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1. Introduction

Kinetic equations are used to describe a variety of phenomena in different
fields, ranging from rarefied gas dynamics and plasma physics to biology
and socio-economy, and appear naturally when one considers a statistical
description of a large particle system evolving in time.
At the microscopic level the particles motion is described by systems of

ordinary differential equations. Such systems, however, are extremely costly
to solve numerically and bring little insight on the behavior of a large set of
particles. Therefore, one seeks for reduced models of the particle dynamics
which are still able to describe the physical reality with sufficient accuracy.
In the classical kinetic theory of rarefied gases, the variation of a non-

negative function f = f(x, v, t), characterizing the particle densities having
velocity v ∈ R

3 in position x ∈ R
3 at time t, is obtained through the equa-

tion
df

dt
= Q(f), (1.1)

where, by the chain rule,

df

dt
=
∂f

∂t
+ v · ∇xf. (1.2)

In (1.2) we used the fact that all particles issued from the same point (x, v)
of the phase-space follow the same trajectory

dx

dt
= v,

dv

dt
= 0. (1.3)

The operator Q(f), on the right hand side in equation (1.1), describes the
effects of internal forces due to particle interactions and its form depends
on the details of the microscopic dynamic. The most well-known example
is represented by the nonlinear Boltzmann collision integral of rarefied gas
dynamics (Cercignani 1988, Cercignani, Illner and Pulvirenti 1994).
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Typically this operator characterizes the conservation properties of the
physical system, i.e. ∫

R3

Q(f)ϕ(v) dv = 0, (1.4)

where U(x, t) =
∫
f(x, v, t)ϕ(v) dv ∈ R

m defines a certain set of moments
of the distribution function f . Classically m = 5 and ϕ(v) = 1, v, |v|2
correspond to conservation of mass, momentum and energy respectively.
Therefore integrating (1.1) against ϕ(v) yields a system of macroscopic con-
servation laws

∂

∂t

∫

R3

fϕ(v) dv +

∫

R3

v · ∇xf ϕ(v) dv = 0. (1.5)

The above moment system, however, is not closed since the second term
involves higher order moments of the distribution function f . Therefore, to
obtain a closed set of equations, one is led to make assumptions about the
form of the distribution function. A simple way to find and approximate
closure is based on an additional property of the operator Q(f). In fact,
the distribution functions belonging to the kernel of the operator satisfy

Q(f) = 0 iff f =M [f ], (1.6)

where M [f ] = M [f ](x, v, t) can be expressed univocally in terms of the
set of moments U(x, t). Using a terminology borrowed from the rarefied gas
dynamic case, such functions are referred to as Maxwellian equilibria and the
closed macroscopic system obtained by approximating f with M [f ] in (1.5)
corresponds to the set of compressible Euler equations. Under standard
moments boundedness assumptions, the Euler system can be written as

∂U

∂t
+∇x · F (U) = 0, (1.7)

with F (U) =
∫
M [f ]vϕ(v) dv. Note that the simplest operator satisfy-

ing (1.4) and (1.6) is the linear relaxation operator (Bhatnagar, Gross and
Krook 1954)

Q(f) = ν(M [f ]− f), (1.8)

where ν = ν(x, t) > 0. Other closure strategies, like the Navier-Stokes
approach (Cercignani 1988), lead to more accurate macroscopic approxima-
tions of the moment system (1.5). In general, however, finding the right
closure is a very difficult problem which is far from being solved.
Besides rarefied gas dynamics, kinetic equations play an important role in

modeling plasmas (Landau 1981), granular gases (Pöschel and Brilliantov
2003), semiconductors (Markowich, Ringhofer and Schmeiser 1989), neu-
tron transport (Lewis and Miller 1993) and quantum gases (Uehling and
Uhlenbeck 1933). For a recent introduction to the Boltzmann equation and
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related kinetic models we refer the reader to Villani (2002) and Degond,
Pareschi and Russo (2004).
From the above picture it is clear that the numerical solution of a ki-

netic equation involves several problems of different nature. Aside from the
high dimensionality of the problem, in general (x, v, t) ∈ R

7, let us shortly
summarize some of the additional numerical difficulties and requirements
specific to kinetic equations:

(i) Conservation properties. Physical conservation properties (1.4) are
very important since they characterize the steady states. Methods
that do not maintain such properties at the discrete level need special
care in practical applications.

(ii) Computational cost. The operator Q(f) may be described by a high
dimensional integral in velocity space at each point x in physical space.
In such cases fast solvers are essential to avoid excessive computational
cost.

(iii) Velocity range. The significant velocity range may vary strongly with
space position (steady states are not compactly supported in velocity
space and in some applications may present power law tails). Methods
that use a finite velocity range may be inadequate in some circum-
stances.

(iv) Presence of multiple scales. In presence of multiple space-time scales
and/or large velocities the kinetic equation becomes stiff. Classical
stiff solvers may be hard to use when we have to invert a very large
nonlinear system.

In this paper we review some of the main results in this field for deter-
ministic numerical methods. Another class of methods, that we will not
cover in the present survey, is based on stochastic Monte-Carlo techniques.
The most famous examples are the Direct Simulation Monte-Carlo (DSMC)
methods by Bird (1994) and by Nanbu (1980). These methods guarantee
efficiency (their computational cost is linear with respect to the number
of particles) and preservation of the main physical properties. However,
avoiding statistical fluctuations in the results becomes extremely expensive
in presence of non-stationary flows or close to continuum regimes. We refer
the interested reader to the review by Pareschi and Russo (1999) and the
book by Rjasanow and Wagner (2006). Some related topics based on the
use of hybrid stochastic-deterministic methods are described in Section 9.
This survey and the selected bibliography are obviously biased by the per-
sonal taste and knowledge of the authors. Numerical methods for kinetic
equations are such a broad and active field of research that it is impossible
to give credit to all relevant contributions.

After this introduction, the plan of the manuscript is organized as fol-
lows. Section 2 is devoted to a short introduction of some mathematical
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and physical properties of the kinetic equations we will consider for the de-
velopment of the different numerical approaches. Although the scope of our
insights is wider, here we will focus mainly on the mean field Vlasov equa-
tion of plasma physics and the classical Boltzmann equation of rarefied gas
dynamics. This is motivated by their relevance for applications and by the
fact that these equations can be considered as prototype models containing
most major difficulties present in other kinetic models. Other models, in-
cluding linear Boltzmann equations and the Landau equation of collisional
plasmas, are briefly recalled at the end of the section.

We start our presentation of numerical methods in Section 3 dealing
with the case of semi-Lagrangian schemes designed for an accurate and effi-
cient approximation of the Vlasov equation and particles transport (Cheng
and Knorr 1976, Crouseilles, Mehrenberger and Sonnendrücker 2010, Son-
nendrücker, Roche, Bertrand and Ghizzo 1999). The idea exploited by
this kind of schemes is to use the theory of characteristics for comput-
ing the distribution function for the successive times either through for-
ward or backward reconstructions. Conservative semi-Lagrangian schemes
are also useful to ensure positivity of the solutions as well as conserva-
tions (Crouseilles, Respaud and Sonnendrücker 2009, Filbet, Sonnendrücker
and Bertrand 2001). The methods are presented in the case of the Vlasov
model and applied also to simple relaxation systems. Time splitting tech-
niques or Runge-Kutta methods are used to link the discretization of the
transport term with the discretization of the force term or the collision
operator (Cheng and Knorr 1976, Filbet and Russo 2009, Dimarco and
Loubère 2013a).

In Section 4 we deal with the discretization of the velocity space and its
relevance in the deterministic approximations of the Boltzmann collision
integral. Historically, one of the most popular method is represented by
the so called Discrete Velocity Models (DVM) of the Boltzmann equation.
These methods (Goldstein, Sturtevant and Broadwell 1989, Martin, Rogier
and Schneider 1992, Rogier and Schneider 1994, Panferov and Heintz 2002)
are based on a regular grid in velocity and on a discrete collision mechanism
on the points of the grid that preserves the main physical properties. As we
will see, the main drawback of this approach applied to the full Boltzmann
integral is its high computational cost (larger that O(n2) for a quadrature
formula based on n grid points) and relatively low accuracy (Palczewski,
Schneider and Bobylev 1997, Buet 1996, Panferov and Heintz 2002, Fainsil-
ber, Kurlberg and Wennberg 2006, Mouhot, Pareschi and Rey 2013). On
the other hand the methods provide a robust framework for the derivation
of conservative schemes in the case of simplified models, like the case of
relaxation operators (Mieussens 2000, Mieussens 2001).

Next in Section 5 we focus on another relevant class of numerical tech-
niques for the Boltzmann integral based on the use of spectral methods. The
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foundations of the method were first proposed by Pareschi and Perthame
(1996), inspired by previous works on the use of Fourier transform tech-
niques (Bobylev 1988). The numerical scheme is based on Fourier-Galerkin
spectral approximation of the distribution function represented by its Fourier
series in velocity space and can be evaluated in exactly O(n2) operations.
Related approaches, based on a direct discretization of the Fourier trans-
formed Boltzmann equation, has been derived by Bobylev and Rjasanow
(1999) and, more recently, by Gamba and Tharkabhushanam (2009). The
method was further developed by Pareschi and Russo (2000b) where evo-
lution equations for the Fourier modes were explicitly derived and spectral
accuracy of the method was proved. Extensions of spectral methods to other
fields, like plasma physics (Pareschi, Russo and Toscani 2000) and granular
gases (Filbet, Pareschi and Toscani 2005) are also discussed. In the plasma
physics case, algorithms that brings the overall cost to O(n log2 n) are read-
ily derived. A velocity rescaling technique is also presented for the granular
gases case.

Section 6 is devoted to the issue of computational complexity in the nu-
merical approximation of the Boltzmann equation by deterministic schemes.
Recently Mouhot and Pareschi (2006), using a suitable representation of
the collision operator, derived fast spectral solvers (for certain classes of
particle interactions, including hard spheres, the cost of the method is re-
duced to approximately O(n log2 n)) without loosing the spectral accuracy.
Previous attempts in this direction were based on discretizing directly the
Fourier transformed Boltzmann equation for Maxwell molecules (Grigoriev
and Mikhalitsyn 1983, Gabetta and Pareschi 1994, Bobylev and Rjasanow
2000). See also Bobylev and Rjasanow (1999) for a similar approach for the
hard spheres case. The method has been subsequently extended to the case
of quantum gases (Filbet, Hu and Jin 2012, Hu and Ying 2012) where fast
solvers are mandatory due to the cubic nonlinearity of the operator. Using
a pseudo-spectral formulation, this kind of approach has been applied suc-
cessfully to the construction of fast algorithms for DVM discretizations of
the Boltzmann operator (Mouhot et al. 2013).

Section 7 is concerned with the challenging problem of the severe time
step restrictions in regions close to continuum regimes. Two situations are
considered, the classical fluid limit problem and the diffusion regime. Sev-
eral authors have tackled these problems in the past, and there is a large
literature on the subject (see the recent surveys by Jin (2012), Degond
(2014) and Pareschi and Russo (2011)). The feature shared by these tech-
niques is that the resulting schemes avoid the solution of large systems of
nonlinear equations, are unconditionally stable and capture the asymptotic
limit automatically without resolving the small time scales. They are com-
monly referred to as asymptotic-preserving (AP) methods. Here we focus
on two classes of AP methods of particular relevance for Boltzmann-type
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equations in the fluid dynamic scaling. The first one is based on the use
of exponential techniques (Gabetta, Pareschi and Toscani 1997, Dimarco
and Pareschi 2011, Li and Pareschi 2014) and the second one is based on
the use Implicit-Explicit (IMEX) methods (Filbet and Jin 2010, Dimarco
and Pareschi 2013). We conclude the section with a discussion on the diffu-
sion limit for linear transport equations. Extensions of the IMEX methods
and a short review of other approaches are reported (Jin, Pareschi and
Toscani 2000, Klar 1998a, Lemou and Mieussens 2008, Boscarino, Pareschi
and Russo 2013).

In Section 8 we face the same kind of multiscale problems, but from
a different perspective. The idea is to combine in a unique solver differ-
ent numerical methods and models, each one specifically designed to deal
with a particular regime. In such a vast research field, we confine our-
selves to review some recent contributions where a dynamic fluid-kinetic
coupling is realized through a time evolving transition zone (Degond, Jin and
Mieussens 2005, Degond, Dimarco and Mieussens 2007, Degond, Dimarco
and Mieussens 2010, Degond and Dimarco 2012). A closely related idea is
based on the construction of hybrid methods. In these methods the numeri-
cal solution in each computational cell is obtained from the hybridization of
two numerical solvers coupled together. Typically, one solver aims at con-
structing the equilibrium (continuum) part of the solution with a determin-
istic method and the other solver yields the non equilibrium (kinetic) part of
the solution using a Monte Carlo strategy (Pareschi and Caflisch 2004, Di-
marco and Pareschi 2007, Degond, Dimarco and Pareschi 2011, Burt and
Boyd 2009, Homolle and Hadjiconstantinou 2007a, Radtke, Hadjiconstanti-
nou and Wagner 2011, Alaia and Puppo 2012). As we will see, the construc-
tion of such multiscale schemes poses several new difficulties for numerical
methods since it requires the definition of new concepts and methodologies
(see also Abdulle, E, Engquist and Vanden-Eijnden (2012) for a general
framework for designing multiscale algorithms).
At the end of this document, in Section 9, we include some final consider-

ations and a non exhaustive list of related topics which we feel are important
but are not included in this survey.

2. Preliminaries on kinetic equations

In this Section we give a short description of the kinetic models we will
consider in the rest of the review. Due to the variety of fields where kinetic
models have been applied it is impossible to give a fair description of all
of them. Therefore we concentrate on two models that can be considered
as prototypes for the development of the numerical methods, the Vlasov
mean-field equation and the Boltzmann equation. Other relevant models
are briefly mentioned at the end of the Section. We refer the reader to
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the books by Cercignani (1988), Cercignani et al. (1994), the recent survey
by Villani (2002), and the volume edited by Degond et al. (2004) for further
insights.

2.1. The Vlasov equation

In the case of particles interacting through a smooth potential the right hand
side in (1.1) is of the form Q(f) = −Fm · ∇vf where Fm is the mean-field
force given by

Fm(t) =

∫

R3×R3

Fi(x− y)f(y, v, t) dv dy =

∫

R3

Fi(x− y)ρ(y, t) dy, (2.1)

where

ρ(x, t) =

∫

R3

f(x, v, t) dv, (2.2)

is the density and Fi the internal force acting among particles. Typically we
shall restrict to internal forces which derive from an interaction potential
Φi so that Fi = −∇xΦi, where Φi is a scalar potential function.

This leads to the so-called Vlasov mean-field equation

∂f

∂t
+ v · ∇xf + Fm · ∇vf = 0, (2.3)

where Fm can also be written as

Fm = −∇xΦm, Φm =

∫

R3

Φi(x− y)ρ(y) dy. (2.4)

One of the most important examples for applications is the Coulomb po-
tential

Φi(x) =
q

4πr
, r = |x|, (2.5)

where q = 1 corresponds to the repulsive case (like e.g. the electrostatic
interaction) and q = −1 to the attractive case (like e.g. gravitation). Then
∆Φi(x) = −qδ(x), where δ(x) is the delta distribution at 0. This gives

∆Φm(x, t) =

∫

R3

∆Φi(x− y)ρ(y, t) dy = −qρ(x, t), (2.6)

and we obtain the Vlasov-Poisson system

∂f

∂t
+ v · ∇xf −∇xΦm · ∇vf = 0,

(2.7)
∆Φm(x, t) = −qρ(x, t).

In the case of negative charged particles in a uniform neutralizing back-
ground the Poisson equation reads

∆Φm(x, t) = 1− ρ(x, t). (2.8)
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The Vlasov-Poisson model is the most relevant model in plasma physics,
we introduce some of the main numerical approaches in Section 3. For a
rigorous derivation of the Vlasov mean-field system (2.3) we refer to the
book by Spohn (1991).

2.2. The Boltzmann equation

The Boltzmann equation is the fundamental model for the description of
the dynamics of particles in a dilute gas. The classical hard sphere case
considers particles as solid spheres of diameter d which do not interact as
long as they do not enter in contact. Note that, in contrast with the Vlasov
description, here the interaction potential is non smooth since we have

Fi(x− y) = 0, ∀x, y s.t. |x− y| > d. (2.9)

The Boltzmann equation for colliding hard spheres takes the form

∂f

∂t
+ v · ∇xf = Q(f, f). (2.10)

In this case the interaction operator has a bilinear structure, Q = Q(f, f)
and is obtained in the Boltzmann-Grad limit where the number of particles
N → ∞, d→ 0 in such a way that Nd2 is kept constant

Q(f, f)(v) =

∫

R3

∫

S2

|v − v∗|[f(v′)f(v′∗)− f(v)f(v∗)] dω dv∗. (2.11)

The operator acts only on the velocity variable and is local in space, more-
over the memory of the positions of the spheres before and after the collision
has been lost. In the above expression, ω is a unit vector of the sphere S

2

and (v′, v′∗) represent the collisional velocities associated with (v, v∗). The
collisional velocities satisfy microscopic momentum and energy conservation

v′ + v′∗ = v + v∗, |v′|2 + |v′∗|2 = |v|2 + |v∗|2. (2.12)

The above system of algebraic equations has the following parametrized
solution

v′ =
1

2
(v + v∗ + |v − v∗|ω), v′∗ =

1

2
(v + v∗ − |v − v∗|ω) (2.13)

where v − v∗ is the relative velocity. For details on the rigorous deriva-
tion of the Boltzmann equation from the hard sphere dynamics we refer
to Lanford III (1975) and to the book by Cercignani (1988).
Although a mathematical theory is still lacking, the Boltzmann equation

is often used in connection with smooth potentials. Formally, for inter-
actions forces described by an inverse power law we have the Boltzmann
collision operator

Q(f, f)(v) =

∫

R3

∫

S2

B(v, v∗, ω)[f(v
′)f(v′∗)− f(v)f(v∗)] dω dv∗, (2.14)
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where the collision kernel B is a nonnegative function depending only on
|v − v∗| and the scattering angle θ between relative velocities v − v∗ and
v′ − v′∗ = |v − v∗|ω

cos θ =
(v′ − v′∗) · (v − v∗)

|v − v∗|2
=

(v − v∗) · ω
|v − v∗|

.

The kernel has the from

B(v, v∗, ω) = |v − v∗|σ(|v − v∗|, cos θ), (2.15)

where the scattering cross-section σ, in the case of inverse k-th power forces
between particles, can be written as

σ(|v − v∗|, cos θ) = bα(cos θ)|v − v∗|α−1, (2.16)

with α = (k−5)/(k−1). The potential with k > 5 are called hard potentials
and for k < 5 we have soft potentials. The special situation k = 5 gives the
so-called Maxwell pseudo-molecules model with

B(v, v∗, ω) = b0(cos θ). (2.17)

For the Maxwell case the collision kernel is independent of the relative ve-
locity. This case has been widely studied theoretically, in particular ex-
act analytic solutions can be found in the space homogeneous case where
f = f(v, t) (Bobylev 1975). For an overview of existence results for the
Boltzmann equation we refer the interested reader to the book by Cercig-
nani et al. (1994).

Remark 2.1.

• For numerical purposes, a widely used model is the variable hard sphere
(VHS) model introduced by Bird (1994) in order to correct the non-
realistic scattering law of the hard spheres model in rarefied gas sim-
ulations. The model corresponds to bα(cos θ) = Cα, where Cα is a
positive constant, and hence

σ(|v − v∗|, cos θ) = Cα|v − v∗|α−1. (2.18)

• Along the survey we made the conventional assumptions x ∈ R
dx and

v ∈ R
dv with dx = dv = 3. However, lower dimensional models can

be constructed in order to simplify the mathematical analysis, or due
to the different physical meaning of the independent variables. This
lower dimensional model are particularly useful when testing numerical
methods. When simplified models are considered we will emphasize the
relevant differences.

