 2X̃tZ̃tµ+ Z̃2
t µ

2 + X̃tỸt(1 + µ) + ỸtZ̃tµ(1 + µ) +
1

4
Ỹ 2
t (1 + µ)2

)
.

(4)
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Fecundity: When fecundity is affected by selection, an individual V con-

tributes Ṽt female gametes and a proportion of Ṽt

X̃t+Ỹt+Z̃t

male gametes to

the next generation (the proportion of male gametes produced by V depends

on the total amount of male gametes produced and not on the number of

individuals in the population). For example

RX
t =

b

X̃t + Ỹt + Z̃t

(
X̃2

t + 2X̃tZ̃tµ+ Z̃2
t µ

2 + X̃tỸt(1 + µ) + ỸtZ̃tµ(1 + µ) +
1

4
Ỹ 2
t (1 + µ)2

)
.

(5)

The full equations for the change in the number of individuals of each196

genotype for these models can be found in File S2. Note that in both models197

with selection on reproduction the probability of reproduction via the fe-198

male function remains unaffected as we consider that there is no competition199

between the female gametes.200

Selection on survival: Selection can also occur during the life cycle, in-201

dependently of reproductive success, affecting either zygote or adult survival.202

Zygote survival can be translated as the proportion of germinating seeds, or,203

more generally, viable offspring. Selection on adult survival is considered to204

occur before reproduction.205
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Zygote survival: The probability of zygote survival is decreased by consid-

ering a birth rate RV
t that is genotype dependent. This can be done by

introducing a term bV , an intrinsic birth rate that is proportional to the

genotype’s fitness. For example, bX = (1− s)b and

RX
t =

b(1 − s)

Nt

(
X2

t + 2XtZtµ+ Z2
t µ

2 +XtYt(1 + µ) + YtZtµ(1 + µ) +
1

4
Y 2
t (1 + µ)2

)
.

(6)

The full equations for the change in the number of individuals of each geno-206

type can be found in the File S2.207

Adult survival: We consider that the number of adults that survive selection

before reproduction of genotype type V is Ṽ , hence proportional to their

fitness. As only surviving individuals reproduce and compete for resources,

V is replaced by Ṽ in the birth rate RV
t and in the death rate MV

t . Therefore

we obtain the same expression for RV
t as for selection on fecundity and MV

t

is given by

MV
t = d

X̃t + Ỹt + Z̃t

K
qVt. (7)

The full equations for the change in the number of individuals of each geno-208

type can be found in File S2.209
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Mutation-selection balance210

In order to understand how the interaction between selection and population

demography affects population size and the frequency of a recurrent deleteri-

ous mutation, we derive the deterministic expectations at mutation-selection

balance for each of the models of selection described above (mating success,

fecundity and zygote and adult survival) by solving dXt

dt
= dYt

dt
= dZt

dt
= 0.

This allows us to obtain the number of individuals carrying each genotype

at mutation-selection balance (Xmut, Ymut and Zmut), the sum of which gives

us the population size at equilibrium Nmut. Using Nmut we obtain the ex-

pression for the numerical load Λ (the decrease of population size due to

the presence of deleterious mutations), a term defined by Clarke (1973) and

given by

Λ =
Neq −Nmut

Neq

, (8)

where Neq is the population size at equilibrium when there is no selection

(s = 0, see equation 3). We also use the expressions for Xmut, Ymut and Zmut

to derive the expressions for the genetic load L and inbreeding depression δ,

which we then compare We also compare the genetic load L and inbreeding

depression δ that emerge from our model to those expected from the fun-
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damental model of natural selection. In order to compare our results to the

fundamental model of natural selection, we replace Xmut, Ymut and Zmut with

q2, 2q(1− q) and (1− q)2 respectively, where q is the frequency of the delete-

rious mutant a at mutation-selection balance. Using the equations given by

Gillespie (1998, p.71), the explicit expression for q is

q =
2µ

h(s+ 2sµ) +
√

s (4µ(1 + µ)− 8hµ(1 + µ) + s(h+ 2hµ)2)
. (9)

