Conjugacy class of homeomorphisms and distortion elements in groups of homeomorphisms

Abstract : Let S be a compact connected surface and let f be an element of the group Homeo_0(S) of homeomorphisms of S isotopic to the identity. Denote by \tilde{f} a lift of f to the universal cover of S. Fix a fundamental domain D of this universal cover. The homeomorphism f is said to be non-spreading if the sequence (d_{n}/n) converges to 0, where d_{n} is the diameter of \tilde{f}^{n}(D). Let us suppose now that the surface S is orientable with a nonempty boundary. We prove that, if S is different from the annulus and from the disc, a homeomorphism is non-spreading if and only if it has conjugates in Homeo_{0}(S) arbitrarily close to the identity. In the case where the surface S is the annulus, we prove that a homeomorphism is non-spreading if and only if it has conjugates in Homeo_{0}(S) arbitrarily close to a rotation (this was already known in most cases by a theorem by Béguin, Crovisier, Le Roux and Patou). We deduce that, for such surfaces S, an element of Homeo_{0}(S) is distorted if and only if it is non-spreading.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00987113
Contributeur : Emmanuel Militon <>
Soumis le : vendredi 6 octobre 2017 - 15:03:01
Dernière modification le : jeudi 3 mai 2018 - 13:32:58
Document(s) archivé(s) le : lundi 8 janvier 2018 - 12:57:07

Fichiers

continuitedistorsion.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00987113, version 2
  • ARXIV : 1405.1000

Citation

Emmanuel Militon. Conjugacy class of homeomorphisms and distortion elements in groups of homeomorphisms. 2017. 〈hal-00987113v2〉

Partager

Métriques

Consultations de la notice

56

Téléchargements de fichiers

22