2.3. Other parametrizations of the Boltzmann operator

The collision integral Q(f, f) can be written in different equivalent forms,
according to the parametrization used for the collisional velocities. Using
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the identity
∫

S2

F

(
u− |u|ω

2

)
dω =

2

|u|

∫

S2

|u · n|F (n(u · n)) dn, (2.19)

obtained by the transformation

ω = e− 2(e · n)n, e =
u

|u| ,

we get the frequently used form

Q(f, f)(v) =

∫

R3

∫

S2

B̄(v, v∗, n)[f(v
′)f(v′∗)− f(v)f(v∗)] dn dv∗ (2.20)

with

v′ = v − ((v − v∗) · n)n, v′∗ = v∗ + ((v − v∗) · n)n, (2.21)

and

B̄(v, v∗, n) = 2|v − v∗|σ(|v − v∗|, 1− 2| cosϕ|2)| cosϕ|, (2.22)

where

| cosϕ| = |(v − v∗) · n|
|v − v∗|

,

and the angle ϕ is related to the scattering angle θ by ϕ = (π − θ)/2. The
hard sphere case now corresponds to

B̄(v, v∗, n) = 2|v − v∗|| cosϕ|. (2.23)

Another well-known parametrization of the collisional velocities is due to Car-
leman (1932). Here we report a closely related representation that we will
use in the development of fast numerical solvers. From (2.19) we obtain the
identity

∫

S2

F

(
u− |u|ω

2

)
dω =

16

|u|

∫

R3

δ(4x · u+ 4|x|2)F (x) dx. (2.24)

Equation (2.24) yields

Q(f, f)(v) = 16

∫

R3

∫

R3

σ (|v − v∗|, cos θ) δ(4x · (v − v∗) + 4|x|2)

[f(v∗ − x) f(v + x)− f(v∗) f(v)] dx dv∗

and then setting y = v∗ − v − x in v∗ we obtain

Q(f, f)(v) =

∫

R3

∫

R3

B̃(x, y)δ(x · y)

[f(v + y) f(v + x)− f(v + x+ y) f(v)] dx dy, (2.25)
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with

B̃(x, y) = 4σ

(
|x+ y|,−x · (x+ y)

|x||x+ y|

)
. (2.26)

We refer to Section 6 for further details on the use of parametrization (2.25)
of the Boltzmann operator for the derivation of fast summation methods.

2.4. Physical properties of the Boltzmann operator

During the evolution process, the collision operator preserves mass, momen-
tum and energy, i.e.,

∫

R3

Q(f, f)ϕ(v) dv = 0, ϕ(v) = 1, v, |v|2, (2.27)

and in addition it satisfies Boltzmann’s well-known H-theorem
∫

R3

Q(f, f) ln(f(v))dv ≤ 0. (2.28)

Since the collision operator is local in space, the dependence from the vari-
able x in this paragraph is omitted. The above properties are a consequence
of the following identity that can be easily proved for any test function ϕ(v)

∫

R3

Q(f, f)ϕ(v) dv

=

∫

R6

∫

S2

B(v, v∗, ω)[ff∗][ϕ
′ − ϕ] dω dv∗ dv (2.29)

= −1

4

∫

R6

∫

S2

B(v, v∗, ω)[f
′f ′∗ − ff∗][ϕ

′ + ϕ′
∗ − ϕ− ϕ∗] dω dv∗ dv,

where we omitted the explicit dependence from v, v∗, v′, v′∗ to simplify the
notation. In order to prove (2.29) one uses the micro-reversibility property
B(v, v∗, ω) = B(v∗, v, ω) and the fact that the Jacobian of the transforma-
tion of (v, v∗) → (v′, v′∗) is equal to one.
It is useful to introduce the following definition.

Definition 2.1. A function ϕ(v) : R3 → R such that

ϕ(v′) + ϕ(v′∗)− ϕ(v)− ϕ(v∗) = 0, ∀ v, v∗ ∈ R
3, ω ∈ S

2

with v′, v′∗ defined by (2.13) is called a collision invariant.

It can be shown that

Theorem 2.1. A continuous function ϕ is a collision invariant if and only
if ϕ ∈ span{1, v, |v|2} or equivalently

ϕ(v) = a+ b · v + c|v|2, a, c ∈ R, b ∈ R
3.
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Assuming f strictly positive, for ϕ(v) = ln(f(v)) form (2.29) we obtain
∫

R3

Q(f, f) ln(f)dv

= −1

4

∫

R6

∫

S2

B(v, v∗, ω)[f
′f ′∗ − ff∗]

(2.30)
[ln(f ′) + ln(f ′∗)− ln(f)− ln(f∗)] dω dv∗ dv

= −1

4

∫

R6

∫

S2

B(v, v∗, ω)[f
′f ′∗ − ff∗] ln

(
f ′f ′∗
ff∗

)
dω dv∗ dv ≤ 0,

since the function

z(x, y) = (x− y) ln(x/y) ≥ 0 (2.31)

and z(x, y) = 0 only if x = y.
In (2.30) the equality sign holds only if ln(f) is a collision invariant, which

implies

f = exp(a+ b · v + c|v|2), c < 0.

If we define the macroscopic density, mean velocity and temperature

ρ =

∫

R3

f dv, u =
1

ρ

∫

R3

vf dv, T =
1

3Rρ

∫

R3

(v − u)2f dv, (2.32)

we obtain that the distribution function has the form

M [f ](v, t) =M [ρ, u, T ](v, t) =
ρ

(2πRT )3/2
exp

(
−|u− v|2

2RT

)
. (2.33)

The constant R = KB/m is called the gas constant, KB is the Boltzmann
constant and m the mass of a particle.

Definition 2.2. A function of the form (2.33) is called a Maxwellian dis-
tribution.

Boltzmann’s H-theorem (2.30) implies that any equilibrium distribution
function, i.e. any function f for which Q(f, f) = 0, has the form of a locally
Maxwellian distribution.
Let f(v, t) be a solution of the homogeneous Boltzmann equation

∂f

∂t
= Q(f, f), (2.34)

where now the density, mean velocity and the temperature are constants
defined by the initial distribution.

Definition 2.3. The functional

H(f) =

∫

R3

f ln(f) dv, (2.35)

is called the H-functional.
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From (2.30) and (2.34), using mass conservation, we have

dH(f)

dt
=

∫

R3

Q(f, f) ln(f) dv ≤ 0. (2.36)

Thus the H-functional is monotonically decreasing until f reaches the equi-
librium Maxwellian state. In a non homogeneous setting if we multiply the
Boltzmann equation by ln(f) and integrate with respect to v we get the
entropy dissipation equation

∂H(f)

∂t
+∇x ·

(∫

R3

f ln(f)v dv

)
=

∫

R3

Q(f, f) log f dv ≤ 0. (2.37)

If we further integrate with respect to x and ignore possible boundary terms
we obtain

∂

∂t

∫

R3

H(f) dx =

∫

R3

∫

R3

Q(f, f) ln(f) dv dx ≤ 0. (2.38)

By denoting the kinetic entropy with −H(f), the above inequality express
the fact that the total entropy is nondecreasing as time increases and there-
fore the Boltzmann dynamics is irreversible.

Finally, another possible way to characterize the Maxwellian state is
through a minimization problem. Suppose we fix the moments ρ, T ∈ R+

and u ∈ R
3. It can be shown thatM [f ] is the unique solution of the entropy

minimization problem

min

{
H(f) =

∫

R3

f log f dv, f ≥ 0,

∫

R3

f




1
v
|v|2


 dv =




ρ
ρu

ρ(u2 + 3RT )






 . (2.39)

This means that M [f ] minimizes the entropy of all the possible states lead-
ing to the same macroscopic properties. This minimization problem is called
the Gibbs principle and can be solved by a Lagrange multiplier method. We
refer to Levermore (1996) for recent applications of the above principle to
moment methods.

2.5. Moment equations and fluid limit

Fluid equations deal with averaged quantities over small volumes in position
space. In order to express that we wish to look at the system at large scales,
we are led to introduce the rescaling

x′ = εx, t′ = εt,
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in the Boltzmann equation. Dropping the primes for notation simplicity we
obtain the perturbation problem

∂f

∂t
+ v · ∇xf =

1

ε
Q(f, f), (2.40)

where the scaling parameter ε > 0 is referred to as Knudsen number. If
we multiply the scaled Boltzmann equation (2.40) by its collision invariants
and integrate the result in velocity space we obtain the moment equations
(1.5) that can be rewritten as

∂

∂t

∫

R3

fϕ(v) dv +∇x ·
(∫

R3

vfϕ(v) dv

)
= 0, ϕ(v) = 1, v, |v|2. (2.41)

These equations describe the balance of mass, momentum and energy. As
already observed, the above system is not closed since it involves higher
order moments of the distribution function f .
As ε→ 0, from (2.40) we have formally Q(f, f) → 0, and thus f ap-

proaches the local Maxwellian M [f ]. In this case, substituting f = M [f ]
into (2.41), the higher order moments of the distribution function can be
computed as function of ρ, u, and T and we formally recover the closed
system of compressible Euler equations

∂ρ

∂t
+∇x · (ρu) = 0

∂ρu

∂t
+∇x · (ρu⊗ u+ p) = 0 (2.42)

∂E

∂t
+∇x · (E + p)u = 0

p = ρRT, E =
1

2
ρ(u2 + 3RT ) (2.43)

where p is the gas pressure and ⊗ denotes the tensor product. We recall
that the relation p = ρRT is called the perfect gas equation of state.

The rigorous passage from the Boltzmann equation to the compressible
Euler equations has been investigated by several authors (Caflisch 1980,
Nishida 1978). Higher order fluid models, such as the compressible Navier-
Stokes model, can be derived using the expansions due to Chapmann-Enskog
and to Grad (Müller and Ruggeri 1993, Struchtrup 2005). We refer to Lev-
ermore (1996) for a mathematical setting of the problem and to Golse and
Saint-Raymond (2004) for recent theoretical results. Let us remark that,
above the Navier-Stokes level, these classical expansions yield unsatisfactory
equations, which are unstable in cases of the Chapman-Enskog expansion
(Burnett and super-Burnett equations), and describe unphysical discontin-
uous shocks in case of the Grad method. We refer to Struchtrup (2005) for
alternative approaches that avoid some of the short-comings of the classical
high order closures.
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Remark 2.2. In velocity dimension dv, dv ≥ 1, the definition of the mo-
ments becomes

ρ =

∫

Rdv

f dv, u =
1

ρ

∫

Rdv

vf dv, T =
1

dv Rρ

∫

Rdv

(v − u)2f dv, (2.44)

and the corresponding Maxwellian reads

M [f ](v, t) =
ρ

(2πRT )dv/2
exp

(
−|u− v|2

2RT

)
. (2.45)

In particular we have

E =
1

2

∫

Rdv

f |v|2 dv =
1

2
ρ(u2 + dv RT ).

2.6. Boundary conditions

The Boltzmann equation is complemented with the boundary conditions
in space for v · n ≥ 0 and x ∈ ∂Ω, where n denotes the unit normal,
pointing inside the domain Ω. Mathematically, such boundary conditions
are modelled by an expression of the form (Cercignani 1988)

|v · n|f(x, v, t) =
∫

v∗·n<0
|v∗ · n(x)|K(v∗ → v, x, t)f(x, v∗, t) dv∗. (2.46)

The ingoing flux is defined in terms of the outgoing flux modified by a given
boundary kernel K. This boundary kernel is such that positivity and mass
conservation at the boundaries are guaranteed,

K(v∗ → v, x, t) ≥ 0,

∫

v·n(x)≥0
K(v∗ → v, x, t) dv = 1.

Commonly used reflecting boundary conditions are the so-called Maxwell’s
conditions. This is equivalent to impose for the ingoing velocities

f(x, v, t) = (1− α)Rf(x, v, t) + αMf(x, v, t), (2.47)

in which x ∈ ∂Ω, v · n(x) ≥ 0. The coefficient α, with 0 ≤ α ≤ 1, is called
the accommodation coefficient and

Rf(x, v, t) = f(x, v − 2n(n · v), t), Mf(x, v, t) = µ(x, t)Mw(v). (2.48)

If we denote by Tw the temperature of the solid boundary, Mw is given by

Mw(v) = exp

(
− v2

2RTw

)
,

and the value of µ is determined by mass conservation at the wall

µ(x, t)

∫

v·n≥0
Mw(v)|v · n|dv =

∫

v·n<0
f(x, v, t)|v · n|dv. (2.49)
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The case α = 0 corresponds to specular reflection and the re-emitted molecules
have the same flow of mass, temperature and tangential momentum of
the incoming molecules, while α = 1 corresponds to full accommodation
and the re-emitted molecules have completely lost memory of the incoming
molecules, except for conservation of the number of molecules.
A different type of boundary condition are the inflow boundary conditions

where one assumes that the distribution function of the particles entering
the domain is known, i.e.

f(x, v, t) = g(v, t), x ∈ ∂Ω, v · n > 0.

A typical example of such condition is used in shock wave calculations,
where one assumes that the distribution function at the boundary of the
computational domain is a Maxwellian M(v) and that the incoming flux is
distributed according to the Maxwellian flux (v · n)M(v), v · n > 0.

2.7. Other collision operators

BGK models

As mentioned in the introduction, a simplified model Boltzmann equation is
represented by the relaxation operator (1.8). This model, which we rewrite
below for the sake of completeness, is usually referred to as BGK model
since its introduction by Bhatnagar et al. (1954)

Q(f)(v) = ν(M [f ]− f). (2.50)

In (2.50) the function M [f ] is the local Maxwellian computed by the mo-
ments of the distribution function f and ν, in general, is proportional to
the density and depends on the temperature ν(ρ, T ) = CρT 1−µ, where
C > 0 is a constant and µ is the exponent of the viscosity law of the
gas (Mieussens 2000).
Conservation of mass, momentum and energy as well as Boltzmann’s H-

theorem are readily satisfied and the equilibrium solutions are Maxwellians.
Furthermore, the model has the correct fluid dynamic limit, since under
the scaling (2.40) as ε → 0 formally the moments ρ, ρu, and E satisfy the
compressible Euler equations (2.42).

The mathematical theory of the BGK equation is simpler then for the
full Boltzmann equation (Perthame 1989). Numerical simulations are also
easier, especially by deterministic methods (see Sections 3 and 4). However,
this model exhibits some unphysical features, such as an unrealistic Prandtl
number. The Prandtl number is a normalized ratio of the heat conductivity
to the viscosity. In the case of the BGK operator, this ratio is one where it
is smaller than one in the case of the Boltzmann operator (for example the
hard-sphere model leads to a Prandtl number very close to 2/3). This causes
the BGK model to have a different Navier-Stokes limit with respect to the
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original Boltzmann equation. The correct Prandtl number, as well as the
correct Navier-Stokes limit, can be recovered using more sophisticated BGK
models, such as the velocity dependent collision frequency BGK models and
the Ellipsoidal Statistical BGK (ES-BGK) models (Bouchut and Perthame
1993, Holway 1966).

Landau-Fokker-Planck models

The Landau-Fokker-Planck model is a common kinetic model in plasma
physics and is obtained in the so-called grazing collision limit of the Boltz-
mann operator. In such limit the Boltzmann collision operator converges
towards a nonlinear integro-differential diffusion operator (Landau 1981)

QL(f, f)(v) = ∇v ·
∫

R3

A(v − v∗)[f(v∗)∇vf(v)− f(v)∇v∗f(v∗)] dv∗ (2.51)

where A(v − v∗) = Ψ(|v − v∗|)Π(v − v∗) is a 3 × 3 nonnegative symmetric
matrix and

Π(v − v∗) = I − (v − v∗)(v − v∗)
|v − v∗|2

,

with I the identity matrix, is the orthogonal projection upon the space
orthogonal to v − v∗. We have Ψ(|v − v∗|) = Λ|v − v∗|α+2 for inverse-power
laws, with α ≥ −3 and Λ > 0.

Since conservation of mass, momentum, and energy, as well as H-theorem
for the entropy are satisfied, equilibrium states are Maxwellians. The case
α = −3 is the so-called Coulombian case, of primary importance for ap-
plications. In such case the Boltzmann collision operator has no meaning,
due to the divergence of the integral, even for smooth functions, a cut-off
angular approximation is then used and the Landau equation can be derived
in the so called grazing collision limit (Villani 2002).

Linear Boltzmann models

Linear Boltzmann models occur when one considers a particle system moved
by an external force which describes short-range interactions with some
scatters (like fixed obstacles or a known distribution of target particles). In
this situation, the interaction between the particles under consideration and
the obstacles is described by a linear Boltzmann collision operator

Q(f) =

∫

R3

[W (v∗ → v)f(v∗)−W (v → v∗)f(v)] dv∗ (2.52)

where W (v∗ → v) is the scattering rate.
For example this operator is used in kinetic semiconductor models where

W (v∗ → v) = σ(v, v∗)M(v) withM the normalized equilibrium distribution
(Maxwellian, Fermi-Dirac) at the temperature θ of the lattice. The function
σ(v, v∗) describes the interaction of carriers with phonons (Markowich et
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al. 1989). A classical reference for linear transport is the book by Case
and Zweifel (1967). More recently these models have found applications in
biology (Perthame 2007).

Further models
The Enskog equation takes into account the nonlocality of the interactions
induced by the diameter of the interacting spheres and describes the behav-
ior of dense gases. The collision operator is delocalized in space since the
nonlinear local integrand f ′f ′∗ − ff∗ in (2.10) takes the form

f ′(x)f ′∗(x− δω)− f(x)f∗(x+ δω),

where δ is the particle diameter, and this feature regularizes the singular-
ity of the Boltzmann operator. As a result, the mathematical theory of
the Enskog equation is more complete than that of the Boltzmann opera-
tor (Bellomo, Lachowicz, Polewczak and Toscani 1991). Modern applica-
tions of such models in one dimension are found in traffic flows (Klar and
Wegener 1997).

Other generalizations of the Boltzmann operator deal with quantum or
relativistic extensions. In the quantum-Boltzmann operator the nonlinear
interactions f ′f ′∗ − ff∗ in (2.14) are replaced by

f ′f ′(1± θ0f)(1± θ0f∗)− ff∗(1± θ0f
′)(1± θ0f

′
∗),

where θ0 = ~
3, ~ is the rescaled Planck constant. The minus sign corre-

sponds corresponds to fermions (such as electrons), and the plus sign to
bosons (such as photons). The collision operator are called Fermi-Dirac
operator and Bose-Einstein operator respectively. References about these
quantum collision operators and the associated challenging phoenomena of
the Bose-Einstein condensation can be found in (Escobedo, Mischler and
Valle 2003, Degond et al. 2004).
Finally, let us mention that Boltzmann operators have been also used to

describe granular gases. In such models particles undergo binary inelastic
collisions according to the rules

v′ =
1

2
(v + v∗) +

1 + e

4
(v − v∗) +

1 + e

4
|v − v∗|ω,

v′∗ =
1

2
(v + v∗)−

1 + e

4
(v − v∗)−

1 + e

4
|v − v∗|ω,

where 0 < e ≤ 1 is called the restitution coefficient. As a result, when
e < 1 energy is dissipated by the model and the steady states (in absence
of external sources of energy) are Dirac delta function centered in the mean
velocity. We refer to Bobylev, Carrillo and Gamba (2000) for recent math-
ematical results. Similar models in a one-dimensional setting have been
introduced recently to describe wealth distributions (Cordier, Pareschi and
Toscani 2005).
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2.8. Other scalings and diffusion limits

Different kind of scalings of the Boltzmann equation are frequently consid-
ered in applications. They consist in taking

x′ = εx, t′ = ε1+αt,

where α ≥ 0 yields different macroscopic limits when ε → 0. In this case,
reverting to the original notation, the Boltzmann equation reads

εα
∂f

∂t
+ v · ∇xf =

1

ε
Q(f, f) . (2.53)

When α = 0 we have the fluid limit discussed before, when α > 0 a longer
time scale is considered and the formal derivation of the asymptotic behav-
ior for the Boltzmann equations becomes more delicate and some special
assumptions on the structure of the initial data are required. In particu-
lar, for 0 < α < 1, formally one obtains the incompressible Euler equa-
tions, whereas for α = 1 the incompressible Navier-Stokes equations are
derived (Cercignani et al. 1994). We refer to Bardos, Golse and Levermore
(1991) and Bardos, Golse and Levermore (1993) for a theoretical back-
ground.
Here we limit ourselves to show the formal derivation for the diffusion

limit α = 1 in the case of a simple linear collision term of the form

Q(f)(v) =

∫

R3

σ(v, v∗)[M(v)f(v∗)−M(v∗)f(v)] dv∗, (2.54)

where M is the constant in time normalized Maxwellian

M(v) =
1

(2π)3/2
exp

(
−|v|2

2

)

corresponding to a spatially homogeneous fluid state with density and tem-
perature equal to 1 and bulk velocity equal to 0. In (2.54), the anisotropic
scattering kernel σ is rotationally invariant and satisfies

σ(v, v∗) = σ(v∗, v) > 0.

We assume that the collision frequency λ satisfies the following bound for
some positive constant λM

0 < λ(v) =

∫

R3

σ(v, v∗)M(v∗) dv∗ ≤ λM . (2.55)

When ε→ 0, formally we haveQ(f) = 0 which implies f(x, v, t) = ρ(x, t)M(v)
where the mass ρ satisfies the diffusion equation (Markowich et al. 1989)

∂tρ = ∇x · (D∇xρ) . (2.56)

In the above equation, D is the diffusion coefficient matrix defined implicitly
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in terms of the cross section

D =

∫

R3

M(v)

λ(v)
(v ⊗ v) dv.