The genetic load L is defined as the decrease in population fitness due to

the presence of deleterious mutations and is calculated by transforming the

equation for population fitness of the fundamental model (Gillespie, 1998,

p.61):

L = 1− (1− s)Xmut + (1− hs)Ymut + Zmut

Nmut

(10)

Inbreeding depression δ is defined as the difference in fitness between offspring

produced via selfing and via outcrossing. We calculate it using equation 3 in

Roze and Rousset (2004):

δ = 1−
(1− s)Xmut +

(
1
4
+ 1−hs

2
+ 1−s

4

)
Ymut + Zmut

(1− s)Xmut + (1− hs)Ymut + Zmut

. (11)

For all four models of selection, there exists a solution where the popula-211

tion is made entirely of X individuals. There is therefore a threshold value212

of the mutation rate µ, as a function of the selection coefficient s and the213
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dominance h, which leads to the deterministic fixation of a. This threshold214

value is noted µfix and is calculated by solving the equations for µ when215

considering that Nmut is equal to Xmut. In order to calculate the fixation216

threshold in the fundamental model, we solve for µ when q (equation 9) is217

equal to 1.218

RESULTS219

Our purpose is to find explicit solutions for population size Nmut, the nu-220

merical load Λ, the genetic load L and inbreeding depression δ at mutation-221

selection balance for all four models of selection (mating success, fecundity222

and zygote and adult survival). The full expressions (valid for all parameter223

values when h 6= 0.5) can be found in Table S1 of the Supporting Information,224

as for the sake of legibility, we present only the expressions for recessive and225

co-dominant mutations (h = 0 and h = 0.5 respectively) in the main text in226

Table 2. For h 6= 0, the expressions were found by using Wolfram’s Mathe-227

matica 9.0 (Wolfram Research, 2012) , whereas the proofs for population size228

for h = 0 can be found in File S4. The expressions for the frequencies of each229

genotype at mutation selection balance are also in the File S3. The domain230
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Model h Nmut Λ L δ µfix

Mating success 0 Neq(1− µ)2 2µ− µ2 µ
√
µs−µ

2(1−µ)
s

0.5 Neq
(1−µ)2

(1+µ)2
4µ

(1+µ)2
2µ
1+µ

0 s
2−s

Fecundity 0 Neq(1− µ) µ µ
√
µs−µ

2(1−µ)
s

0.5 Neq
1−µ

1+µ

2µ
1+µ

2µ
1+µ

0 s
2−s

Adult survival 0 Neq 0 µ
√
µs−µ

2(1−µ)
s

0.5 Neq 0 2µ
1+µ

0 s
2−s

Zygote survival 0 Neq(1− µ) µ
µ(1−s)
1−µ

√
µs−µ

2−2µ(2−s)
s

0.5 Neq
1−µ

1+µ

2µ
1+µ

µ(2−µs−s)
1+µ2 0 2

2−s

Fundamental model 0 − − µ

1+µ

√
(1+µ)µs−µ

2
s

1−s

0.5 − − 2µ
1+2µ

0 s
2(1−s)

Table 2: Expressions for population size Nmut, numerical load Λ, genetic load

L, inbreeding depression δ and the threshold value of the mutation rate for

deterministic fixation µfix at mutation-selection balance for h = 0 and 0.5

for selection on mating success, fecundity and zygote and adult survival, as

well as the fundamental model of natural selection. Exact expressions or any

h 6= 0.5 obtained using Wolfram’s Mathematica 9 are given in Table S1.
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of validity of these expressions holds only when the deterministic fixation231

