Variational Bayesian model averaging for audio source separation

Abstract : Non-negative Matrix Factorization (NMF) has become popular in audio source separation in order to design source-specific models. The number of components of the NMF is known to have a noticeable influence on separation quality. Many methods have thus been proposed to select the best order for a given task. To go further, we propose here to use model averaging. As existing techniques do not allow an effective averaging, we introduce a generative model in which the number of components is a random variable and we propose a modification to conventional variational Bayesian (VB) inference. Experimental results on synthetic data show promising results as our model leads to better separation results and is less computationally demanding than conventional VB model selection.
Type de document :
Communication dans un congrès
SSP (IEEE Workshop on Statistical Signal Processing), Jun 2014, Gold Coast, Australia. pp.4, 2014
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00986909
Contributeur : Xabier Jaureguiberry <>
Soumis le : lundi 5 mai 2014 - 10:21:06
Dernière modification le : mardi 18 décembre 2018 - 16:38:02
Document(s) archivé(s) le : mardi 5 août 2014 - 11:40:33

Fichier

ssp14_vf.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00986909, version 1

Citation

Xabier Jaureguiberry, Emmanuel Vincent, Gaël Richard. Variational Bayesian model averaging for audio source separation. SSP (IEEE Workshop on Statistical Signal Processing), Jun 2014, Gold Coast, Australia. pp.4, 2014. 〈hal-00986909〉

Partager

Métriques

Consultations de la notice

743

Téléchargements de fichiers

309