2.9. Splitting of the time scales

Operator splitting methods are a classical approach to the numerical approx-
imation of partial differential equations. In the case of kinetic equations we
introduce such methods ad the end of this section due to their transversal
nature to many different numerical techniques.
The solution in the time interval [0,∆t] of (1.1) is obtained as the sequence

of two steps. First integrate the space homogeneous kinetic equation

∂f∗

∂t
= Q(f∗),

(2.57)
f∗(x, v, 0) = f0(x, v),

on the time interval [0,∆t] to obtain f∗ = C∆t(f0), and then the transport
equation using the output of the previous step as initial condition,

∂f

∂t
+ v · ∇xf = 0,

(2.58)
f (x, v, 0) = f∗(x, v,∆t).

in the same time interval to get f = T∆t(f
∗) = T∆t(C∆t(f0)).

After computing an approximation of the solution at time ∆t, the pro-
cess may be iterated to obtain the numerical solution at later times. For
convergence results of this first order splitting in the case of Boltzmann and
BGK models we refer to Desvillettes and Mischler (1996).

Splitting schemes are very popular since they share several nice properties.

• The homogeneous step acts only on v whereas the transport step acts
on x. This makes the implementation of the resulting scheme sim-
pler (it allows the use of any existing code designed to solve the free
transport equation) and highly parallelizable.

• It is simpler to design schemes which preserves the physical properties
(conservations, H-theorem), since these properties essentially depend
on the treatment of the homogeneous step.

Higher order splitting formulas can be derived in different ways (Hairer,
Lubich and Wanner 2002). For example the well-known second order Strang
splitting (Strang 1968) can be written as

C∆t/2(T∆t(C∆t/2(f0))). (2.59)

Unfortunately for splitting methods of order higher then two it can be shown
that it is impossible to avoid negative time steps both in the transport as well
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as in the collision (Hairer et al. 2002). Higher order formulas which avoid
negative time stepping can be obtained as suitable combination of splitting
steps (Dia and Schatzman 1996). For example a fourth order scheme reads

4

3
C∆t/4(T∆t/2(C∆t/2(T∆t/2(C∆t/4(f0)))))−

1

3
C∆t/2(T∆t(C∆t/2(f0))). (2.60)

Clearly all the above splitting methods admit the symmetric formulation
obtained by switching the transport and the collision operators. Beside the
problem of the appearance of negative coefficients or negative time steps
in high order formulas (which may originate lack of positivity), splitting
methods suffer also of order reduction in the fluid-limit (Jin 1995).

3. Semi-Lagrangian schemes

In this section we give a short overview of semi-Lagrangian method for ki-
netic transport equation and the Vlasov equation. The methods are based
on a fixed computational grid but take into account the Lagrangian na-
ture of the transport process. For their structure semi-Lagrangian methods
apply naturally to the linear transport part of kinetic equations, the full
equation being often solved by splitting techniques. These methods can be
designed in order to possess many desired properties for a numerical scheme
for kinetic equations, namely positivity, physical conservations and robust-
ness when dealing with large velocities. These restrictions often prevent a
straightforward application of the usual schemes for hyperbolic conservation
laws (Cockburn, Johnson, Shu and Tadmor 1998).
There are several approaches that can be used to solve efficiently the

transport process in kinetic equations, ranging from particle in cell meth-
ods (Birdsall and Langdon 1991) and flux-balance methods (Boris and
Book 1973) to WENO schemes (Carrillo and Vecil 2007) and Discontinuous-
Galerkin methods (Qiu and Shu 2011, Ayuso, Carrillo and Shu 2011). Other
schemes developed specifically for the Vlasov equation include Heath, Gamba,
Morrison and Michler (2012) and Cheng, Gamba and Proft (2012). In this
section we do not aspire to present a survey of such a general and broad
topic and refer to the above references and the recent introductory notes
by Sonnendrücker (2013) for a more complete overview of the methods.
We first present the basic concept of the semi-Lagrangian method in the

simple context of the linear, one dimensional advection equation. We will
then consider the applications of such technique to kinetic equations in
particular we consider applications to the Vlasov-Poisson system (Cheng
and Knorr 1976, Crouseilles et al. 2010, Sonnendrücker et al. 1999, Filbet
et al. 2001) and to the BGK equation of rarefied gas dynamics (Filbet and
Russo 2009, Santagati, Russo and Yun 2012, Dimarco and Loubère 2013a,
Dimarco and Loubère 2013b).
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3.1. Transport equations

Let us consider the one dimensional linear advection equation

∂f

∂t
+ v

∂f

∂x
= 0, x ∈ R (3.1)

here f = f(x, t), v ∈ R, with initial datum f(x, 0) = f0(x). It is then well
known that the exact solution reads

f(x, t) = f0(x− vt). (3.2)

The Semi-Lagrangian methods use the knowledge of the exact solution
which is explicitly represented in terms of the initial datum to construct
a numerical approximation of the transport equation. In particular, the
following expression holds

f(xj , t
n+1) = f0(xj − vtn+1) = f0(xj − v∆t− vtn) = f(xj − v∆t, tn) (3.3)

where we introduced a Cartesian uniform grid xj = j∆x, j ∈ Z and a
time discretization tn = n∆t. The above equation provides the basis for
semi-Lagrangian methods. The points in space that are used to compute
the solution are the points that within a single time step are transported
by the flow onto the computational mesh. These points does not lie in the
general case on the grid. The backward semi-Lagrangian method can then
be obtained as

fn+1
j = fn

j−v ∆t
∆x

= fnj−k−α, k + α = v
∆t

∆x
, k =

[
v
∆t

∆x

]
, (3.4)

where [ · ] denotes the integer part and α ∈ (0, 1) is a non integer index
unless the time and space grid satisfy v∆t = k∆x in which case α = 0.
The expression fnj−k−α represents the value at the point xj − v∆t obtained

by some interpolation procedure (see Figure 3.1). The type and the degree
of interpolation defines then the type of semi-Lagrangian scheme. As an
example we consider a simple linear interpolation, then the scheme reads

fn+1
j = αfnj−k−1 + (1− α)fnj−k. (3.5)

Observe now that if v∆t/∆x < 1 one gets k = 0, α = v∆t/∆x and the
resulting method is nothing else but the well-known upwind method. How-
ever, in contrast with standard upwind, scheme (3.5) holds for any value of
v∆t/∆x and, since the values of the solution at the new time level n + 1
are obtained by a linear interpolation of the values at time level n with
nonnegative coefficients, the discrete maximum principle holds. This means
that no stability conditions are needed for such scheme and therefore it is
well-suited to deal with arbitrary large values of v. Note also that (3.3)
admits the formulation

f(xj + v∆t, tn+1) = f(xj , t
n), (3.6)
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tn

tn+1

t
fn+1
j

fn
j−k−α

xxjxj − v∆t

v > 0 v < 0

Figure 3.1. Sketch of the semi-Lagrangian approach for v > 0. The foot of the
characteristics does not lie on the grid, and some interpolation is needed.

which gives the equivalent forward semi-Lagrangian scheme

fn+1
j+k+α = fnj , k + α = v

∆t

∆x
, k =

[
v
∆t

∆x

]
. (3.7)

The semi-Lagrangian method can be easily generalized to the multidimen-
sional case by replacing one dimensional interpolation with multidimen-
sional interpolation techniques.
In the more general case of a space and time dependent velocity field

V (x, t) ∈ R
d, one considers the equation

∂f

∂t
+ V (x, t) · ∇f = 0. (3.8)

Under Lipschitz continuity assumptions on the velocity field, it can be
proved that the characteristic curves exist. These are defined as the so-
lutions X( · ; t, x) of the ordinary differential equations

d

ds
X(s; t, x) = V (X(s; t, x), s) (3.9)

with initial data X(t; t, x) = x. It is then possible to prove that

f(x, t) = f(X(s; t, x), s) = f0(X(0; t, x)). (3.10)

This means that the solution at point x and at time t is nothing else but the
initial datum at the foot of the characteristic indicated by X(0;x, t) which
passes in x at time t. Then a semi-Lagrangian approach can be derived
provided that a numerical solution to equation (3.9) is computed. Using
the formula (3.10) for the exact solution then a semi-Lagrangian method
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for the approximation of the advection equation (3.8) can be derived. It
can be described by the following two steps:

• At a given time level n compute for each mesh point x an approxi-
mate solution of (3.9) to determine an estimate of the characteristic
X∗(tn; tn+1, x) which passes at time tn+1 at position x.

• Compute an approximation of (3.10) by interpolating the mesh point
values at time level n at the points X∗(tn; tn+1, x).

This implies that the solution of the PDE (3.8) is reduced to solution of a
large set ODEs combined with multidimensional interpolation. The most
common reconstruction techniques found in literature are cubic splines, Her-
mite or Lagrange polynomials.
For example, the cubic spline interpolation f∆x is defined by f∆x(xj) =

f(xj), f∆x ∈ P3([xj , xj+1]) with f∆x ∈ C2(I) on the interval I. Writing f∆x

using the cubic B-spline basis we get

f∆x(x) =
M−1∑

h=0

ahS
3(x− xh) (3.11)

where M are the number of points of the mesh and the coefficients ah are
given by the interpolation conditions

f(xj) = f∆x(xj) =

M−1∑

h=0

ahS
3(xj − xh) (3.12)

while the cubic B-spline basis is given by

S3(x) =
1

6





(2− |x|/∆x3), if ∆x < |x| < 2∆x

4− 6(|x|/∆x)2 + 3(|x|/∆x)3, if 0 < |x| < ∆x

0, otherwise.

(3.13)

If the Hermite interpolation has to be used in the semi-Lagrangian approach
one needs, in addition to the pointwise values of the solution f , the pointwise
values of its derivative.

3.2. Semi-Lagrangian scheme for Vlasov type equations

To simplify notations we illustrate the methods for the one-dimensional
Vlasov-Poisson system

∂f

∂t
+ v

∂f

∂x
− E

∂f

∂v
= 0, (3.14)

∂2Φm

∂x2
(x, t) = 1− ρ(x, t) = 1−

∫

R

f(x, v, t)dv, E = −∂Φm

∂x
. (3.15)



26 G. Dimarco and L. Pareschi

Observe that the Vlasov equation can be rewritten in equivalent form as

∂f

∂t
+ V · ∇(x,v)f = 0, V (x, v, t) = (v, E)T (3.16)

which is a linear transport equation in the phase space. Moreover since

∇(x,v) · V =
∂v

∂x
+
∂E

∂v
= 0, (3.17)

the Vlasov equation can also be written in conservative form as

∂f

∂t
+∇(x,v) · (V f) = 0. (3.18)

The semi-Lagrangian method by Cheng and Knorr (1976)

We start describing one of the firsts semi-Lagrangian schemes designed for
the Vlasov-Poisson system (Cheng and Knorr 1976). The method is based
on a Strang splitting between the transport and force term and on cubic
spline interpolation. Starting from fn we have the following algorithm based
on the classical Strang splitting method to compute fn+1.

1 Compute the electric filed En through the solution of the Poisson equa-
tion (3.15) with density ρn.

2 Compute f∗ solving

∂f

∂t
+ En∂f

∂v
= 0,

with initial data fn, for a half time step ∆t/2, through reconstruction
of the distribution function on the characteristic curve in the velocity
space.

3 Compute f∗∗ solving

∂f

∂t
+ v

∂f

∂x
= 0,

with f∗ as initial data, for a time step ∆t, through reconstruction of
the distribution function on the characteristic curve in the physical
space.

4 Compute ρn+1 =
∫
R
f∗∗(x, v)dv and evaluate the relative electric field

En+1 through the solution of the Poisson equation (3.15).
5 Compute fn+1 solving for a half time step ∆t/2

∂f

∂t
+ En+1∂f

∂v
= 0,

with initial data f∗∗.

To solve the Poisson equation any classical or more sophisticated numerical
methods for elliptic equations can be employed, these techniques will not
be discussed here.
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The semi-Lagrangian method by Sonnendrücker et al. (1999)

The semi-Lagrangian methods with splitting for the resolution of the Vlasov-
Poisson system has the big advantage that the characteristic equation can
be solved explicitly at each step of the splitting procedure. However, the
splitting introduce errors privileging the directions. It is then interesting
to consider the construction of semi-Lagrangian methods directly without
splitting. These methods, however, need a suitable numerical approximation
of the characteristic equation (Sonnendrücker et al. 1999). This character-
istic curve is solution of

dV

dt
= E(X(t), t),

dX

dt
= V. (3.19)

Unfortunately the above equations cannot be solved exactly since the elec-
tric field E is computed through the Poisson equation which depends on
the evolution of the distribution of particles f . An algorithm which permits
to pass from time tn to tn+1 can be written as following. Suppose to know
at time tn the distribution fn and the electric potential En on the mesh
points, then a second order in time approach is summarized below.

1 Compute a first or tentative value of the electric potential Ẽn+1 at
time tn+1.

2 Compute for all points in the phase space (xj , vk) the characteristics

V n+1/2 = V n+1 − ∆t

2
Ẽn+1(Xn+1),

Xn = Xn+1 −∆tV n+1/2,

V n = V n+1/2 − ∆t

2
Ẽn(Xn).

3 Compute the interpolation of fn at points (Xn, V n).

4 We have then a first approximation of the distribution function on the
mesh points fn+1(xj , vk) = fn(Xn, V n) which we can use for correct
the value of En+1.

5 Perform successively step up to a prescribed error is reached.

The initial value of the electric field can be computed by solving the trans-
port term of the Vlasov equation by using the classical semi-Lagrangian
approach and then by solving the Poisson equation to get Ẽn+1.

Positive flux-conservative schemes

These schemes are based on a conservative reconstruction strategy along
the characteristics curves. Using time splitting, we can restrict ourselves,
to the discretization of the following one dimensional transport equation

∂tf + ∂x (v f) = 0, (3.20)
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where we assume v > 0 is a constant velocity. By symmetry one constructs
the method for v < 0. Now, let us introduce the mesh points xj+1/2 =
j∆x + ∆x/2, j ∈ Z. Assume the values of the distribution function are
known at time tn = n∆t, we compute the new values at time tn+1 by
integration of the distribution function on each cell. Thus, using the explicit
expression of the solution, we have

∫ xj+1/2

xj−1/2

f(tn+1, x)dx =

∫ xj+1/2−v∆t

xj−1/2−v∆t
f(tn, x)dx,

then, setting

Gj+1/2(t
n) =

∫ xj+1/2

xj+1/2−v∆t
f(tn, x)dx,

we obtain the conservative form
∫ xj+1/2

xj−1/2

f(tn+1, x)dx =

∫ xj+1/2

xj−1/2

f(tn, x)dx + Gj−1/2(t
n) − Gj+1/2(t

n).

The main step is now to choose an efficient method to reconstruct the dis-
tribution function from the values on each cell [xj−1/2, xj+1/2]. If we denote
by

fnj =
1

∆x

∫ xj+1/2

xj−1/2

f(tn, x)dx,

the simplest choice proposed by Fijalkow (1999) is based on a linear inter-
polation procedure

f∆x(x) = fj + (x− xj)
fj+1 − fj−1

2∆x
, (3.21)

and permits an explicit computation of the fluxes. Unfortunately the re-
sulting method does not preserve positivity.
Another approach is based on a reconstruction via primitive function

(Filbet et al. 2001). A reconstruction method allowing to preserve positivity
and maximum principle can be obtained using a third-order reconstruction
with slope correctors

f∆x(x) = fj+

+
θ+j

6∆x2

[
2 (x− xj)(x− xj−3/2) + (x− xj−1/2)(x− xj+1/2)

]
(fj+1 − fj)

(3.22)

+
θ−j

6∆x2

[
2 (x− xj)(x− xj+3/2) + (x− xj−1/2)(x− xj+1/2)

]
(fj − fj−1),
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Figure 3.2. Vlasov-Poisson. Evolution of F (x, vx, t) =
∫
R
f(x, vx, vy, t) dvy in

phase space computed with 32 cells in x and 64× 64 in (vx, vy).

with

θ±j =





min
{
1;

2 fj
fj±1 − fj

}
, if fj±1 − fj > 0,

min
{
1;−2 (fmax − fj)

fj±1 − fj

}
, if fj±1 − fj < 0,

(3.23)

where fmax = max
j

{fj}. The theoretical properties of this reconstruction

can be summarized by the following (Filbet et al. 2001)

Proposition 3.1. The approximation of the distribution function f∆x(x),
defined by (3.22)-(3.23), satisfies:

(i) Conservation of the average
∫ xj+1/2

xj−1/2

f∆x(x)dx = ∆x fj , ∀ j.

(ii) Maximum principle

0 ≤ f∆x(x) ≤ f∞, ∀x.
As a numerical example we consider the above scheme applied to the Vlasov-
Poisson equation, 1D in space and 2D in velocity, with initial data

f(0, x, v) =
1

2π σ2
e−|v|2/2σ2

(1 + α cos(2π x/L)) , ∀x ∈ (0, L), v ∈ R
2,

where σ = 0.24, α = 0.5 and L = 4. The boundary conditions are periodic
in space. The Vlasov equation develops thin filaments in phase space and
the steep gradients in v are well-described by the method (see Figure 3.2).
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Finally, concerning mathematical results on the convergence analysis of
semi-Lagrangian schemes applied to the Vlasov-Poisson problem we refer
to Filbet (2001), Besse (2004), Besse and Sonnendrücker (2003), Cam-
pos Pinto and Mehrenberger (2008), Respaud and Sonnendrücker (2011),
Charles, Després and Mehrenberger (2013) and the references therein.

3.3. Semi-Lagrangian schemes for BGK type equations

Coupling the previous semi-Lagrangian schemes with a collision term can be
done in a straightforward way through the splitting method (2.57)-(2.58).
Here we present two approaches designed specifically to take advantage of
the semi-Lagrangian formulation. We shall restrict to present the schemes
for the BGK equation in one space dimension

∂f

∂t
+ v

∂f

∂x
= ν(M [f ]− f), (3.24)

where ν > 0 is assumed constant.

A semi-Lagrangian methods for the BGK equation

The numerical scheme for the solution of (3.24) is based on the characteristic
formulation of the problem

df

dt
= ν(M [f ]− f),

dx

dt
= v. (3.25)

Let fnj,k denote the approximate solution of the problem (3.25) at time tn in
each spatial and velocity node xj = j∆x, vk = k∆v, j, k ∈ Z. An explicit
first order semi-Lagrangian scheme could be constructed by first computing
the distribution f at successive times at positions xj + vk∆t

f(xj + vk∆t, vk, t
n+1) = fnj,k(1−∆tν) + ∆tνMn

j,k, (3.26)

which does not lie on a grid and then compute the values of fn+1
j,k by re-

construction from the computed values f(xj + vk∆t, vk, t
n+1) by a suitable

interpolation back on the grid points. Linear reconstruction will be sufficient
for first order scheme, Hermite cubic splines have been used in Filbet and
Russo (2009). Higher order reconstruction, such as ENO or WENO, could
be used to provide higher order non oscillatory reconstruction (Shu 2009).
In order to advance in time we must define the approximated Maxwellian

distribution Mn
j,k. The simplest method to do that is given by the following

relation

Mn
j,k =

ρnj

(2πRTn
j )

1/2
exp

(
−
|vk − unj |2
2RTn

j

)
, (3.27)

where ρnj , T
n
j and unj are approximations of the moments at the grid point xj
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at time tn. This formula requires the computation of the discrete moments
of fnj,k by some kind of quadrature. For example by simple summations

ρnj = ∆v
∑

h

fnj,h, u
n
j =

∆v

ρnj

∑

h

vhf
n
j,h, T

n
j =

∆v

Rρnj

∑

h

(vh − unj )f
n
j,h. (3.28)

Note that (3.27) is not compactly supported in the velocity space and there-
fore this poses the question of the truncation of the velocity domain and the
loss of conservation properties. We postpone a detailed discussion of this
problem at the end of the Section.
Because of the semi-Lagrangian nature of the method, there is no CFL-

type stability restriction on the time step due to convection. However, such
scheme suffer from stability restriction on the time step when the collision
rate ν is large. To circumvent the problem, it is possible to resort to an
implicit formulation. By applying simple implicit Euler on the characteristic
equation in order to compute fn+1

j,k one obtains

fn+1
j,k = f(tn, xj − vk∆t, vk) + ∆tν(Mn+1

j,k − fn+1
j,k )

=
1

1 + ∆tν
f(tn, xj − vk∆t, vk) +

∆tν

1 + ∆tν
Mn+1

j,k .
(3.29)

The quantity f(tn, xj−vk∆t, vk) can be computed by suitable reconstruction
from fnj,k as in the explicit case.