of a is not possible (see the expressions for µfix in Table 2 and File S1 for232

the domain of validity for the equations in Table S1). If the conditions for233

fixation are met, there is only one valid solution, where Nmut = Xmut.234

The numerical load235

236

Introducing selection can lead to a decrease in population size at mutation-237

selection balance Nmut compared to the population size when there is no238

selection Neq (equation 3). The only model that does not lead to a numerical239

load Λ is when selection affects adult survival. Concerning the other three240

models, Λ increases with the coefficient of selection s (Figure 1), the dom-241

inance h (Figure 1) and the mutation rate µ. When selection is on zygote242

survival or on fecundity, we find the same expression for Λ, whereas selection243

on mating success leads to a different expression and a higher numerical load244

(see Table 2 and Table S1).245
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Figure 1: Numerical load Λ at mutation-selection balance as a function of the

coefficient of selection s (dashed lines, for h = 0.1 and µ = 10−3) and as a function

of dominance h (full lines,with s = 0.1 and µ = 10−3). Selection on mating success

is represented in red, whereas selection on fecundity or on zygote survival are in

yellow. Lines are plotted using the expressions in Table S1.
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The timing of selection and the genetic load246

247

The timing of selection affects the genetic load L at mutation-selection bal-248

ance both quantitatively and qualitatively (Figure 2). We find the same ex-249

pressions for L when selection is on mating success, fecundity and on adult250

survival. For these three models L increases with the coefficient of selection251

s (Figure 2) and with dominance h (Figure 2). When selection affects zygote252

survival, there is a non-monotonic effect of both s and h on L (this effect253

becomes smaller with increasing mutation rates µ, results not shown); L is254

therefore maximal for intermediate values of s and/or h.255

When s is small the timing of selection has very little effect on the value256

of L. However, increasing s increases the difference between the models, with257

a lower L at mutation-selection balance when selection is on zygote survival.258

In spite of the differences between the expressions for L when selection is on259

mating success, fecundity and adult survival and the expression for L from260

the fundamental model (see Table 2 and Supporting Information Table S1),261

numerically, they are very close as long as the mutation rate µ is low. For262

higher values of µ, the fundamental model predicts lower values of L than263
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our models. This can be deduced from the equations for L when mutations264

are completely recessive and codominant (h = 0 and 0.5, see Table 2), the265

difference between the equations for L with selection on reproduction and L266

for the fundamental model is that the numerator is greater by a factor µ for267

the fundamental model. As µ increases, the difference between selection on268

reproduction and on survival becomes smaller until L at mutation-selection269

balance is slightly greater for selection on survival than on reproduction.270

From the fundamental model, the frequency of each genotype at equilib-271

rium is expected to be q2, 2q(1− q) and (1− q)2, for X , Y and Z individuals272

respectively, where q is the frequency of a after selection. This relation-273

ship is no longer true in our model, except when mutations are co-dominant274

(h = 0.5) and selection is not on zygote survival (see frequencies of geno-275

types in Supporting Information Section C.2.). When selection is on zygote276

survival, the frequency of X individuals is reduced by a factor (1 − s) as277

selection directly affects the introduction of a alleles via mutation, and so278

the introduction of new X and Y individuals.279

The timing of selection not only affects the numerical load Λ and the ge-280

netic load L, but also the interaction between the two at mutation-selection281

balance. When plotting Λ as a function of L (see Figure 3), selection on282
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Figure 2: Genetic load L at mutation-selection balance at mutation-selection

balance as a function of the coefficient of selection s (dashed lines, for h = 0.1 and

µ = 10−3) and as a function of dominance h (full lines,with s = 0.1 and µ = 10−3).

Selection on mating success, fecundity or adult survival are represented in red,

selection on zygote survival in yellow and the fundamental model in black. Lines

are plotted using the expressions in Table S1.
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mating success or on fecundity leads to a positive linear relationship between283

Λ and L; population size decreases with increasing genetic load. When selec-284

tion is on fecundity there is a direct and simple relationship between L and285

Λ (L = Λ) as can clearly be seen when comparing these expressions in Table286

2. When selection is on mating success or on survival, the relationship is not287

as simple. For example, in the latter case, we observe the same genetic load288

for small values of s and very large values of s, whereas the numerical load289

continually increases with s. In this case, the genetic load is not enough to290

explain population size, the deleterious effect of a must also be taken into291

account (see equations for L in Table 2 for selection on zygote survival).292

Inbreeding depression293

294

Selection on mating success, fecundity and adult survival all lead to the same295

expression for inbreeding depression δ. For small values of the coefficient of296

selection s and small mutation rates µ, all models lead to a level of inbreeding297

depression δ that is numerically close. Increasing s leads to a smaller δ when298

selection is on zygote survival compared to the other models (see Figure 4).299

As seen for the genetic load L, selection on zygote survival leads to a non-300
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Figure 3: The numerical load Λ (full lines) and inbreeding depression δ (dashed

lines) as a function of the genetic load L at mutation-selection balance, for h = 0.1,

µ = 10−3 and s between 0 and 1. Λ for selection on mating success, fecundity and

zygote survival is represented in red, blue and yellow respectively. δ for selection

on mating success, fecundity and adult survival are in red, zygote survival in yellow

and the expressions from the fundamental model in black. Lines are plotted using

the expressions in Table S1 of the Supporting Information.
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monotonic relationship between s and δ. At higher values of µ, the tendencies301

change; the fundamental model predicts the highest δ, followed by selection302

on zygote survival (Figure 4). As can be expected from the expressions303

presented in Table 2, increasing dominance h decreases δ, whereas increasing304

the coefficient of selection s increases δ. The relationship between inbreeding305

depression and the genetic load depends on what parameter is modified, as306

increasing s or h lead to opposite tendencies. Increasing h leads to a decrease307

in δ while it increases L, whereas increasing s leads to higher δ and an increase308

in L (see Figure 3), except in the case of selection on zygote survival, where309

increasing s has a non-monotonic effect on both L and δ.310

Deterministic fixation311

The threshold value of the mutation rate for deterministic fixation µfix is312

the same whether selection is on reproduction or on survival. The expected313

µfix for the fundamental model is lower than that calculated for our models314

of selection. A lower threshold implies that the deterministic fixation of a315

deleterious mutation occurs at lower mutation rates. In the equations for316

µfix (see Table 2 and Supporting Information), we note that in our models317

the dominance of the mutations plays a greater role in defining the thresh-318
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Figure 4: Inbreeding depression δ at mutation-selection balance as a function of

the coefficient of selection s (dashed lines, for h = 0.1 and µ = 10−3) and as a

function of the mutation rate µ (full lines, with s = 0.1 and h = 0.1. Selection

on mating success, fecundity or adult survival are represented in red, selection on

zygote survival in yellow and the fundamental model in black. Lines are plotted

using the expressions in Table S1.
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old value than in the fundamental model, due to the presence of h in the319

numerator.320

DISCUSSION321

Whether the genetic load affects population size remains an open question.322

In a recent review on the genetic load L, Agrawal and Whitlock (2012) came323

to the conclusion that even though a population’s mean genetic load might324

not affect population size (as fitter individuals in the population could make325

up for the lack of reproductive success of less fit individuals i.e. soft selec-326

tion), if all individuals within the population have a high L, population size327

is expected to be affected (i.e. hard selection). The latter instance agrees328

with the generally accepted existence of the mutational meltdown (Lande,329

1994; Lynch et al., 1995; Coron et al., 2013), whereas the former suggests330

that segregating and polymorphic mutations should have little or no effect331

on population demography. But can soft selection completely mask the de-332

mographic consequences of the genetic load? For this to be the case, two333

conditions need to be met: 1) An infinite or very large number of juveniles334

(much greater that the environment’s carrying capacity) are produced at ev-335
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ery time step and 2) Selection must occur only at the juvenile or gametic336