The equation (3.29) cannot be immediately solved for fn+1
j,k , because now

the Maxwellian depends from fn+1
j,k itself. Note, however, that if the discrete

Maxwellian at time tn+1 has exactly the same first three moments as fn+1
j,k

∑

h

Mn+1
j,h ϕh =

∑

h

fn+1
j,h ϕh, ϕh = 1, vh, |vh|2, (3.30)

then from (3.29) we have
∑

h

fn+1
j,h ϕh =

∑

h

f(tn, xj − vh∆t, vh)ϕh, ϕh = 1, vh, |vh|2. (3.31)

As a consequence, the moments at time tn+1 can be computed from the so-
lution at time tn and then from those moments the equilibrium distribution
Mn+1

j,k can be obtained. Note that, for consistency, in this case we must con-

struct the approximated Maxwellian values Mn+1
j,k in such a way that (3.30)

are exactly satisfied. Since this is a transversal problem to most schemes
which use a finite grid over a bounded velocity domain we will discuss this
at the end of this Section.
Higher order implicit semi-Lagrangian methods for relaxation operators

can be constructed using L-stable diagonally implicit Runge Kutta (DIRK)
schemes (Santagati et al. 2012, Pareschi and Russo 2011). See also Pareschi
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(1998) for a related approach for more general collision terms based on time
relaxed discretizations (Gabetta et al. 1997).

Remark 3.1.

• If the time step is such that ∆t = ∆x/∆v then the foot of the char-
acteristic is a grid point and no interpolation is required. In such
case the schemes (3.26) and (3.29) becomes particular cases of Lattice
Boltzmann Methods (LBM), although usually such methods are con-
structed from a BGK model with a limited number of velocities and
mainly as a computational tool for the incompressible Navier-Stokes
equations (Succi 2001).

• The resulting schemes are unconditionally stable, since no stability
condition on ∆t is required. However, taking large time steps will
cause large numerical diffusion in the solution. In particular semi-
Lagrangian schemes may suffer of accuracy degradation in the fluid
limit, or equivalently for very large values of ν. The latter aspect can
be understood by observing that the characteristic speeds of the system
change in such a limit. Therefore, if one is interested in high order
schemes close to fluid regimes usually other approaches are preferable
(see Section 7).

Fast semi-Lagrangian methods for the BGK model

The method described in this paragraph combines the advantages of semi-
Lagrangian methods with the structural simplicity of particle in cell meth-
ods with the aim to achieve maximum computational efficiency.
Let fnj,k and Mn

j,k be the pointwise distribution and equilibrium distribu-
tion at time n. After a splitting of the equation into transport and collisions

∂f

∂t
+ v

∂f

∂x
= 0,

∂f

∂t
= ν(M [f ]− f),

a fast semi-Lagrangian method is constructed in the following way.

Transport stage. For each velocity vk solve the transport equations

∂fk
∂t

+ vk
∂fk
∂x

= 0, . (3.32)

in the whole computational domain instead of solving them only on the mesh
points. To this aim, let us define for each of the N equations a piecewise
constant function in space as

f̄k(x, t
n) = fnj,k ∀ x ∈ [xj−1/2, xj+1/2]. (3.33)

Now, the exact solution of the above equations is given by

f̄∗k (x) = f̄k(x− vk∆t, t
n). (3.34)
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Relaxation stage. This step is local to the grid, this means that we solve
the following ordinary differential equation

∂fj,k
∂t

= ν(Mj,k − fj,k), , (3.35)

where the initial datum is the result of the transport step at points xj

f̄∗k (xj) = f̄k(xj − vk∆t, t
n). (3.36)

To solve equation (3.35) we need the value of the equilibrium distribution at
the center of the cell after the transport stage. The macroscopic quantities
in the center of the cells are given by

∆v
∑

k

f∗j,kϕk = ∆v
∑

k

f̄∗k (xj)ϕk.

The discrete equilibrium distribution M∗
j,k = Mn+1

j,k is then defined as the
equilibrium distribution with the moments of f∗j,k. This can be done effi-
ciently using the conservative method described in the next paragraph. We
can now solve the relaxation stage exactly

fn+1
j,k = exp(−ν∆t)f∗j,k + (1− exp(−ν∆t))M∗

j,k. (3.37)

The above equation furnishes the new values of the distribution f in the
center of each spatial cell for each velocity vk. However, in order to continue
the computation, we need the value of the distribution f in all points of the
space. To this aim one defines

M̄∗
k (x) =Mn+1

j,k , ∀x such that f̄∗k (x) = f̄∗k (xj), (3.38)

which consists in the assumption that the equilibrium distributionM [f ] has
the same piecewise constant structure of the distribution f . We can now
rewrite the relaxation term directly in term of spatial continuous function
and define f at time n+ 1

f̄n+1
k (x) = exp(−ν∆t)f̄∗k (x) + (1− exp(−ν∆t))M̄∗

k (x). (3.39)

The method essentially behaves like a particle method on piecewise con-
stant functions and achieve high efficiency by avoiding interpolation. The
scheme has been subsequently extended to achieve high order in the fluid
limit (Dimarco and Loubère 2013b).

Conservative methods

Finally, we discuss the problem of loss of conservations due to the trunca-
tion of the velocity space and the introduction of a velocity grid (see also
Section 4.1 for a different approach). Of course, a remedy to the problem
consists in choosing the velocity support such that during all the simulation
the source of error due to the velocity truncation is very small. In fact,
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under the assumption that the distribution function is smooth and that
the energy outside the domain is negligible the moments are approximated
with spectral accuracy by replacing integrals with summations as in (3.28).
In some circumstances, however, it may be desirable to construct a solver
where conservations are exactly maintained during the simulation.
For the sake of simplicity in the sequel we omit the space and time depen-

dence, since we deal with an approximation problem in the velocity space
only. So let us consider f = f(v), v ∈ R

d, d ≥ 1, and denote by fk ≈ f(vk),
k = 1, . . . , N the finite grid approximations. We want to define the grid
values fk in such a way that the macroscopic moments of f are preserved
at a discrete level. We denote by U ∈ R

2+d the given set of moments

U =

∫

Rd

f




1
v
|v|2


 dv.

We use notations f = (f1, . . . , fN )T to denote the unknown set of values
and f̃ = (f̃1, . . . , f̃N )T the point values f̃k = f(vk). We also denote by C ∈
R
(d+2)×N the matrix containing the parameters of the quadrature formula

used to evaluate the discrete moments. Therefore we have

C f̃ 6= U,

and search for a vector f that it is “close” to f̃ and such that

Cf = U. (3.40)

In order to find a solution to the problem one can consider the constrained
optimization problem: find f ∈ R

N such that

min
{
‖f̃ − f‖22 : Cf = U ;C ∈ R

(d+2)×N , f̃ ∈ R
N , U ∈ R

(d+2)
}
. (3.41)

Problem (3.41) can be solved easily by a Lagrange multiplier method. Let
λ ∈ R

d+2 be the Lagrange multiplier vector, the objective function to be
minimized is given by

L(f, λ) =

N∑

k=1

|f̃k − fk|2 + λT (Cf − U). (3.42)

Next we impose

∂L(f, λ)

∂fk
= 0, k = 1, . . . , N

∂L(f, λ)

∂λi
= 0, i = 1, . . . , d+ 2.

The first condition implies 2f = 2f̃+CTλ and the second Cf = U . Combining
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the two results and using the fact that CCT is symmetric and positive
definite one gets

λ = 2(CCT )−1(U − C f̃). (3.43)

Therefore the problem can be solved explicitly and gives

f = f̃ + CT (CCT )−1(U − C f̃). (3.44)

In the same way, the approximated equilibrium distribution at the grid
points can be defined in order to preserve some prescribed moments. Re-
verting now to the full space and time dependent notation used to describe
the semi-Lagrangian schemes, we get

Mn
j = M̃n

j + CT (CCT )−1(Un
j − CM̃n

j ). (3.45)

with Un
j a prescribed set of moments, Mn

j = (Mn
j,1, . . . ,M

n
j,N )T , M̃n

j =

(M̃n
j,1, . . . , M̃

n
j,N )T with M̃n

j,k =M [f ](xj , vk, t
n).

The minimization problem just described was proposed in Bobylev and
Rjasanow (1999) and generalized in Gamba and Tharkabhushanam (2010).
We refer to the above references for examples of applications (see also Figure
4.1).

Remark 3.2. A remarkable feature of the method is that it only involves a
matrix-vector multiplication. Moreover, since the matrix C depends only on
the parameter of the discretization, the matrix CT (CCT )−1 can be precom-
puted and stored in memory. This makes the technique extremely efficient
for multi-dimensional computations. The method can be easily extended to
preserve more given moments of the distribution. On the other hand posi-
tivity of the solution is lost in general, as well as the monotonicity property
induced by the entropy inequality. For Maxwellian densities, these proper-
ties can be recovered considering a constrained minimization problem with
respect to the entropy of the solution. As we will see in Section 4.1, how-
ever, solving such a minimization problem implies the solution of a system
of d+ 2 nonlinear equations at each time step.

4. Discrete velocity methods

Discrete-velocity methods represent a popular way for the approximation of
the Boltzmann equation in the velocity space. Historically they originated
as simplified models of the Boltzmann equation with the aim to provide a
qualitative setting for the mathematical study of a rarefied gas (Carleman
1957, Broadwell 1964, Gatignol 1975, Cabannes, Gatignol and Luo 2003).
Only recently they have been related to consistent velocity discretizations
of the Boltzmann equation (Goldstein et al. 1989, Rogier and Schneider
1994, Schneider 1993, Palczewski et al. 1997, Mischler 1997, Panferov and
Heintz 2002, Fainsilber et al. 2006). As we will see, however, their accuracy
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is limited and their computational cost is considerably high if compared
to stochastic techniques for the evaluation of the Boltzmann integral (see
Section 6 for fast summation strategies). On the contrary they define a
very robust setting when applied to simplified interaction operators, like
the BGK model.

4.1. Discrete-velocity methods for the BGK model

Here we introduce the basic notions in discrete velocity methods by following
the presentation in Mieussens (2000) for the BGK model defined by (2.50)
that we rewrite here for completeness

∂f

∂t
+ v · ∇xf = ν(M [f ]− f), (4.1)

with initial data f(x, v, 0) = f0(x, v). The first step is based on the intro-
duction of the discrete velocity grid which physically represents the set of
admissible velocities in the discrete model.
Let K ⊆ Z

3 be a set of Nv integer vectors, and let

V =
{
vk ∈ R

3, k ∈ K
}

(4.2)

be a discrete-velocity grid of Nv points indexed by k = (k1, k2, k3) ∈ K, and
defined by

vk = (vk1 , vk2 , vk3) = (k1∆v1, k2∆v2, k3∆v3), (4.3)

where ∆v1, ∆v2, ∆v3 are three positive numbers characterizing the size of
the mesh. To simplify notations we denote by ∆vK = ∆v1∆v2∆v3. The
velocity distribution f is then replaced by a vector f = (fk(x, t))k∈K ∈
R
Nv where each component fk(x, t) is assumed to be an approximation of

f(x, vk, t). The fluid quantities are thus given as in the continuous case,
except that integrals on R

3 are replaced by discrete sums on V. We can
therefore define the discrete macroscopic quantities

ρK = ∆vK
∑

h∈K
fh,

ρKuK = ∆vK
∑

h∈K
vhfh, (4.4)

TK =
∆vK
3RρK

∑

h∈K
(vh − uK)

2fh,

and discrete entropy functional

HK(f) = ∆vK
∑

h∈K
fh log(fh). (4.5)

This define the discrete velocity BGK model through a set of Nv differential
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equations

∂fk
∂t

+ vk · ∇xfk = νK(Mk[f ]− fk), ∀ k ∈ K, (4.6)

where νK = ν(ρK, TK). Now the main difficulty is to define an approximation
Mk[f ] of the Maxwellian equilibrium such that conservation properties and
entropy property still hold.

Discrete Maxwellian states
As already discussed in Section 3, the natural choice

Mk[f ] =
ρK

(2πRTK)3/2
exp

(
−|uK − vk|2

2RTK

)
, (4.7)

does not fulfill these requirements since it was derived starting from the
continuous analogous of (4.4) and (4.5). The determination of a discrete
Maxwellian state suggested in Gabetta et al. (1997) was based on the ob-
servation that the discrete equilibrium state Mk[f ] should be such that
log(Mk[f ]) ∈ span{1, vk, |vk|2}, i.e. it belongs to the space of collision in-
variants, which implies

Mk[f ] = exp(a+ b · vk + c|vk|2), c < 0, (4.8)

where a, c ∈ R, b ∈ R
3 are related to the macroscopic quantities. Note,

however, that given a set of discrete moments ρK, TK ∈ R+ and uK ∈ R
3

we cannot compute explicitly, as for the continuum case, the solution of the
nonlinear set of equations

ρK = ∆vK
∑

h∈K
Mh[f ], (4.9)

ρKuK = ∆vK
∑

h∈K
vhMh[f ], (4.10)

TK = ∆vK
1

3RρK

∑

h∈K
(vh − uK)

2Mh[f ]. (4.11)

Obviously, it must be checked that this problem admits a unique solution
since, due to the particular choice of the grid, not all set of moments may
be realizable by the discrete velocity model. In practice, in a numerical
method, the above nonlinear system should be solved at each time step in
order to compute a, b and c in functions of ρK, uK and TK. This can be
done, for example, by a Newton-type method starting from the initial guess
(4.7).
Since log(Mk[f ]) is a linear combination of collision invariants we also

have the discrete version of Boltzmann H-theorem for the BGK model
∑

h∈K
(Mh[f ]− fh) log(fh)
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(4.12)

=
∑

h∈K
(Mh[f ]− fh) log

(
fh

Mh[f ]

)
+
∑

h∈K
(Mh[f ]− fh) log(Mh[f ]) ≤ 0,

where we used (2.31) and the fact that the second summation on the right
hand side of (4.12) is equal to zero.
In the space homogeneous case this corresponds to the monotonicity of

the discrete H-functional
∂

∂t
HK(f) ≤ 0, (4.13)

and

HK(f) = 0 iff fk =Mk[f ], ∀ k ∈ K. (4.14)

The method derived in Mieussens (2000) propose to use the discrete version
of entropy minimization problem (2.39). Let now Mk[f ] be defined by the
minimum of the discrete entropy, with the constraints that it must have a
certain set of discrete moments , i.e. Mk[f ] is the solution of the following
problem

min

{
HK(f) = ∆vK

∑

h∈K
fh log(fh), fk ≥ 0, ∀ k ∈ K

∆vK
∑

h∈K
fh




1
vh
|vh|2


 =




ρK
ρKuK

ρK(|uK|2 + 3RTK)






 . (4.15)

From a numerical point of view, it is in general quite difficult to tackle the
above formulation directly. In Mieussens (2000) it is proved that under a
natural assumption on V, the discrete equilibrium Mk[f ] has an exponential
form if, and only if, a strict realizability condition is fulfilled by V.
Theorem 4.1. Let us consider a set of moments ρK, TK ∈ R+ and uK ∈
R
3 such that the set of nonnegative discrete distributions solutions to the

corresponding minimization problem (4.15) is not empty. Then, the problem
(4.15) has a unique solution Mk[f ] called discrete equilibrium. Moreover,
we assume that V has at least three points in each direction. Then there
exists a unique vector α ∈ R

5, α = (a, b, c) such thatMk[f ] is given by (4.8).

This shows the equivalence between the formulations of discrete equilibrium
state used in Gabetta et al. (1997) and Mieussens (2000). For the sake of
completeness we must point out that this notion of discrete Maxwellian was
already present in the general theory of discrete velocity models (Gatignol
1975, Cabannes et al. 2003). We refer to Mieussens (2000) for further details
on the computational aspects of the discrete equilibrium state Mk[f ] from
(4.9)-(4.11).
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Figure 4.1. Discrete Maxwellian states in [−R,R]. The entropic Maxwellian is
defined from the solution of (4.9)-(4.11), the L2 optimal through (3.45). All

functions share the same set of macroscopic moments ρK = 1, uK = 0, TK = 1.

Remark 4.1.

• In contrast to the continuous case, where the minimization problem can
be solved under the only assumption of nonnegative mass density and
temperature, at the discrete level a moment realizability assumption
is necessary since the introduction of a finite velocity grid imply also a
bounded velocity domain. This clearly translates into a limited range
of admissible temperatures and momentum.

• As a consequence, independently of the collision model, once V is cho-
sen, a discrete velocity model cannot describe any rarefied gas flow. At
variance, for a given rarefied gas flow, the discrete velocity set must be
properly chosen to give a correct representation.

• For this same reason, the determination of a discrete Maxwellian state
with all the relevant physical properties does not necessarily implies
that this Maxwellian state is a good approximation of the continuous
Maxwellian unless the support of the velocity grid is large enough (see
Figure 4.1).

If we assume the grid V is such that the moment realizability condition
is satisfied, then the following theorem summarizes the main properties of
the discrete velocity BGK model.

Theorem 4.2. Let f0 = (f0(x, vk))k∈K be a strictly positive vector of
R
Nv . Consider the initial value problem associated with model (4.6), where

Mk[f ] has the form (4.8) and is implicitly defined either by (4.9)-(4.11), or
by (4.15). If this problem has a solution f , then the solution f remains
strictly positive and the model satisfy the discrete moment equations and
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entropy dissipation

∂

∂t

(
∆vK

∑

h∈K
fhϕh

)
+∇x ·

(
∆vK

∑

h∈K
fhϕhvh

)
= 0, (4.16)

∂

∂t

(
∆vK

∑

h∈K
fh log fh

)
+∇x ·

(
∆vK

∑

h∈K
fh log fhvh

)
≤ 0,(4.17)

for ϕk = 1, vk, |vk|2, k ∈ K.

Convergence to the BGK model

From a mathematical point of view it is interesting to consider the con-
vergence of such approximation to the continuous BGK equation. Here,
following Mieussens (2001) we sketch the main ideas of the proof which is
based on three distinct steps

• convergence of the discrete velocity approximation of the collision op-
erator (which is local in x and t);

• existence and uniqueness of solutions for the discrete velocity equation
(4.6);

• convergence of the discrete velocity equation (4.6) to the continuous
one (4.1).

The possibility to tackle the different steps of the above program is closely
related to the simplified collision model used in the BGK formulation. In
fact, in the case of discrete velocity methods for the full Boltzmann operator
the first point strongly depends on the particular discrete velocity model
considered and the validity of point 2 is not known in general. As we
will see, for the BGK model, at least in the case of constant relaxation
frequency ν = 1, the whole convergence can be carried on successfully. We
refer to Mieussens (2001) for the details of the proofs.
We introduce two sequences of real numbers ∆vm and Bm such that

lim
m→∞

∆vm = 0, lim
m→∞

∆vmBm = +∞, (4.18)

and a grid Vm of Nm velocities defined by

Vm = {vmk = i∆vm, k ∈ Km},
where Km is the set of multi-indexes Km = {i ∈ Z

3, |i| ≤ Bm}. Moreover,
we denote by fm = (fmk )k∈Km , by ρm, um and Tm the corresponding dis-
crete macroscopic quantities and by (Mm

k [fm])k∈Km the associated discrete
equilibrium state in the entropic sense specified in the previous paragraph.

The first result shows that the discrete Maxwellian is consistent if the
discrete moments are consistent.
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Theorem 4.3. Let ρ, T ∈ R+ and u ∈ R
3. If ρm, um and Tm are sequences

of macroscopic moments strictly realizable on Vm such that

lim
m→∞

ρm = ρ, lim
m→∞

um = u, lim
m→∞

Tm = T, (4.19)

then the discrete Maxwellian (Mm
k [fm])k∈Km converges to the continuous

Maxwellian M [f ] given by (2.33).

The second result is a consequence of Theorem 4.2 and the theory of Perthame
(1989), and shows existence and uniqueness for the discrete BGK model
(4.6). However, it is important to note that the existence theory in Perthame
(1989) is based on a constant relaxation time ν = 1, therefore the same as-
sumption will be made in the rest of this paragraph.

Theorem 4.4. The initial value problem

∂fmk
∂t

+ vmk · ∇xf
m
k =Mm

k [fm]− fmk , ∀ k ∈ Km, (4.20)

fmk (x, 0) = f0(x, vmk ), (4.21)

has a unique solution (fmk )k∈Km in L∞(]0, tmax[×R
3)Nm for all tmax > 0.

For the last point, following Mischler (1997), one defines a continuous
form of the discrete velocity BGK model, and use the stability proof of
Perthame for the BGK equation (Perthame 1989). We define the constant
per velocity cell functions

fm(x, v, t) =
∑

h∈Km

fmh (x, t)χm
h (v), (4.22)

Mm[fm](x, v, t) =
∑

h∈Km

Mm
h [fm](x, t)χm

h (v), (4.23)

where χm
k (·) is the indicator function of the velocity cell Cm

k centered in vmk
of side ∆vm

Cm
k =

[
vmk1 −

∆vm
2

, vmk1 +
∆vm
2

[
× . . .×

[
vmk3 −

∆vm
2

, vmk3 +
∆vm
2

[
. (4.24)

Then we can relate the discrete model (4.6) with the continuous model (4.1)
by the equation

∂fm

∂t
+ νm · ∇xf

m =Mm[fm]− fm, (4.25)

with

νm(v) =
∑

h∈Km

vmh χ
m
h (v),
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and initial data

fm(x, v, 0) =
∑

h∈Km

fmh (x, 0)χm
h (v). (4.26)

We can finally state the convergence result:

Theorem 4.5. For all sequences ∆vm, Bm satisfying (4.18), the sequence
{fm}m≥0 solution to the initial value problem (4.25)-(4.26) is weakly con-
vergent in L1(]0, tmax[×R

3 × R
3), ∀ tmax > 0, up to the extraction of a

subsequence, to a distribution solution of the BGK equation (4.1).