stages, i.e. before any resources are consumed (reviewed in Agrawal and337

Whitlock, 2012). The first condition is not always met; not all organisms338

produce a very large number of offspring, and as for the second condition,339

selection occurs throughout the life-cycle, considering it affects only the juve-340

nile and gametic stages is a strong hypothesis. In our model, we have chosen341

a simplified representation of the life cycle, with selection affecting gamete342

production (fecundity), the success of a mating event, the survival of either343

zygotes before they have had time to consume any of the available resources344

or adults before they have had a chance to reproduce. Our results show345

that deleterious mutations can indeed lead to a numerical load Λ and that346

it depends on the timing of selection as predicted by Clarke (1973), but our347

results also indicate that the genetic load can also be affected by the timing348

of selection.349

Population size as a consequence of selection350

If not all individuals in a population have the optimal reproductive capac-351

ity, all the while consuming the same amount of resources, then this auto-352

matically decreases the population’s mean reproductive capacity. For the353

33



numerical load to be compensated, resources used by poorly reproducing in-354

dividuals need to be freed. When selection is on adult survival, all surviving355

individuals reproduce at the same rate as less fit adults are eradicated be-356

fore they reproduce and resources for new individuals are freed immediately.357

When selection is on mating success a resource-consuming adult does not358

always have efficient reproductive encounters, either because its genotype is359

counter-selected, its partner’s genotype is counter-selected, or the offspring360

eventually produced from this encounter are not of an optimal genotype.361

The numerical load Λ observed for selection on fecundity and zygote survival362

can be explained by the same reasoning as for selection on mating success363

(i.e. all adults consume the same quantity of resources, but not all of them364

produce the same proportion of gametes or viable offspring), however the365

effect of selection on population size is smaller. With selection on fecundity366

and on zygote survival all reproductive encounters are successful, it is only367

the number of potential offspring that decreases (either because fewer ga-368

metes are produced or because not all offspring are viable). With selection369

on mating success not only do individuals carrying a alleles have a lower370

success, gametes of poor quality are produced at the same rate as those of371

better quality, and the competition between the two further decreases the372
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probability of viable gametes meeting and engendering an offspring.373

The importance of the timing of selection374

When comparing our four models of selection we observe two distinct behav-375

iors concerning the frequency and state (homozygous or heterozygous) of the376

deleterious allele a, and consequently the genetic load L and amplitude of377

inbreeding depression δ at mutation-selection balance. Even though we find378

different numerical loads when selection affects mating success, fecundity or379

adult survival, these models all lead to the same frequency of AA, Aa and aa380

individuals, and hence the same expressions for L and δ, at mutation selec-381

tion balance, whereas selection on zygote survival leads to different behaviors382

for these variables. For simplicity, we will refer solely to selection on fecun-383

dity and not to all three models in order to facilitate the comparison between384

these three model and selection on zygote survival. The expressions for both385

L and δ when selection is on zygote survival lead to a non-monotonic effect386

of the coefficient of selection s on these variables, as well as a non-monotonic387

effect of dominance h on L, something which is not observed for selection on388

fecundity. This non-monotonic effect is due to differences between both the389

frequency and the state of the deleterious allele a (File S3). If we imagine a390

35



population in which we find no individuals carrying the a allele, the rate of391

introduction of individuals carrying a depends only on the mutation rate µ392

when selection is on fecundity. However, when selection is on zygote survival,393

this rate depends on µ, s and h as the birth rate Rt for zygote survival directly394

depends on these parameters (equation 6 and File S2). The birth rate of aa395

and Aa individuals is therefore lower when selection is on zygote survival396

than when it affects fecundity. We would therefore expect that if a affects397

zygote survival it would segregate at lower frequencies at mutation selection398

balance than if a affects fecundity. As the rate of introduction of individuals399