Fully discrete schemes

To obtain a fully discrete scheme suitable choices of space and time ap-
proximations have to be chosen. Concerning the space discretization there
are several options since in principle one can apply the whole literature of
numerical methods for hyperbolic conservations laws. We already discussed
semi-lagrangian approaches in Section 3 and how they can be coupled with
source terms. Here we report as an example the second order finite volume
method used in Mieussens (2000) based on the use of flux limiters. We first
discuss the properties of explicit time discretization and then consider the
case of implicit methods by postponing a more complete discussion on the
fluid-limit problem to Section 7.
For the sake of simplicity, the scheme is presented here in two spatial

dimensions but all the results extends naturally to dimension three. We
consider a spatial Cartesian grid defined by nodes (xi, yi) = (i∆x, j∆y) and
cells

Iij =
]
xi− 1

2
, xi+ 1

2

[
×
]
yj− 1

2
, yj+ 1

2

[
.

Introducing a time step ∆t and the time levels tn = n∆t, using the for-
malism of the first paragraph, we denote by fnij,k = fk(xi, yj , t

n), ∀ k ∈ K,

by ρnij = ρK(xi, yj , tn), unij = uK(xi, yj , tn) and Tn
ij = TK(ih, yj , tn) the dis-

crete moments and by Mn
ij,k[f ] = Mk[f ](xi, yj , t

n) the discrete Maxwellian

equilibrium. We further denote with νnij = ν(ρnij , T
n
ij).

A finite volume explicit discretization in the time interval [t, t+∆t] reads

fn+1
ij,k = fnij,k −

∆t

∆x

(
Fn
i+ 1

2
,j,k

− Fn
i− 1

2
,j,k

)

(4.27)

− ∆t

∆y

(
Fn
i,j+ 1

2
,k
− Fn

i,j− 1
2
,k

)
+∆tνnij

(
Mn

ij,k[f ]− fnij,k
)
,

where

Fn
i+ 1

2
,j,k

=
1

2

[
vk1
(
fni+1,j,k + fnij,k

)
− |vk1 |

(
∆fn

i+ 1
2
,j,k

− Φn
i+ 1

2
,j,k

)
)]
,
(4.28)

Fn
i,j+ 1

2
,k
=

1

2

[
vk2
(
fni,j+1,k + fnij,k

)
− |vk2 |

(
∆fn

i,j+ 1
2
,k
− Φn

i,j+ 1
2
,k
)
)]
,
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are the numerical fluxes, ∆fn
i+ 1

2
,j,k

= fni+1,j,k − fnij,k, and Φn
i+1/2,j,k is the

slope limiter function. A first order method is obtained when Φn
i+1/2,j,k =

∆fni+1/2,j,k, second order accuracy is achieved with a suitable limiter choice,

for example

Φn
i+ 1

2
,j,k

= minmod
(
∆fn

i− 1
2
,j,k
,∆fn

i+ 1
2
,j,k
,∆fn

i+ 3
2
,j,k

)
, (4.29)

where the minmod limiter is defined as

minmod (z1, z2, z3) =





min
i
{zi}, if zi > 0 ∀ i,

max
i

{zi}, if zi < 0 ∀ i,
0 otherwise.

For first order space discretizations it is possible to prove (Mieussens 2000)

Proposition 4.1. Let fnij,k be strictly positive. If the time steps satisfy

∆t

(
max
ij

νnij +max
k∈K

( |vk1 |
∆x

+
|vk2 |
∆y

))
≤ 1, (4.30)

then the numerical solution fn+1
ij,k defined by the first order scheme (4.27)-

(4.28) remains strictly positive. Furthermore, the total mass, momentum,
and energy are conserved, and the total entropy is decreasing.

In dense or rapidly varying regimes the value of ν can be very large and
the above time step condition becomes very restrictive. This is the case,
for example, of regions close to fluid regimes. A classical way to overcome
this difficulty is to use an implicit scheme. Similarly to the semi-Lagrangian
scheme (3.29) we can avoid the solution of large nonlinear system of equation
at each time step thanks to the conservation properties of the resulting
method. An implicit evaluation leads to the scheme

fn+1
ij,k = fnij,k −

∆t

∆x

(
Fn
i+ 1

2
,j,k

− Fn
i− 1

2
,j,k

)

(4.31)

− ∆t

∆y

(
Fn
i,j+ 1

2
,k
− Fn

i,j− 1
2
,k

)
+∆tνn+1

ij

(
Mn+1

ij,k [f ]− fn+1
ij,k

)
.

If we now multiply the scheme by the collision invariants ϕk = 1, vk, |vk|2
and sum over k ∈ K we obtain the explicit moment scheme

∑

h∈K
fn+1
ij,h ϕh =

∑

h∈K
fnij,hϕh −

∆t

∆x

∑

h∈K

(
Fn
i+ 1

2
,j,h

− Fn
i− 1

2
,j,h

)
ϕh

(4.32)

− ∆t

∆y

∑

h∈K

(
Fn
i,j+ 1

2
,h
− Fn

i,j− 1
2
,h

)
ϕh = 0.

Note that the above result strictly depends on the exact conservation prop-
erties of the discrete Maxwellian equilibrium. This shows that the values of
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ρn+1
ij , un+1

ij and Tn+1
ij can be computed explicitly and permits to define the

conservative and entropic discrete Maxwellian at time tn+1 in the sense of
(4.15). Therefore we obtain the explicit formulation

fn+1
ij,k =

1

1 +∆tνn+1
ij

[
fnij,k −

∆t

∆x

(
Fn
i+ 1

2
,j,k

− Fn
i− 1

2
,j,k

)

(4.33)

− ∆t

∆y

(
Fn
i,j+ 1

2
,k
− Fn

i,j− 1
2
,k

)]
+

∆tνn+1
ij

1 + ∆tνn+1
ij

Mn+1
ij,k [f ].

Remark 4.2.

• The possibility to evaluate explicitly the implicit BGK collision term
through the moment system has been used by several authors, for
example in Pieraccini and Puppo (2007), Filbet and Russo (2009), Fil-
bet and Jin (2010), Dimarco and Pareschi (2013). More in general
the property extends also to higher order schemes (see Remark 7.4 in
Section 7) and to more refined BGK models, like the ES-BGK (Filbet
and Jin 2011).

• The stability condition (4.30) may become very restrictive also in the
case of large velocities. Implicit evaluations of both the source term
and the fluxes have been considered in Mieussens (2000), where the
large linear system originated by the implicit fluxes is solved using a
suitable iterative method adapted to the different sparse structures of
the matrices. Alternative implicit strategies for the same problem have
been proposed in Pieraccini and Puppo (2012).

4.2. Discrete velocity methods for the Boltzmann equation

The discrete velocity models of the Boltzmann equation supply a clarifying
example of the difficulties one encounters when the discretization of the full
Boltzmann collision operator is tackled. To introduce the problem let us
rewrite here the Boltzmann equation

∂f

∂t
+ v · ∇xf = Q(f, f), (4.34)

and the expression of the integral collision term

Q(f, f)(v) =

∫

R3

∫

S2

B(v, v∗, ω)[f(v
′)f(v′∗)− f(v)f(v∗)] dω dv∗. (4.35)

Once a discrete velocity grid of the type (4.2)-(4.3) has been introduced,
the relatively simple problem in the BGK case of the definition of a discrete
Maxwellian that preserves conservation and entropy property, here turns
into the challenging problem of developing a quadrature formula for (4.35)
preserving the same kind of properties.
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To start with we consider a regular grid V in R
3, K ⊆ Z

3 a set of in-
teger vectors, and use the same notation introduced in (4.2)-(4.3) with
vi = i∆v = (i1∆v, i2∆v, i3∆v), i ∈ K, ∆v the mesh size (note that the
reference velocity index in the sequel is ‘i’ instead of ‘k’). The general
discrete velocity Boltzmann model is written in the form

∂fi
∂t

+ vi · ∇fi = QK
i (f , f), i ∈ K, (4.36)

and the crucial point is now the definition of the quadrature methodQK
i (f , f)

for Q(f, f)(vi).

Discretization of the collision operator
A general quadrature formula for (4.35) can be written in the form

QK
i (f , f) =

∑

j∈K

∑

α∈Θ
Wα

ijB(vi, vj , ωα)
(
fαi f

α
j − fifj

)
,

where Wα
ij are the weight of the quadrature formula, Θ is a set of indices

characterizing the discrete set of angles such that α = (α1, α2) ∈ Θ and
ωα = (ωα1 , ωα2) ∈ Ω ⊂ S

2. The main problem is that fαi = f(vαi ) and f
α
j =

f(vαj ) requires some kind of interpolation, since the collisional velocities vαi
and vαj defined through

vαi =
1

2
(vi+vj+|vi−vj |ωα), vαj =

1

2
(vi+vj−|vi−vj |ωα), i, j ∈ K (4.37)

are not in V. Unfortunately the construction of interpolation formulas such
that the conservation properties and entropy dissipation are preserved at a
discrete level results into a very difficult problem, see Tcheremissine (2006)
for interpolation strategies and Buet, Cordier and Degond (1998) for an
approach based on a regularized collision term.
Therefore discrete velocity methods focus on quadrature formulas of the

form

QK
i (f , f) =

∑

j,k,l∈K
Γkl
ij (fkfl − fifj), (4.38)

where the sum acts only over the grid points that satisfy local conservation
of momentum and energy

vk + vl = vi + vj , |vk|2 + |vl|2 = |vi|2 + |vj |2. (4.39)

Note that this choice intrinsically implies a selection of discrete angular
vectors ωkl

ij ∈ S
2 as functions of the colliding pairs (vi, vj) and (vh, vk).

We will discuss this aspect later when considering the consistency of such
methods. The quantities Γkl

ij ≥ 0 are related to the weights W kl
ij through

the equations

Γkl
ij = 1(i+ j − k − l)1(|i|2 + |j|2 − |k|2 − |l|2)W kl

ij B
kl
ij , (4.40)
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Figure 4.2. Sketch of the collision circle in a planar discrete velocity regular grid.

where 1 denotes the function on Z defined by 1(z) = 1 if z = 0 and 0 else-
where, and Bkl

ij = B(vi, vj , ω
kl
ij ). From a physical viewpoint these quantities

are linked to the probability that two particles with velocities vi and vj
collide and come out of the collision with velocities vk and vl. We have the
following

Proposition 4.2. If Γkl
ij in (4.38) satisfy the following symmetry proper-

ties

Γkl
ij = Γij

kl, Γkl
ij = Γkl

ji = Γlk
ij = Γlk

ji , ∀ i, j, k, l ∈ K (4.41)

then the discrete Boltzmann equation (4.36)-(4.38) inherit the properties
of the solution of the Boltzmann equation, namely, conservation of mass,
momentum and energy and entropy inequality.

In fact, thanks to the symmetries (4.41) we have

∑

i,j,k,l∈K
Γkl
ij (fkfl − fifj)ϕi

(4.42)

= −1

4

∑

i,j,k,l∈K
Γkl
ij (fkfl − fifj)(ϕk + ϕl − ϕi − ϕj)

and this shows that the model admits the collision invariants ϕi = 1, vi, |vi|2.
Moreover, by choosing ϕi = ln(fi) we obtain the discrete analogue of Boltz-
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mann H-theorem
∑

i,j,k,l∈K
Γkl
ij (fkfl − fifj) ln(fi)

(4.43)

= −1

4

∑

i,j,k,l∈K
Γkl
ij (fkfl − fifj) ln

(
fkfl
fifj

)
≤ 0.

Because of symmetry properties, due to the particular choice of the allowed
velocities, some discrete velocity grids may originate models that possess a
number of collision invariants greater than the usual one. In these cases,
there is no possibility to define a unique equilibrium state with the same
moments of the initial density. In what follows we ignore this possibility
and refer to models that have only the usual conserved quantities. A char-
acterization of such models is due to Cercignani (1985). For such models
the discrete Maxwellian equilibrium states have the form

Mi[f ] = exp(a+ b · vi + c|vi|2), c < 0, (4.44)

where a, c ∈ R, b ∈ R
3 are related to the macroscopic quantities as in the

BGK case.

Remark 4.3. From the numerical point of view, one of the main difficulty
with discrete velocity quadrature formulas is the small number of pairs of
discrete post collisional velocities for a given pair of pre-collisional velocities
(see Figure 4.2). Indeed, the number of intersection points between the
collision sphere and the discrete velocity grid may be very small. In addition
the evaluation of (4.38) at each time step has at least a quadratic cost. If
Nv is the total number of velocity grid points the overall cost is more then
O(N2

v ) whereas for probabilistic methods it is only O(Nv). In Section 6 we
will see how using the convolution-like structure of certain models, this cost
can be reduced significantly.

Consistency of discrete velocity methods

In the general setting described in the previous paragraph one has to specify
the choices of the weight accordingly to the procedure used for the derivation
of the quadrature formula. Here we discuss shortly the methods proposed
by Goldstein et al. (1989), by Martin et al. (1992) and Panferov and Heintz
(2002), and their properties studied in Palczewski et al. (1997), Fainsil-
ber et al. (2006), Rogier and Schneider (1994), Panferov and Heintz (2002)
and Mouhot et al. (2013).

The method by Goldstein et al. (1989) . The first family of methods (Goldstein
et al. 1989) can be derived after the change of variable q = (v∗ − v)/2, and
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then v∗ = v + 2q to get

Q(f, f)(v) = 23
∫

R3

∫

S2

g(v, q, ω) dω dq, (4.45)

where we have set

g(v, q, ω) = B(v, v + 2q, ω)[f(v′)f(v′∗)− f(v)f(v + 2q)], (4.46)

and now v′ = v + q + |q|ω, v′∗ = v + q − |q|ω.
Using a simple rectangular formula on the R

3 integral we can write

Q(f, f)(vi) ≈ (2∆v)3
∑

j∈Z3

∫

S2

g(vi, qji, ω) dω. (4.47)

Here vi is a given point of the grid and the sum is taken over all such points
vj so that qji = (vj − vi)/2 belongs to the grid.

The second step is the most delicate, namely the evaluation of the inner
integral in terms of the values of g on the grid points. This is achieved
approximating

∫

S2

g(vi, qji, ω) dω ≈ 1

Nij

∑

(vk,vl)∈Sij

g(vi, qij , ω
kl
ij ), (4.48)

where ωkl
ij = (vk−vl)/|qji| = (k−l)/|i−j| and the sum is taken over all pairs

of antipodal integer points that are on the sphere Sij spanned by (vi, vj),
i.e., the sphere of diameter |qij | = |vi − vj | on which are vi and vj , and Nij

is the number of such points. For example, in Figure 4.2 we report a planar
case with Nij = 3. The above model can be cast in the general setting
(4.38) by taking Γkl

ij = (2∆v)3Bkl
ij /Nij , with the convention just described

on the points involved in the sum. It is easy to verify that Proposition 4.2
is satisfied thanks to the symmetries of Nij and Bkl

ij (it is nevertheless not
automatic to prove that the space of summational invariants is reduced to
mass, momentum, and energy).
The natural question now concerns the convergence of the resulting quadra-

ture formula to the Boltzmann integral as ∆v → 0, ∀ vi. If g is sufficiently
regular (continuous), and decays sufficiently rapidly for large q, then the
quadrature formula for the outer integral (4.47) converges. As a conse-
quence, the consistency of the whole quadrature method is closely related to
the repartition of integer roots of the equation x2+y2+z2 = n, n ∈ N. Such
consistency results have been obtained via number theory in Palczewski et
al. (1997) in dimension d ≥ 3 and Fainsilber et al. (2006) for the case d = 2.
The mathematical proofs, although elegant, are rather technical and go be-
yond the scopes of the present survey. We limit ourselves to observe that
for the convergence over the unit sphere one has to show that:
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1 the number of integer points on the sphere Sij is increasing to infinity
as ∆v → 0;

2 the asymptotic distribution of these points on the sphere is uniform;
3 the answers to problems 1 and 2 are uniform with respect to vectors
vi and vj .

Finally, under the following assumptions on B

0 ≤ B(v, v + 2q, ω) ≤ α+ β|q|, ∀ q ∈ R
3, ω ∈ S

2, (4.49)

where α and β are positive constants, and considering positive and contin-
uous solutions f of the Boltzmann equation with given polynomial decay

‖f‖ = sup
v∈R3

f(v)(1 + v2)3 < +∞, (4.50)

it is possible to prove:

Theorem 4.6. Let B and f satisfy (4.49)-(4.50), then
∣∣∣∣∣∣

∑

j∈Z3

(∆v)3

Nij

∑

(vk,vl)∈Sij

g(vi, qij , ω
kl
ij )−

∫

R3

∫

S2

g(v, q, ω) dω dq

∣∣∣∣∣∣
→ 0,

as ∆v → 0, uniformly with respect to vi.

Remark 4.4. Under additional smoothness assumptions on B it is also
possible to derive error estimates (Palczewski et al. 1997, Fainsilber et
al. 2006). These error estimates, although far from being obvious, how-
ever, are of theoretical rather than practical interest since the estimated
rate of convergence is so slow that a numerical method based on such es-
timates would hardly ever become useful (only in particular circumstances
the rate of convergence is O((∆v)1/2)). On the other hand, these consis-
tency results are interesting, because they provide the necessary basis for
the convergence results of Mischler (1997), who proved that solutions to
families of discrete velocity models can converge to DiPerna-Lions solutions
of the full Boltzmann equation if certain conditions are satisfied.

The method by Martin et al. (1992). A similar approach was introduced in
Martin et al. (1992) and Rogier and Schneider (1994) using the theory of
Farey series to discretize the angular variable in the collision integral. The
main idea is to inverse the order of integration and integrate first over S

2.
The starting point now is the Boltzmann collision operator parametrized
accordingly to (2.20), which after the change of variables q = v∗ − v reads

Q(f, f)(v) =

∫

S1

∫

R2

qσ̄(q, n)[f(v′)f(v′∗)− f(v)f(v + q)] dq dn (4.51)

with

v′ = v + (q · n)n, v′∗ = v∗ − (q · n)n. (4.52)
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For simplicity, we recall here the method in the 2D case. We can express
v∗ = v + q in the cartesian frame (n, n⊥) centered in v

v∗ = v + |v′ − v|n+ |v′∗ − v|n⊥ = v + rn+ sn⊥, (4.53)

and write

Q(f, f)(v) =

∫

S1

∫

R2

F (v, r, s, n) dr ds dn (4.54)

where we have set

F (v, r, s, n) = qσ̄(q, n)[f(v+ rn)f(v+ sn⊥)− f(v)f(v+ rn+ sn⊥)]. (4.55)

The quadrature formula at a grid point vi is then based on choosing a
particular set of angles nh ∈ Θ such that vi + rnh and vi + sn⊥h cross the
grid points

Q(f, f)(vi) ≈
∑

nh∈Θ
Wh

∫

R2

F (vi, r, s, nh) dr ds. (4.56)

Finally, since each angle has necessarily the form nh = (ph, qh)/
√
p2h + q2h,

n⊥h = (−qh, ph)/
√
p2h + q2h, (ph, qh) ∈ Z

2 one considers the subgrid of V
spanned by ∆v(ph, qh) and ∆v(−qh, ph) and use a rectangular formula

∫

R2

F (vi, r, s, nh) dr ds ≈ (∆v)2
∑

(k,l)∈Z2

F (vi, r
h
k , s

h
l , nh), (4.57)

where ∆vh = ∆v
√
p2h + q2h, r

h
h = k∆vh and shl = l∆vh. The set of possible

angles nh can be chosen such that either |ph/qh| or |qh/ph| belongs to the
so-called Farey series of ordered rational numbers (Hardy and Wright 1979).
Concerning the precise expressions of the weights Wh and the construction
of the set Θ we refer to Schneider (1993), (see also Section 6.4 on the Farey
series). It is possible to prove the following consistency result

Theorem 4.7. Let F defined in (4.55) be in C2
0 (R

2 × R
2 × S

1) then
∣∣∣∣∣∣

∫

S1

∫

R2

F (vi, r, s, n) dr ds dn− (∆v)2
∑

nh∈Θ
Wh

∑

(k,l)∈Z2

F (vi, r
h
k , s

h
l , nh)

∣∣∣∣∣∣
→ 0,

as ∆v → 0 uniformly with respect to vi.

A similar result holds true also in the three dimensional case (Martin et
al. 1992, Rogier and Schneider 1994). Note that, similarly to the formula
by Goldstein et al. (1989), the consistency result is non trivial and requires
a careful analysis of the angular approximation based on the Farey series.
Error estimates are also possible but the estimated rate of convergence is
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very slow (the maximum estimated order is O((∆v)3/7)) and their interest
is mainly theoretical.

The method by Panferov and Heintz (2002). Finally, let us now consider
a different approach in the derivation of a discrete velocity quadrature
method (Panferov and Heintz 2002, Mouhot et al. 2013). The method is
based on the Carleman representation of the Boltzmann integral. In fact,
there are some advantages in using the alternative form (4.58) of the Boltz-
mann integral that we rewrite here

Q(f, f)(v) =

∫

R3

∫

R3

B̃(x, y)δ(x · y)

[f(v + y) f(v + x)− f(v + x+ y) f(v)] dx dy, (4.58)

with B̃(x, y) given by (2.26). Thanks to equations (4.38) and (4.40), we can
write at the discrete level the same representation as in the continuous case

Qi(f , f) =
∑

k,l∈Z3

Γ̃kl

[
fi+kfi+l − fifi+k+l

]
(4.59)

with

Γ̃kl = B̃(k, l)1(k · l)Wkl, (4.60)

whereWkl are the weights of the quadrature method (for the precise quadra-
ture weights see Panferov and Heintz (2002)). One can derive the following
consistency result from Panferov and Heintz (2002) in the case of hard
spheres kernels

Theorem 4.8. Assume that f ∈ Ck(R3) (k ≥ 1) with compact support.
Then for h > 0 sufficiently small

‖Q(f, f)(vi)−Qi(f , f)‖L∞(Zh)
≤ C (∆v)r

where Qi is the discrete operator defined in (4.59). Here r = k/(k + 3) and
the constant C is independent on ∆v.

The proof, although far from being trivial, is somehow easier if compared to
method derived from the standard representation, because the integration
over a sphere in the collision term is replaced by the integration over planes
in R

3 and this allows to use simpler and more direct techniques. As can be
seen from the error estimate in Theorem 4.8 and confirmed in the numerical
experiments the method is expected to have slightly less then first order
accuracy. A remarkable feature of this approach is that it can be evaluated
with the aid of fast summation methods, as discussed in Section 6.4.
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5. Spectral methods

Spectral methods for solving the Boltzmann equation originated in the
works of Pareschi and Perthame (1996) and Pareschi and Russo (2000b),
and their properties were further studied in Pareschi and Russo (2000c) and
in Filbet and Mouhot (2011). Related approaches, based on the use of the
Fourier transform have been introduced by Bobylev and Rjasanow (1999),
Ibragimov and Rjasanow (2002) and Gamba and Tharkabhushanam (2009).
Historically the very first attempts of this type for the Boltzmann equa-
tion were presented in Grigoriev and Mikhalitsyn (1983) and Gabetta and
Pareschi (1994). All these methods share the fact that they were inspired
to the Fourier transform theory for the Boltzmann equation for Maxwell
molecules by Bobylev (1988). Extensions to other kinetic problems have
been considered in Pareschi et al. (2000) and Filbet and Pareschi (2003)
for the Landau equation, in Filbet et al. (2005) for granular gases, in Filbet
et al. (2012) for the quantum case, and in Pareschi, Toscani and Villani
(2003) and Gamba and Haack (2014) for grazing limits. Here we use the
word spectral method in a standard way commonly used in numerical anal-
ysis and scientific computing, namely to denote a class of method involving
the use of the Fast Fourier Transform (FFT), which exhibit excellent er-
ror properties, with the so-called spectral accuracy (the error tends to zero
faster than any fixed power of N , where N is the number of grid points),
when the solution is smooth (Canuto, Hussaini, Quarteroni and Zang 1988).
Beside the spectral accuracy, as we will discuss in Section 6, the fundamen-
tal property of spectral methods is the possibility to speed up their eval-
uation through fast summation algorithms (Mouhot and Pareschi 2006),
making them competitive with direct simulation Monte Carlo methods in
the case of non stationary flows (Filbet and Russo 2003, Filbet, Mouhot
and Pareschi 2006, Gamba and Tharkabhushanam 2010, Filbet 2012, Wu,
White, Scanlon, Reese and Zhang 2013).

5.1. Spectral methods for the Boltzmann equation

Following Pareschi and Russo (2000b) let us start with the change of vari-
ables q = v∗ − v in the collision operator (2.14) to get

Q(f, f)(v) =

∫

R3

∫

S2

|q|σ(|q|, cos θ)
(5.1)

[f(v + q+)f(v + q−)− f(v)f(v + q)]dω dq,

where we used the fact that

B(v, v∗, ω) = |q|σ(|q|, cos θ), (5.2)
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and the vectors q+ and q− that parameterize the post-collisional velocities
are given by

q+ =
1

2
(q + |q|ω), q− =

1

2
(q − |q|ω). (5.3)

We recall the following identity for the weak form of the collision operator
∫

R3

Q(f, f)ϕ(v) dv (5.4)

=

∫

R3

∫

R3

∫

S2

|q|σ(|q|, cos θ)f(v)f(v + q)[ϕ(v + q+)− ϕ(v)] dω dq dv,

for all test functions ϕ.

Periodization and choice of the integration domain
The first step in the construction of the method is the reduction of the
integral over a finite integration domain. To this aim, we observe that if a
distribution function f has compact support, supp (f(v)) ⊂ B0(R), where
B0(R) is the ball of radius R centered in the origin, then by conservation of
energy

(v′)2 ≤ v2 + v2∗ ≤ 2R2,

and similarly we have (v′∗)
2 ≤ 2R2. Moreover |q| ≤ 2R and thus the collision

operator satisfies the following (Pareschi and Perthame 1996)

Proposition 5.1. Let supp (f(v)) ⊂ B0(R) then

i) supp (Q(f, f)(v)) ⊂ B0(
√
2R),

ii)
∫

R3

Q(f, f)ϕ(v) dv =

∫

B0(
√
2R)

∫

B0(2R)

∫

S2

|q|σ(|q|, cos θ) (5.5)

f(v)f(v + q)[ϕ(v + q+)− ϕ(v)] dω dq dv,

with v + q+, v + q ∈ B0((2 +
√
2)R).

In order to write a spectral approximation to (5.1) we can consider the
distribution function f(v) restricted on the cube [−T, T ]3 with T ≥ (2 +√
2)R, assuming f(v) = 0 on [−T, T ]3 \ B0(R), and extend it by periodicity

to a periodic function on [−T, T ]3. The lower bound for T can be improved
using the periodicity of the function and allowing intersections of periods
where the function f is zero, to get T ≥ (3 +

√
2)R/2 (see Figure 5.1).

Remark 5.1. The choice T = (3 +
√
2)R/2 guarantees the absence of

intersection between periods of the distribution function where f is different
from zero and thus permits to develop spectral methods on the cube without
aliasing errors (Canuto et al. 1988). However, since in practice the support
of f increases with time, we can just minimize the errors due to aliasing.
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✲

✻

0

B0(R)

T

√
2R

(2 +
√
2)R

Figure 5.1. Restriction of the distribution function on the periodic box
[−T, T ]× [−T, T ], with T = (3 +

√
2)R/2.

Spectral projection of the collision operator

To simplify the notation let us take T = π and hence R = λπ with λ =
2/(3+

√
2). We denote by QR(f, f) the Boltzmann operator with cut-off on

the relative velocity on B0(2R). Hereafter, we use just one index to denote
the three-dimensional sums with respect to the vector k = (k1, k2, k3) ∈ Z

3.
The approximate function fN is represented as the truncated Fourier series

fN (v) =
N∑

k=−N

f̂ke
ik·v, (5.6)

f̂k =
1

(2π)3

∫

[−π,π]3
f(v)e−ik·v dv. (5.7)

We obtain a spectral quadrature based on the f̂k coefficients by projecting
(5.1) on the space of trigonometric polynomials of degree ≤ N (Canuto et
al. 1988, Gottlieb and Orszag 1977). Hence, we have

Q̂k =

∫

[−π,π]3
QR(fN , fN )e−ik·v dv, k = −N, . . . , N. (5.8)
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By substituting expression (5.6) in (5.8) and using the identity (5.4) for
ϕ = e−ik·v we get

Q̂k =

N∑

l,m=−N
l+m=k

f̂l f̂mβ̂(l,m), k = −N, . . . , N, (5.9)

where the Boltzmann kernel modes β̂(l,m) = B̂(l,m) − B̂(m,m) are now
given by

B̂(l,m) =

∫

B0(2λπ)

∫

S2

|q|σ(|q|, cos θ)e−i(l·q++m·q−) dω dq. (5.10)

It is remarkable that (5.10) is a scalar quantity completely independent on
the function fN and on the argument v, depending just on the particular
kernel structure. In practice these quantities can be computed in advance
and then stored in a multidimensional matrix. It is immediate to verify that
the kernel modes satisfy

B̂(l,m) = B̂(−l,m) = B̂(l,−m) = B̂(l,−m), (5.11)

where the last equality states that the coefficients are real. Moreover they
depend only of |l −m|, |l +m| and of the angle between η = (l +m) and
µ = (l − m) (Pareschi and Perthame 1996). Obviously, these properties
are useful to reduce the storage requirements of the method. We emphasize
that the straightforward evaluation of (5.9) requiresO(n2) operations, where
n = N3, and hence it is less expensive than a usual discrete-velocity based
algorithm. We refer to Section 6 for a more detailed discussion on this topic
and the construction of fast summation methods.

Finally we can rewrite scheme (5.9) in the form, k = −N, . . . , N

Q̂k =
N∑

m=−N

f̂k−m f̂mβ̂(k −m,m). (5.12)

In the previous expression we assume that the Fourier coefficients are ex-
tended to zero for |kj | > N , j = 1, 2, 3.
In the VHS case, |q|σ(|q|, cos θ) = Cα|q|α, the dependence on the scatter-

ing angle disappears and it is easy to obtain the bound

|B̂(l,m)| ≤ 1

3 + α
, α > −3, (5.13)

where we have chosen Cα = ((4π)2(2λπ)3+α)−1. Moreover (5.10) reduces to
a one-dimensional integral (Pareschi and Russo 2000b)

B̂(l,m) =

∫ 1

0
r2+α Sinc(ξr) Sinc(ηr) dr = Fα(ξ, η), (5.14)
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where ξ = |l+m|λπ, η = |l−m|λπ. In addition for integer values of α < −3
the previous integral can be computed explicitly. We report the expressions
for the the case of Maxwell molecules α = 0 and hard spheres α = 1

F0(ξ, η) =
p sin(q)− q sin(p)

2ξηpq
(5.15)

F1(ξ, η) =
q sin(q) + cos(q)

2ξηq2
− p sin(p) + cos(p)

2ξηp2
− 2

p2q2
(5.16)

where p = (ξ + η), q = (ξ − η).

Remark 5.2.

• Formula (5.9) or equivalently (5.12) can be derived also from the weak
form (5.4) in a bounded domain
∫

[−π,π]3
QR(f, f)ϕ(v) dv =

∫

[−π,π]3

∫

B0(2λπ)

∫

S2

|q|σ(|q|, cos θ)
(5.17)

f(v)f(v + q)[ϕ(v + q+)− ϕ(v)] dω dq dv,

taking ϕ(v) = e−ikv.

• The spectral method can be applied directly to the Boltzmann equation
by requiring that the residual is L2-orthogonal to all Fourier modes. A
natural application is given by the space homogeneous case where we
require
∫

[−π,π]3

(
∂fN
∂t

−QR(fN , fN )

)
e−ikv dv = 0, k = −N, . . . , N,

(5.18)
to obtain a set of ordinary differential equations satisfied by the Fourier
coefficients (Pareschi and Russo 2000b)

∂f̂k
∂t

= Q̂k, k = −N, . . . , N. (5.19)

Methods based on the Fourier transform

In the approaches developed in Bobylev and Rjasanow (1997), Bobylev and
Rjasanow (2000), Bobylev and Rjasanow (1999), Ibragimov and Rjasanow
(2002), Gamba and Tharkabhushanam (2009) and Gamba and Tharkab-
hushanam (2010) the concept is dual from the spectral method just de-
scribed, since it consists in first using Fourier transform of the collision
operator and then approximating the truncated Fourier transformed opera-
tor by a quadrature formula. The same ideas motivated the early attempts
in Grigoriev and Mikhalitsyn (1983) and Gabetta and Pareschi (1994).
Here we don’t review all the different strategies used to tackle the Fourier



Numerical methods for kinetic equations 57

discretization problem but we limit ourselves to present the general idea fol-
lowing Gamba and Tharkabhushanam (2009). Let us introduce the Fourier
transform

f̂(ξ) = Fv[f ](ξ) =
1

(2π)3

∫

R3

f(v)e−iξv dv, F−1
ξ [f̂ ](v) =

∫

R3

f̂(ξ)eiξv dξ.

We can then consider the weak form (5.4) of the Boltzmann equation with
the choice ϕ(v) = e−iξv/(2π)3 to get the Fourier transformed operator

Q̂(ξ) =
1

(2π)3

∫

R3

Q(f, f)e−iξv dv

=
1

(2π)3

∫

R6

∫

S2

|q|σ(|q|, cos(θ))f(v)f(v + q)[e−iξ(v+q+) − e−iξv] dω dq dv.

Now denoting by fq(v) = f(v + q) and using the convolution theorem

Fv[fg](ξ) =
∫
f̂(ξ − µ)ĝ(µ) dµ we get

Q̂(ξ) =

∫

R3

∫

S2

|q|σ(|q|, cos(θ))Fv[ffq](ξ)
[
e−iξq+ − 1

]
dω dq

=

∫

R3

∫

S2

|q|σ(|q|, cos(θ))
∫

R3

f̂(ξ − µ)f̂(µ)e−iµq dµ
[
e−iξq+ − 1

]
dω dq

=

∫

R3

β̂(ξ − µ, µ)f̂(ξ − µ)f̂(µ) dµ (5.20)

where we used the property f̂q(µ) = f̂(µ)e−iµq. In (5.20), setting β̂(λ, µ) =

B̂(λ, µ)− B̂(µ, µ) with ξ = λ+ µ, we have

B̂(λ, µ) =

∫

R3

∫

S2

|q|σ(|q|, cos(θ))e−iλq+−iµq− dω dq. (5.21)

The above representation satisfies the same symmetries as in (5.11). Note
that (5.20) and (5.21) are the Fourier transform representation of the colli-
sion term analogous of the Fourier series in (5.12) and (5.10). In particular
the same computations as in Pareschi and Russo (2000b) for VHS are pos-
sible and we get the analogous of (5.14)

B̂(λ, µ) =

∫

R

r2+α Sinc

( |λ+ µ|r
2

)
Sinc

( |λ− µ|r
2

)
dr, (5.22)

where we have set Cα = (4π)−2.
The method is then applied by truncating the above formulation in a

bounded domain and then approximating the Fourier transform using the
FFT. Of course, since this is done for the transformed equation, it should
be realized properly to avoid aliasing as described in Proposition 5.1. In
particular, when approximating the Fourier transform by the FFT, for an
appropriate choice of the computational parameters, one goes back to the
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spectral method (5.12)-(5.10) or to a pseudo-spectral formulation of the
same. A word of caution is in order when one first applies the Fourier trans-
form over the whole space R3 and then truncates the computational domain
in Fourier variables. To illustrate this, let us observe that, in the case of
Maxwell molecules σ(|q|, cos(θ)) = C0|q|−1, the terms in (5.21) originates a

Dirac δ distribution in (5.20). It is immediate to verify that B̂(µ, µ) concen-

trates at µ = 0, whereas B̂(λ, µ), after a change of variables, concentrates at
µ = (ξ + |ξ|ω)/2. This yields the well-known simplification (Bobylev 1988)

Q̂(ξ) =

∫

S2

(f̂(ξ+)f̂(ξ−)− f̂(ξ)f̂(0)) dω, (5.23)

with ξ± = (ξ ± |ξ|ω)/2 and where we have set C0 = (2π)−3. A direct
discretization of (5.23) originates in a straightforward way an O(n log2 n)
fast solver (the cost of the FFT) and this was the motivation behind the
approximations in Grigoriev and Mikhalitsyn (1983), Gabetta and Pareschi
(1994), Bobylev and Rjasanow (1997) and Bobylev and Rjasanow (2000).
Note, however, that the above simplification is no more valid starting from
the Fourier series representation of f in a bounded domain (Pareschi and
Perthame 1996).
Finally, in these approaches conservation of momentum and kinetic en-

ergy are enforced, either by a renormalization procedure or by solving a
constrained optimization problem, analogous to the one discussed in Sec-
tion 3 for the definition of the numerical Maxwellian states. We refer also to
Narayan and Klöckner (2009) for a recent review of the different approaches.

5.2. Properties of the spectral method

In this section we will analyze in detail the main properties of the spec-
tral method (5.9)-(5.10), with a particular attention to the conservation
properties, the accuracy and the stability of the method.
Let us first set up the mathematical framework of our analysis. For

any t ≥ 0, fN (v, t) is a trigonometric polynomial of degree N in v, i.e.
fN (t) ∈ P

N where

P
N = span

{
eik·v | −N ≤ kj ≤ N, j = 1, 2, 3

}
.

Moreover, let PN : L2([−π, π]3) → P
N be the orthogonal projection upon

P
N in the inner product of L2([−π, π]3) (see (5.8)):

< f − PNf, ϕ >= 0, ∀ ϕ ∈ P
N .

We denote the L2-norm by

||f ||2 = (< f, f >)1/2.

With this definition PNf = fN , where fN is the truncated Fourier series of
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f given by (5.6). Since the operator PN is self-adjoint the following property
hold

< PNf, ϕ >=< f,PNϕ >=< PNf,PNϕ > ∀ f, ϕ ∈ L2([−π, π]3).
(5.24)

We will also define the smoothing operator S : PN → P
N for the truncated

Fourier series which is defined by a multiplication of each Fourier coefficient
by a factor sk

S fN (v) = f sN =

N∑

k=−N

skf̂ke
ik·v, (5.25)

where sk = sk1sk2sk3 are required to be real non-negative numbers such
that skj = s−kj , s0 = 1 and s|kj | ≤ s|kj−1|, j = 1, 2, 3.

Approximation by truncated Fourier series

First we prove some approximation properties of the projection operator
PN , in particular those concerning positivity of the density function and
approximation of the macroscopic quantities. Let us remark that, in general,
when we approximate a non negative function by a partial sum of its Fourier
series, that partial sum may be negative. The results are summarized in the
following proposition

Proposition 5.2. Let f ∈ L2([−π, π]3) and let us define



ρ
ρu
ρe


 :=

∫

[−π,π]3
f




1
v
|v|2


 dv. (5.26)

Then we have:

i) If f ≥ 0, ∀ v and the factors sk are such that

1 + 2
N∑

k=1

sk cos(k · v) ≥ 0, (5.27)

then f sN (v) ≥ 0, ∀ v.
ii) The moments of fN can be defined equivalently as




ρN
ρuN
ρeN


 :=

∫

[−π,π]3
fN




1
v
|v|2


 dv =

∫

[−π,π]3
f




1
vN

(v2)N


 dv

=

∫

[−π,π]3
fN




1
vN

(v2)N


 dv = (2π)3

N∑

k=−N

f̂k




δk0
v̂k
ˆ(v2)k


 ,
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where vN = PNv, (v
2)N = PNv

2, δk0 is the Kronecker delta, and v̂k
and ˆ(v2)k are the Fourier coefficients of v and v2.

iii) The following relations hold

ρ = ρN , |ρu− ρuN | ≤ C1

N1/2
||f ||2, |ρe− ρeN | ≤ C2

N3/2
||f ||2. (5.28)

Proof. The smoothed series (5.25) can be represented in integral form

f sN (v) =
1

(2π)3

∫

[−π,π]3
KN (v − w)f(w) dw,

where the kernel KN is given by

KN (v) = 1 + 2

N∑

k=1

sk cos(k · v).

From the positivity of KN follows the positivity of f sN and hence i).
Property ii) is a simple consequence of the fact that the projection op-

erator is self-adjoint and follows choosing ϕ(v) = 1, v, |v|2 in (5.24). The
last identity can be obtained by direct substitution of the truncated Fourier

series fN and using the properties that f̂k =
¯̂
f−k, where

¯̂
f−k denotes the

complex conjugate of f̂k, and the following relations:

δk0 =
1

(2π)3

∫

[−π,π]3
eik·v dv,

ˆ(v2)k =
1

(2π)3

∫

[−π,π]3
v2e−ik·v dv,

v̂k =
1

(2π)3

∫

[−π,π]3
ve−ik·v dv.