carrying a also depends on s and h, we would also expect that of the muta-400

tions affecting zygote survival strongly deleterious mutations would tend to401

be recessive, and slightly deleterious mutations would have a larger variance402

of dominance associated. On the other had, if selection affects fecundity,403

then we should observe a more random association between the coefficient404

of selection and the dominance of a. This reasoning is also applicable to the405

estimation of the levels of inbreeding depression δ within populations, as our406

results agree with the empirical observation that levels of δ vary between407

traits (Frankham et al. 2010, Chapter 13; Angeloni et al. 2014). In our408

model, we find that inbreeding depression is lower for zygote survival than409
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for fecundity. A better understanding of how δ evolves in populations is key410

for the understanding of evolutionary processes (e.g. the transition between411

outcrossing and self-fertilization in plants (Charlesworth and Charlesworth,412

1987; Porcher and Lande, 2005) and for conservation efforts.413

How considering the life cycle affects predictions compared to the414

fundamental model415

When considering neutral alleles, we find that whether the life cycle is taken416

into account or not, the genotypic frequencies will be at Hardy-Weinberg417

equilibrium. However, in the case of deleterious mutations, explicitly con-418

sidering the life-cycle and the timing of selection can have an effect on the419

fate of such alleles. The genetic load L and the amplitude of inbreeding420

depression are both affected by how selection acts against deleterious muta-421

tions. Historically, L has been estimated ignoring the potential effects of the422

life cycle, which can be relatively (numerically) small when selection affects423

reproductive success, fecundity and adult survival or relatively important as424

is the case when the deleterious allele a affects zygote survival. Selection425

on zygote survival leads to an unexpected non-monotonic relationship be-426

tween the effects of the deleterious mutations (its coefficient of selection s427
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and dominance h) which has never been observed, to our knowledge, in mod-428

els that have estimated load using the fundamental model, not even when429

taking stochasticity into account (Bataillon and Kirkpatrick, 2000; Roze and430

Rousset, 2004; Glémin, 2003). The predictions of the fundamental model431

imply that all mutations, independently of their properties (s and h) lead to432

L proportional to the rate at which they are introduced, the mutation rate µ.433

This is not the case when selection affects zygote survival: very deleterious434

mutations that are observed in the population have to be recessive. If they435

are not recessive, the zygotes carrying them never survive to become a part436

of the population, and hence such mutations (that are both very deleterious437

and dominant) cannot be detected. Considering the life cycle can therefore438

provide further insight into how selection can affect the fate of newly intro-439

duced mutations, as well as perhaps understanding the distribution of their440

dominance and selective coefficient as well as the interaction between the441

two.442

Towards more accurate models443

The timing of selection is not the only demographic factor with a potential444

effect on the numerical load, the genetic load and inbreeding depression; the445
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intrinsic birth and death rates could also play an important role. In our446

deterministic model these parameters have no effect, as we find neither the447

intrinsic birth nor death rates (b and d) in the equations for the numerical448

load, the genetic load or inbreeding depression. Results of demographically449

explicit and stochastic models have suggested that b and d can affect the fate450

of a deleterious allele, or more specifically its probability of fixation Coron451

et al. (2013). Developing a stochastic version of this model would allow us to452

evaluate the importance of these parameters; as we could imagine that higher453

birth rates lead to less efficient selection against deleterious mutations and454

a higher genetic load at mutation-selection balance, without necessarily in-455

creasing the numerical load. In this paper, we consider a specific demographic456

model; other demographic models may lead to different relationships between457

the genetic and numerical loads. Considering density and/or frequency de-458

pendent selection ((Wallace, 1970); (Charlesworth, 1971)) may also modify459

the present predictions. Our results highlight the importance of considering460

the interaction between selection against deleterious mutations and the de-461

mographic evolution of populations. The modern tools that are now available462

allow us to find explicit, and in some cases simple, equations for calculating463

load and inbreeding depression while considering demography. Using these464
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tools could provide us with more accurate and detailed predictions of how465

these two aspects (demography and genetics) that have often been considered466

as separate things, both affect the evolution of populations.467
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