The first equality in iii) is a consequence of

ρN = (2π)3f̂0 =

∫

[−π,π]3
f(v) dv = ρ.

The estimates for ρuN and ρeN are derived observing that for each ϕ ∈
L2([−π, π]3), using Schwartz inequality, we have

| < f, ϕ > − < f, ϕN > | ≤< f, |ϕ− ϕN | >≤ ||f ||2 ||ϕ− ϕN ||2.

Now, by direct computation we obtain ˆ(vj)0 = 0, j = 1, 2, 3 and ˆ(v2)0 = π2
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whereas for k 6= 0 we have

ˆ(vj)k = − i

(2π)

3∏

l=1
l 6=j

δkl0

∫

[−π,π]
vj sin(kjvj) dvj = −i

3∏

l=1
l 6=j

δkl0
(−1)kj

kj
, j = 1, 2, 3,

(5.29)
and

ˆ(v2)k =
1

(2π)

3∑

j=1

3∏

l=1
l 6=j

δkl0

∫

[−π,π]
(vj)

2 cos(kjvj) dvj = 2

3∑

j=1

3∏

l=1
l 6=j

δkl0
(−1)kj

k2j
.

(5.30)
Using Parseval’s identity and (5.29)-(5.30) we obtain the following estimates

||v − vN ||2 ≤
C1

N1/2
, ||v2 − (v2)N ||2 ≤

C2

N3/2
,

the conclusion follows taking ϕ(v) = v, v2.

Remark 5.3.

• The positivity requirement i) can be satisfied using the factors

skj =

(
1− |kj |

N

)
, j = 1, 2, 3. (5.31)

In fact, these smoothing factors correspond to a nonnegative kernel,
the so called Fejer’s kernel, KN given by

KN (v) = 1 + 2

N∑

k=1

sk cos(k · v) =
1

N3

3∏

i=1

(
sin(Nvi/2)

sin(vi/2)

)2

≥ 0.

This is also equivalent to replace the truncated Fourier series by the
arithmetic means, or Cesaro sums, of the truncated series. However,
Fejer’s kernel produce a heavy smearing of the function near a sin-
gularity point. In most applications it is desirable to have a sharper
representation of the function by using different smoothing at the ex-
pense of retaining some oscillations or small negative values.

• Since the smoothed projection SPN = Ps
N is also self-adjoint by using

the properties of sk, the analogue of points ii) and iii) can be proved
for f sN .

• From ii) and (5.29) the j-component of the momentum of fN depends

only on the imaginary part of f̂k and only on the N Fourier coefficients
on the axis kl = 0, l 6= j. Similarly from ii) and (5.30) the energy of
fN depends only on the real part of fk and only on the 3N Fourier
coefficients on the three orthogonal axes.

• The estimates given in iii) can be strongly improved if f is smooth.
If f ∈ Hr

p([−π, π]3), where r ≥ 0 is an integer and Hr
p([−π, π]3) is the
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subspace of the Sobolev space Hr([−π, π]3), which consists of periodic
functions, for each ϕ ∈ L2([−π, π]3) we have

| < f, ϕ > − < f, ϕN > | ≤ ||ϕ||2 ||f − fN ||2 ≤
C

N r
||ϕ||2||f ||Hr

p
,

where || · ||Hr
p
denotes the norm in Hr

p([−π, π]3). This inequality shows
that the projection error on the moments decay faster than algebraically
when the solution is infinitely smooth.

Consistency and spectral accuracy

Now we can discuss the consistency properties of the spectral quadrature
method defined by (5.9). For simplicity we will restrict our discussion to
the VHS model introduced previously. As we will see the consistency proof
follows in a direct way from the construction of the method. We will denote
by QR

N (fN ) = PNQ
R(fN , fN ). In order to prove a consistency result for the

method we need the following

Lemma 5.1. Let f, g ∈ L2([−π, π]3), then QR(fN , gN ) ∈ P2N and

||QR(f, g)||2 ≤ C||f ||2||g||2. (5.32)

Proof. The first statement follows immediately from the representation
formula

QR(fN , gN ) =
N∑

l=−N

N∑

m=−N

f̂l ĝmβ̂(l,m)ei(l+m)·v =
2N∑

k=−2N

Q̂N
k e

ik·v,

where

Q̂N
k =

N∑

l+m=k
l,m=−N

f̂lĝmβ̂(l,m).

The estimate (5.32) for the gain part of the collision operator is a conse-
quence of the estimates in (Gustaffson 1986, Lions 1994)

||Q+,R(f, g)||2 ≤ C1||f ||2||g||1 ≤ (2π)3/2C1||f ||2||g||2.
The corresponding result for the loss part can be computed directly observ-
ing that LR(f) = f ∗q Bλ where ∗q denotes the convolution operation with
respect to q and Bλ is the VHS kernel with cut-off over the relative velocity
q on the ball B0(2R), R = λπ. Hence

||f(g ∗q Bλ)||2 ≤ ||f ||2||g ∗q Bλ||∞ ≤ ||f ||2||Bλ||∞||g||1 ≤ C2||f ||2||g||2,

with C2 = (2π)3/2||Bλ||∞ = (2π)3/2Cα(2λπ)
α.
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Then we observe that the method defined by equation (5.9) implies the
following spectral approximation of the collision integral

QR
N (fN ) =

N∑

k=−N

Q̂ke
ikv, (5.33)

where, to simplify the notation, we use QR(f) instead of QR(f, f). We point
out that because of the periodicity assumption on f , and hence on QR(f),
the collision operator QR(f) preserves in time the mass contained in the
period. On the contrary, momentum and energy are not preserved in time.
From Proposition 5.2 it is also clear that the projected collision operator

QR
N (fN ) will preserve the mass in time. This can be also derived directly

from the properties of the kernel modes, in fact

∫

[−π,π]3
QN (fN ) dv = Q̂0 =

N∑

m=−N

f̂−mf̂mβ̂(−m,m) = 0,

since β̂(−m,m) = 0.
Next we state the consistency in the L2-norm for the approximation of

the collision operator QR(f) with QR
N (fN ),

Theorem 5.1. Let f ∈ L2([−π, π]3), then

||QR(f)−QR
N (fN )||2 ≤ C

(
||f − fN ||2 +

||QR(fN )||Hr
p

N r

)
, ∀ r ≥ 0, (5.34)

where C depends on ||f ||2.
Proof. First, we can split the error in two parts

||QR(f)−QR
N (fN )||2 ≤ ||QR(f)−QR(fN )||2 + ||QR(fN )−QR

N (fN )||2.
Now from Lemma 5.1, QR(fN ) ∈ P2N and hence QR(fN ) is periodic and
infinitely smooth together with all its derivatives thus

||QR(fN )−QR
N (fN )||2 ≤

C

N r
||QR(fN )||Hr

p
, ∀ r ≥ 0. (5.35)

By application of Lemma 5.1 and from the identity

QR(f)−QR(g) = QR(f + g, f − g),

(which is a direct consequence of the bilinearity of QR), we have

||QR(f)−QR(fN )||2 = ||QR(f + fN , f − fN )||2 ≤ C1||f + fN ||2||f − fN ||2

≤ 2C1||f ||2||f − fN ||2.
This concludes the proof.
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The previous theorem states that the rate of convergence in the L2-norm
of QR

N (fN ) to QR(f) depends only on the speed of convergence of fN to f .
Hence if fN is spectrally accurate so it is QR

N (fN ). The following theorem
states the spectral accuracy of the approximation of the collision operator

Theorem 5.2. Let f ∈ Hr
p([−π, π]3), r ≥ 0 then

||QR(f)−QR
N (fN )||2 ≤

C

N r

(
||f ||Hr

p
+ ||QR(fN )||Hr

p

)
, (5.36)

Proof. It is enough to observe that

||f − fN ||2 ≤
C

N r
||f ||Hr

p
.

From the previous corollary it follows

| < QR(f), ϕ > − < QR
N (fN ), ϕ > | ≤ C

N r
||ϕ||2

(
||f ||Hr

p
+ ||QR(fN )||Hr

p

)
,

(5.37)
and hence, by taking ϕ = v, v2, the spectral accuracy of the moments.

Remark 5.4.

• From (5.35) it follows that, except for the projection errors on the
initial data, the variations of momentum and energy introduced by the
spectral scheme are spectrally small and hence the observed variations
with respect to the projected moments are mainly due to the aliasing
of periods. In fact, using (5.35), from Schwarz inequality we have

| < QR(fN ), ϕ > − < QR
N (fN ), ϕ > | ≤ C

N r
||ϕ||2||QR(fN )||Hr

p
. (5.38)

The estimates on the conservation laws can be derived by considering
ϕ = v, v2.

• Of course, the method can be made exactly conservative by enforcing
conservations through the L2 projection (3.44) applied to the approx-
imated collision term QR

N (fN ) over the grid. Since the correction is
proportional to the moments deviation, from the above estimates it
follows that spectral accuracy may be maintained provided that the
moments are approximated with spectral accuracy and aliasing errors
are controlled by the choice of a sufficiently large computational do-
main.

Numerical validation of spectral accuracy
Finally we report some numerical results which show that the method de-
fined by (5.9)-(5.10) is capable to achieve spectral accuracy of the numerical
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Figure 5.2. L1 relative norm of the error vs time.

Table 5.1. Convergence test for the homogenous Boltzmann equation.

# modes Error at time t = 5 Convergence rate

n π/6 π/7 π/8 π/6 π/7 π/8

8× 8 1.51E-01 2.09E-01 2.71E-01 5.64 4.41 3.91
16× 16 3.01E-03 9.78E-03 1.78E-03 9.64 10.23 8.19
32× 32 3.79E-06 0.81E-05 0.61E-05

solution. We consider the two-dimensional Maxwellian molecules case (i.e.
α = 0, v ∈ R

2), with C0 = 1/(2π). In the space homogeneous case, this
problem has an exact solution given by (Bobylev 1975, Ernst 1983)

f(v, t) =
1

4πS2γ2

(
2S − 1 +

1− S

2S

v2

γ2

)
exp

(
− v2

2Sγ2

)
, t ≥ 0, (5.39)

where S = 1 − exp(−γ2t/8)/2. In the computation the scaling parameter
γ = π/6 is chosen in such a way that the numerical support of the ini-
tial condition is well approximated by B0(R) and and the integration time:
tmax = 40. Figures 5.2 show the relative L1 norm of the error in the density
function for N = 8, 16, and 32 modes per direction. Note that the relative
error increases initially, and then it decreases almost monotonically in time.
After a long time the error starts increasing again. This effect is due to
aliasing. When the number of Fourier modes increases, the effect of alias-
ing becomes dominant over the error due to the spectral approximation. If
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we fix the attention to Figure 5.2 at time t = 5 we observe the results for
the relative L1 norms of the error reported in table 5.1 for different choices
of the scaling parameter γ = π/6, π/7, π/8. In the last three columns the
order of accuracy is reported. The decay of the error with the increase of
the number of modes is an indication of spectral accuracy.
To show that the effect of aliasing becomes dominant when the number of

Fourier modes is increased, we repeat the previous calculation using a more
compact initial condition, which is equivalent to using a larger period. The
results of the computation are shown in Fig. (5.2) (right). With 32 modes
per direction, when increasing the period with respect to the numerical
support of the function, the error for short times increases, because of the
loss of resolution (since the number of modes is the same), but the error for
long time decreases, since the effect of aliasing is less pronounced.

Stability results for the homogeneous Boltzmann equation

Next we consider the problem of stability of the numerical solution in the
space homogeneous setting for VHS kernels with cut-off over the relative
velocity. We consider the initial value problem

∂f

∂t
= QR(f, f), v ∈ [−π, π]3, t > 0,

(5.40)
f(v, t = 0) = f0(v),

First, following Pareschi and Russo (2000c), we rewrite the equation in the
equivalent form

∂f

∂t
+ µf = PR(f, f), (5.41)

with PR(f, f) = QR(f, f) + µf .
It is easy to check that for the loss part of the collision operator fLR(f)

we have the inequality

LR(f) ≤ Cα4π(2λπ)
α

∫

[−π,π]3
f(v) dv = Cα4π(2λπ)

αρ.

Thus for

µ ≥ Cα4π(2λπ)
αρ, (5.42)

PR(f, f) is a positive monotone operator in the sense that

PR(f, f) ≥ PR(g, g) ≥ 0 if f ≥ g ≥ 0.

Then we have the following result regarding the stability of a smoothed
spectral scheme (Pareschi and Russo 2000c)

Theorem 5.3. There exists a unique solution fN (t, v) ∈ C1([0, T ],PN ),
fN ≥ 0, with ||fN ||1 = ρ, for arbitrary time T > 0 to the initial value
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problem

∂fN
∂t

+ µfN = SPR
N (fN ),

(5.43)
fN (v, t = 0) = f s0,N (v),

provided that f0 ∈ L2([−π, π]3) is non negative, ||f0||1 = ρ, µ satisfies (5.42)
and the smoothing operator S satisfies (5.27).

From Theorem 5.3 it follows that the L1 norm of the spectral solution is
constant in time and hence the smoothed positive scheme is stable in the
L1-norm.

Remark 5.5. For practical purposes the positive scheme (5.43) introduces
too much smoothing, and spectral accuracy is lost. However, it is interesting
to remark that, as pointed out in Pareschi and Russo (2000c), the main
reason in the lack of accuracy of (5.43) is represented by the smoothed
projection of the initial data.

A more general stability result in absence of smoothing has been proved
recently by Filbet and Mouhot (2011). Their approach is based on consid-
ering homogeneous Boltzmann equations perturbed by smoothed balanced
operators which do not preserve positivity of the distribution. They proved
the following result in dimension d ≥ 2.

Theorem 5.4. Consider any nonnegative initial datum f0 ∈ Hr
p([−π, π]3),

with r > d/2, which is not zero everywhere. Then there exists N0 ∈ N (de-
pending on the mass and ‖f‖Hr

p
) such that for all N ≥ N0:

(i) there is a unique global solution fN = fN (·, t) to the following problem

∂fN
∂t

= QR
N (fN ),

(5.44)
fN (v, t = 0) = f s0,N (v);

(ii) for any k < r, there exists C > 0 such that

∀ t ≥ 0, ‖fN (·, t)‖Hk
p
≤ C; (5.45)

(iii) this solution is everywhere positive for time large enough, and the mass
of its negative values can be made uniformly (in times) L∞ small as
N → ∞;

(iv) this solution fN converges to f(t), the periodized solution in [−π, π]3
to (5.40), with spectral accuracy, uniformly in time;

(v) this solution converges exponentially in time to a constant solution
prescribed by the mass conservation law.

Remark 5.6. As a consequence of the results just described the steady
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states of the spectral method (5.44) are the same of the periodized homo-
geneous Boltzmann equation and are characterized by constant functions
with given mass density. Of course, if the velocity support is large enough
this behavior is never observed in practical calculations. Nevertheless one
may be interested in developing a spectral method that preserves exactly
the Maxwellian equilibrium state (which is not guaranteed by enforcing
moments conservations). A possible approach is based on the decomposi-
tion (Liu and Yu 2004)

f =M [f ] + g, (5.46)

with g such that
∫
R3 g ϕ dv = 0, ϕ = 1, v, |v|2, which inserted into the

collision operator gives

Q(f, f) = Q(g,M [f ]) +Q(M [f ], g) +Q(g, g), (5.47)

where we used the fact that Q(M [f ],M [f ]) = 0.
Now instead of periodizing f , one periodizes g and applies the spectral

method to the decomposition (5.47). The major difference is that the steady
state of (5.47) is given by g = 0, ∀ v which belongs to the space of trigono-
metric polynomials and therefore it can be described correctly by the spec-
tral scheme.

5.3. Spectral methods for other collision terms

The general methodology described in Section 5.1 has been successfully
applied also to other collision terms, like the Landau equation (Pareschi et
al. 2000, Filbet and Pareschi 2003), the inelastic Boltzmann equation (Filbet
et al. 2005) and the quantum Boltzmann equation (Filbet et al. 2012). In
the sequel we give a short description of the first two cases and refer to
Section 6 for some details on the quantum case.

Landau equation

One case of particular relevance is that of the Landau equation of plasma
physics (Pareschi et al. 2000). We rewrite here the expression of the Landau
integral after the change of variables q = v − v∗

QL(f, f)(v) = ∇v ·
∫

R3

A(q)[f(v − q)∇vf(v)− f(v)∇qf(v − q)] dq (5.48)

where A(q) = Ψ(|q|)Π(q) is a 3 × 3 nonnegative symmetric matrix and
Π(q) = I − qq/|q|2, with I the identity matrix, is the orthogonal projection
upon the space orthogonal to q. We have Ψ(|q|) = Λ|q|α+2 for inverse-power
laws, with α ≥ −3 and Λ > 0.

In the Landau case, similarly to the previous situation, it can be proved
that if supp (f(v)) ⊂ B0(R) then supp (QB(f, f)(v)) ⊂ B0(3R). By de-
noting R = λπ, aliasing errors for compactly supported functions can be
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avoided with λ = 1/2 and the integration over R3 in (5.48) can be replaced
by an integration over B0(π) (Pareschi et al. 2000).

By substituting expression (5.6) in (5.8) with QR = QR
L , where Q

R
L is the

Landau operator with cut-off over the relative velocity in the ball B0(2R),
using the orthogonality property of trigonometric polynomials, we get

Q̂L,k =
N∑

l+m=k
l,m=−N

f̂l f̂mψ̂(l,m), k = −N, . . . , N (5.49)

where ψ̂(l,m) = Ψ̂(l,m)− Ψ̂(m,m), and the Landau kernel modes Ψ̂(l,m)
are given by

Ψ̂(l,m) =

∫

B0(π)
Ψ(|g|)

[
l2 −

(
l · g|g|

)2
]
eig·mdg. (5.50)

As in the Boltzmann case, Ψ̂(l,m) are scalar quantities independent on
the function f that satisfy the same symmetry property, so that they are
functions of |l + m| and |l − m| only. Moreover, for inverse power laws,
taking Λ = ((4π)(π)5+α)−1 we have the bound

|Ψ̂(l,m)| ≤ 3N2

5 + α
. (5.51)

Note that the estimates on the Fourier coefficients B̂(l,m) and Ψ̂(l,m) are

quite different. In particular, Ψ̂(l,m) grow with N , and this is the cause
of the stiffness observed in the time integration of the equation (Filbet and
Pareschi 2003, Lemou and Mieussens 2005). This reflects the fact that
the Landau equation suffers of the stiffness typical of diffusion equations.
Stability condition of grid based methods requires that the time step scales
with the square of the velocity mesh size. Although this is a very important
issue, it is beyond our scope here. Some considerations on possible methods
to overcome the problem are found in Remark 7.5 in Section 7.
By similar arguments as in the Boltzmann case it is possible to prove

consistency and spectral accuracy of the method (Pareschi et al. 2000).

A fast summation method

Let us remark that schemes (5.9) and (5.49) have exactly the same structure.
The only difference is given by the expressions of the Boltzmann kernel
modes (5.10) and the Landau kernel modes (5.50). As a consequence the
straightforward computation of (5.49) has the same O(n2), n = N3, cost of
a conventional discretization applied to the Landau equation.
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On the other hand we can rewrite (5.49) as

N∑

m=−N

f̂k−m f̂mΨ̂(k −m,m)−
N∑

m=−N

f̂k−m f̂mΨ̂(m,m), k = −N, . . . , N.

Clearly the second sum is a convolution sum and thus transform methods
allow this term to be evaluated in O(n log2 n) operations. For the details
of the implementation of this standard technique for spectral methods we
refer the reader to (Canuto et al. 1988). Hence the most expensive part of
the computation is represented by the first sum which in general cannot be
evaluated with fast algorithms.
In the case of the Landau equation, however, Ψ̂(l,m) splits as

Ψ̂(l,m) := l2F̃ (m)−
3∑

p,q=1

lp lqIpq(m) = l2F̃ (m)− l I(m) lT ,

where lT denotes the transpose of the vector l, I = (Ipq) is a 3×3 symmetric
matrix, and taking Λ = 1

F̃ (m) =

∫

B0(π)
|g|2+γeig·mdg, (5.52)

Ipq(m) =

∫

B0(π)
|g|γgp gqeig·mdg, p, q = 1, . . . , 3. (5.53)

Thus we can write

ψ̂(l,m) = l2F̃ (m)− l I(m) lT − Ψ̂L(m,m). (5.54)

The resulting scheme requires the evaluation of 8 convolution sums (the
number of distinct elements of I plus two single convolution sums for F̃ (m)

and Ψ̂L(m,m)). Hence, the overall cost of the scheme is only O(n log2 n).
For the implementation of the algorithm we need to evaluate the quanti-

ties (5.52)-(5.53). For simplicity, we will treat here only the two-dimensional
case v ∈ R

2. We have

I11(m) =
1

2

[
F (|m|) + m2

1 −m2
2

|m|2 G(|m|)
]
,

I22(m) =
1

2

[
F (|m|)− m2

1 −m2
2

|m|2 G(|m|)
]
,

I12(m) = I21(m) =
m1m2

|m|2 G(|m|),

where

F̃ (m) = F (|m|) = 2π

∫ π

0
rγ+3J0(|m|r) dr, (5.55)
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with J0 the Bessel function of order 0 and

G(|m|) =
∫ π

0
rγ+3

∫ 2π

0
cos(|m|r cosϕ) cos(2ϕ) dϕ dr. (5.56)

Thus the computation reduces simply to the computation of two one--
dimensional integrals F (|m|) and G(|m|). These quantities can be computed
very accurately once and then stored in two bidimensional arrays. A similar
reduction can be performed in the full three dimensional case.

Remark 5.7. Let us recall that the Landau equation is obtained in the
so-called grazing collision limit of the Boltzmann operator for Coulom-
bian collisions. In such case, corresponding to α = −3, the Boltzmann
integral diverges and the Landau equation can be derived in the grazing
collision limit (Villani 2002). It is remarkable that the spectral method,
thanks to its weak formulation, can be successfully applied also to the study
of the Boltzmann equation in this challenging asymptotic behavior where
B̂(l,m) → B̂L(l,m) (Pareschi et al. 2003). We refer also to Gamba and
Haack (2014) for recent results based on the above ideas.
In particular, during this asymptotic process it is possible to obtain inter-

mediate kinetic approximations that can be evaluated with fast algorithms
at a cost of O(n log2 n). This idea has been used in Pareschi (2003) to con-
struct fast approximated algorithms for the Boltzmann equation (but with
loss of spectral accuracy).

Inelastic Boltzmann equation
The case of the Boltzmann equation for granular gases has been studied
in Filbet et al. (2005). In such case the method is applied to the Boltzmann
integral for inelastic hard spheres which for any smooth test function ψ can
be written as∫

Qe(f, f)(v)ψ(v)dv

(5.57)

=

∫

R3

∫

R3

∫

S2

|q|f(v) f(v − g)
(
ψ(v′)− ψ(v)

)
dω dqdv,

where

v′ = v − 1 + e

4
(q − |q|ω) = v − 1 + e

2
q−,

and the inelastic collisions are characterized by a restitution coefficient e
(0 < e < 1). The derivation of the spectral method is pretty straightforward
and originates a scheme which has the same structure as (5.9) and (5.49).
In this case it reads

Q̂e,k =

N∑

l,m=−N
l+m=k

f̂l f̂mβ̂e(l,m), k = −N, . . . , N, (5.58)
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where the inelastic Boltzmann kernel modes β̂e(l,m) = B̂e(l,m)−B̂e(m,m)
are now given by

B̂e(l,m) =

∫

B0(2λπ)

∫

S2

|q|e−im·q+i(l+m)·(1+e)q−/2 dω dq. (5.59)

As for the case of elastic hard spheres, it can be shown that the kernel modes
can be reduced to one-dimensional integrals and computed explicitly. In this
case the coefficient can be written as

B̂e(l,m) = CλF (ξ, η) = Cλ

∫ 1

0
r3 Sinc(ξr) Sinc(ηr) dr, (5.60)

where now ξ = |l+m|(1 + e)λπ/2, η = |l(1 + e)−m(3− e)|λπ/2 and Cλ =
(8π2(2λπ)4). It is easy to prove that for constant coefficient of restitution
(5.60) has the same explicit analytical expression given by (5.16) except for
the different definitions of ξ and η.

Remark 5.8. For non constant coefficient of restitution the spectral method
has been analyzed in Naldi, Pareschi and Toscani (2003) for a one-dimensional
inelastic model. In particular, it was shown that the method is well-defined
in the numerical passage of the Boltzmann equation with singular kernel to
nonlinear friction equations in the so-called quasi elastic limit.

A velocity-rescaling method
A major difficulty with the inelastic Boltzmann equation, is that the so-
lution formally converges to a Dirac delta equilibrium state. A velocity
rescaling technique in this case is necessary to approximate accurately the
asymptotic behavior of the equation with the spectral method and avoid
Gibbs phenomenon (see Figure 5.3). Here we recall the basic ideas of the
method. We refer to Filbet et al. (2005), Filbet and Russo (2006) and Filbet
and Rey (2013) for more details on the construction of schemes based on
this strategy.
Given the distribution function f(t, x, v), x ∈ R

dx , v ∈ R
dv we introduce

a new distribution g(t, x, ξ) by setting

f(t, x, v) =
1

ωdv
g (t, x, ξ) , ξ =

v

ω
, (5.61)

where the function ω is assumed to be an accurate measure of the “support”
or scale of the distribution f in velocity variables. Then according to this
scaling, the distribution g should naturally “follow” either the concentration
or the spreading in velocity of the distribution f .

Let us now derive the kinetic equation verified by the distribution g.
Differentiating relation (5.61) with respect to time yields

∂f

∂t
=

1

ωdv

[
∂g

∂t
− 1

ω

∂ω

∂t
∇ξ · (ξ g)

]
.
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One also has

v · ∇xf =
ξ

ωdv−1
·
[
∇xg −

1

ω
∇x ω∇ξ · (ξ g)

]
.

Then, if f is solution to the Boltzmann equation (2.10), with the inelastic
collision term given by (5.57), the distribution g given by (5.61) is solution
to the following equation

∂g

∂t
+ ω ξ · ∇xg −

1

ω

[(
∂ω

∂t
+ ω ξ · ∇x ω

)
∇ξ · (ξ g)

]
= ω Q̃e(g, g),

where Q̃ is such that Q̃e(g, g) = ωdv−1Qe(f, f). This equation can actually
be written in the more convenient conservative form

∂g

∂t
+∇x · (ω ξ g)−∇ξ ·

[(
1

ω

∂ω

∂t
ξ + ξ ⊗ ξ∇x ω

)
g

]
= ω Q̃e(g, g). (5.62)

In order to make this rescaling efficient, the main difficulty is now to choose
an appropriate scaling function ω to define completely the distribution g.
The natural idea which follows from Filbet et al. (2005) and Filbet and
Russo (2006) consists in computing the function ω directly from the distri-
bution function f , by setting

ω :=

√
2E

dv ρ
, (5.63)

where E = (dvT + u2)ρ/2 and the macroscopic quantities ρ, u and T have
been defined in (2.32).

Assuming that f is nonnegative, the quantity ω will then provide correct
information on its support: if f is concentrated, ω will be small, whereas it
will be large for scattered distributions. This approach has been shown to be
very accurate for the space-homogeneous setting (Filbet et al. 2005, Filbet
and Russo 2006), but in the space non homogeneous case it poses some
limitations. First, the definition of ω yields very restrictive constraints on
the moments of g, namely

∫

Rdv

g(t, x, ξ) dξ =
1

dv

∫

Rdv

g(t, x, ξ) |ξ|2 dξ.

Second, the strong coupling between ω and g leads to nonlinear terms in
the evolution equation. A simple way to overcome these aspects has been
proposed in Filbet and Rey (2013) and is based on evaluating ω from macro-
scopic quantities which are assumed to be close enough to the one computed
from f . A good candidate will be a solution to the system of macroscopic
equations obtained from a suitable closure of the kinetic model (see for ex-
ample Pareschi and Toscani (2004)). Once a good macroscopic moments
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Figure 5.3. Large time behavior of the spectral method for the inelastic
homogeneous Boltzmann equation in one-dimension.

estimator as been selected we then set

ω :=

√
2Em

dv ρm
, (5.64)

where Em and ρm have been computed with the macroscopic model.

Remark 5.9. The velocity-rescaling method described above is not re-
stricted to spectral methods and to inelastic collision operators, but applies
also to any other kind of discretizations of a kinetic equation with the aim
to avoid the drawbacks caused by a fixed grid in velocity space. See Filbet
and Rey (2013) for several examples.

6. Fast summation methods

In this section we shall focus on the main question which plague the use
of deterministic approximation of the Boltzmann equation, that is their
computational complexity. As already observed in the previous sections,
quadrature approximations of the five fold Boltzmann integral lead to a
computational cost which is at least quadratic O(n2+δ), δ ≥ 0 with re-
spect to the total number of velocity grid points n used to approximate the
distribution function. In contrast stochastic methods, although less accu-
rate, can be evaluated at a cost which is linear with respect to the number
of particles (Bird 1994, Nanbu 1980). In the case of spectral methods a
reduction from O(n2) to O(n log2 n) was readily deducible for the Landau
equation (see Pareschi et al. (2000) and Section 5.3). The convolution struc-
ture of the Landau equation, in fact, allows naturally the development of
fast solvers (Buet and Cordier 1999, Lemou and Mieussens 2005). In the
Boltzmann case such a straightforward reduction is not possible and only
recently, in Mouhot and Pareschi (2004), Mouhot and Pareschi (2006) for
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spectral methods and Mouhot et al. (2013) for discrete velocity methods,
such result has been achieved for a particular class of interaction kernels.
We refer also to Bobylev and Rjasanow (1999) for a similar approach. Let
us mention that several acceleration techniques have been proposed in the
past literature (Bokanowski and Lemou 2005, Buet 1996, Kowalczyk, Pal-
czewski, Russo and Walenta 2008, Platkowski and Walús 2000, Valougeorgis
and Naris 2003). We do not seek to review all of them here, and refer the
reader to the above articles and the references therein.

6.1. The Boltzmann operator in bounded domains

As observed a major problem associated with deterministic methods that
use a fixed discretization in the velocity domain is that the velocity space is
approximated by a finite region. In general the collision process “spreads”
the support and at the numerical level some non physical condition has to be
imposed to keep the support of the function in velocity uniformly bounded.
In order to do this there are two main strategies.

1 One can remove the physical binary collisions that will lead outside the
bounded velocity domain. If this is done properly, the scheme remains
conservative (without spurious invariants). However this truncation
breaks down the convolution-like structure of the collision operator,
which requires the invariance in velocity. This truncation is at the
basis of most discrete velocity methods in a bounded domain.

2 One can add some non physical binary collisions by periodizing the
function and the collision operator. This implies the loss of some local
invariants (some non physical collisions are added). Thus the scheme
is not conservative anymore, except for the mass. In this way the
structural properties of the collision operator are maintained and thus
they can be exploited to derive fast algorithms. This approach is at
the basis of spectral methods.

Of course, a third possibility, which can be used in conjunction with the
periodization in point 2, is based on projecting the collision operator back
to a compact support in such a way that conservations are enforced. This
is the case, for example, of the L2 projection (3.44) discussed in Section
3. In all cases, however, by enlarging enough the computational domain
the number of removed or added collisions (or the projection) can be made
negligible as well as the error in the local invariants.

Here, in order to derive fast summation methods, we shall focus on the
second approach. The starting point in the development of fast summation
methods is to approximate the collision operator starting from represen-
tation (2.25) which somehow conserves more symmetries of the collision
operator when one truncates it in a bounded domain. This representa-
tion was used before by several authors to construct quadrature formu-
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las (Bobylev and Rjasanow 1999, Ibragimov and Rjasanow 2002, Panferov
and Heintz 2002). We consider the collision operator in the form (2.25) that
we rewrite in dimension d ≥ 2 as

Q(f, f)(v) =

∫

Rd

∫

Rd

B̃(x, y)δ(x · y)

[f(v + y) f(v + x)− f(v + x+ y) f(v)] dx dy, (6.1)

with

B̃(x, y) = 2d−1 σ

(
|x+ y|,−x · (x+ y)

|x||x+ y|

)
|x+ y|−(d−3).

One can easily see that on the manifold defined by x · y = 0, we have
B̃(x, y) = B̃(|x|, |y|) (using the parities of the collision kernel) with

B̃(|x|, |y|) = 2d−1 σ

(
√

|x|2 + |y|2, |x|√
|x|2 + |y|2

)
(|x|2+ |y|2)− d−3

2 . (6.2)

Now let us consider the function f periodized on the bounded domain
DT = [−T, T ]d and truncate the integration in x and y by setting them to
vary in B0(R), the ball of center 0 and radius R. As seen in Section 5, a
geometrical argument shows that using the periodicity of the function it is
enough to take T ≥ (3 +

√
2)R/2 to prevent intersections of the regions

where f is different from zero.
The operator now reads

QR(f, f)(v) =

∫

B0(R)

∫

B0(R)
B̃(x, y) δ(x · y)

[f(v + y)f(v + x)− f(v + x+ y)f(v)] dx dy (6.3)

for v ∈ DT .
By making some translation changes of variable on v (by x, y and x+ y),

using the changes x→ −x and y → −y and the fact that

B̃(−x, y) δ(−x · y) = B̃(x, y) δ(x · y) = B̃(x,−y) δ(x · −y)
one can easily prove that for any function ϕ periodic on DT the following
weak form is satisfied
∫

DT

QR(f, f)ϕ(v) dv =
1

4

∫

DT

∫

B0(R)

∫

B0(R)
B̃(x, y) δ(x·y)f(v+x+y)f(v)

[ϕ(v + y) + ϕ(v + x)− ϕ(v + x+ y)− ϕ(v)] dx dy dv. (6.4)

It can be shown that if f has compact support included in B0(R) with T ≥
(3+

√
2)R/2, then no unphysical collisions occur and thus mass, momentum

and energy are preserved. Obviously this compactness is not preserved with
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time since the collision operator spreads the support of f by a factor
√
2.

In the rest of the paper we will focus on the periodized truncation QR.

6.2. Fast spectral methods

Now we use the above formulatuon to derive spectral methods that can be
evaluated through fas algorithms. The presentation here follows Mouhot
and Pareschi (2006) and Filbet et al. (2006).

To simplify notations let us take T = π. Using the same notations of Sec-
tion 5 a straightforward computation leads to the following spectral quadra-
ture for the collision operator

Q̂k =
N∑

l,m=−N
l+m=k

β̂F (l,m) f̂l f̂m, k = −N, ..., N (6.5)

where β̂F (l,m) = B̂F (l,m)− B̂F (m,m) are now given by

B̂F (l,m) =

∫

B0(R)

∫

B0(R)
B̃(x, y) δ(x · y) ei(l·x+m·y) dx dy. (6.6)

Finally let us compare the new kernel modes with the ones in (5.10). The
usual kernel modes written in the x and y variables reads

B̂(l,m) =

∫

B0(R)

∫

B0(R)
B̃(x, y) δ(x · y)χ{|x+y|≤R} e

i(l·x+m·y) dx dy. (6.7)

Thus the usual representation contains a strong coupling between x and y
which makes it very hard the construction of fast algorithms.
Now we search for a convolution structure in the equations (6.5). The

aim is to approximate each β̂F (l,m) by a sum

β̂F (l,m) ≃
A∑

p=1

αp(l)α
′
p(m).

This gives a sum of A discrete convolutions and so the algorithm can be
computed in O(ANd log2N) operations by means of standard FFT tech-
niques (Canuto et al. 1988, Cooley and Tukey 1965). Obviously this is

equivalent to obtain such a decomposition on B̂F . To this purpose we shall
use a further approximated collision operator where the number of possible
directions of collision is reduced to a finite set.

A semi-discrete collision operator
We write x and y in spherical coordinates as follows

QR(f, f)(v) =
1

4

∫

Sd−1

∫

Sd−1

δ(e · e′)
{∫ R

−R

∫ R

−R
ρd−2 (ρ′)d−2B̃(ρ, ρ′)
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[
f(v + ρ′e′)f(v + ρe)− f(v + ρe+ ρ′e′)f(v)

]
dρ dρ′

}
de de′. (6.8)

Let us take A a discrete set of orthogonal couples of unit vectors (e, e′),
which is even: (e, e′) ∈ A implies that (−e, e′), (e,−e′) and (−e,−e′) belong
to A (this property on the set A is required to preserve the conservation
properties of the operator). Now we define QA

R to be

QR,A(f, f)(v) =
1

4

∫

(e,e′)∈A

{∫ R

−R

∫ R

−R
ρd−2 (ρ′)d−2 B̃(ρ, ρ′)

[
f(v + ρ′e′)f(v + ρe)− f(v + ρe+ ρ′e′)f(v)

]
dρ dρ′

}
dA

where dA denotes a discrete measure on A which is also even in the sense
that dA(e, e′) = dA(−e, e′) = dA(e,−e′) = dA(−e,−e′). Using again trans-
lation change of variable on v by ρe, ρ′e′ and ρe+ ρ′e′ and the symmetries
of the set A one can easily derive the following weak form on QA

R. For any
function ϕ periodic on DT ,
∫

DT

QR,A(f, f)ϕ(v) dv

=
1

16

∫

v∈DT

∫

(e,e′)∈A

∫ R

−R

∫ R

−R
ρd−2 (ρ′)d−2 B̃(ρ, ρ′)f(v + ρe+ ρ′e′)f(v)

[
ϕ(v + ρ′e′) + ϕ(v + ρe)− ϕ(v + ρe+ ρ′e′)− ϕ(v)

]
dρ dρ′ dA dv.

This immediately gives the same conservations properties as QR.

Expansion of the kernel modes
We make the decoupling assumption that

B̃(x, y) = a(|x|) b(|y|). (6.9)

This assumption is obviously satisfied if B̃ is constant. This is the case
of Maxwellian molecules in dimension two, and hard spheres in dimension
three (the most relevant kernel for applications). Extensions to more general
interactions are discussed in Mouhot and Pareschi (2006).
First let us deal with dimension 2 with B̃ = 1 to explain the method.

Here we write x and y in spherical coordinates x = ρe and y = ρ′e′ to get

B̂F (l,m) =
1

4

∫

S1

∫

S1

δ(e · e′)
[∫ R

−R
eiρ(l·e) dρ

] [∫ R

−R
eiρ

′(m·e′) dρ′
]
de de′.

Let us denote by

ϕ2
R(s) =

∫ R

−R
eiρs dρ,
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for s ∈ R. It is easy to see that ϕ2
R is even and we can give the explicit

formula

ϕ2
R(s) = 2R Sinc(Rs).

Thus we have

B̂F (l,m) =
1

4

∫

S1

∫

S1

δ(e · e′)ϕ2
R(l · e)ϕ2

R(m · e′) de de′

and thanks to the parity property of ϕ2
R we can adopt the following periodic

parametrization

B̂F (l,m) =

∫ π

0
ϕ2
R(l · eθ)ϕ2

R(m · eθ+π/2) dθ.

The function θ → ϕ2
R(l · eθ)ϕ2

R(m · eθ+π/2) is periodic on [0, π] and thus
the rectangular quadrature rule is of infinite order and optimal. A regular
discretization of M equally spaced points thus gives

B̂F (l,m) =
π

M

M−1∑

p=0

αp(l)α
′
p(m) (6.10)

with

αp(l) = ϕ2
R(l · eθp), α′

p(m) = ϕ2
R(m · eθp+π/2) (6.11)

where θp = πp/M .

More generally under the decoupling assumption (6.9) on B̃, we get the
following decomposition formula

B̂F (l,m) =
π

M

M−1∑

p=0

αp(l)α
′
p(m) (6.12)

where

αp(l) = ϕ2
R,a(l · eθp), α′

p(m) = ϕ2
R,b(m · eθp+π/2) (6.13)

and

ϕ2
R,a(s) =

∫ R

−R
a(ρ) eiρs dρ, ϕ2

R,b(s) =

∫ R

−R
b(ρ′) eiρ

′s dρ′ (6.14)

with θp = πp/M .

Remark 6.1. In the symmetric case a = b (for instance for hard spheres)

it is possible to parametrize B̂F (l,m) as

B̂F (l,m) = 2

∫ π/2

0
ϕ2
R,a(l · eθ)ϕ2

R,a(m · eθ+π/2) dθ

and the function θ → ϕ2
R,a(l · eθ)ϕ2

R,a(m · eθ+π/2) is periodic on [0, π/2].
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Thus the decomposition can be obtained by applying the rectangular rule
on this interval.

Now let us deal with dimension d = 3 with B̃ satisfying the decoupling
assumption (6.9). First we change to the spherical coordinates

B̂F (l,m) =
1

4

∫

S2

∫

S2

δ(e·e′)
[∫ R

−R
ρa(ρ)eiρ(l·e)dρ

] [∫ R

−R
ρ′b(ρ′)eiρ

′(m·e′)dρ′
]
dede′

and then we integrate first e′ on the intersection of the unit sphere with the
plane e⊥,

B̂F (l,m) =
1

4

∫

e∈S2
ϕ3
R,a(l · e)

[∫

e′∈S2∩e⊥
ϕ3
R,b(m · e′) de′

]
de

where

ϕ3
R,a(s) =

∫ R

−R
ρ a(ρ) eiρs dρ.

Thus we get the following decoupling formula with two degrees of freedom

B̂F (l,m) =

∫

e∈S2+
ϕ3
R,a(l · e)ψ3

R,b

(
Πe⊥(m)

)
de

where S
2
+ denotes the half-sphere and

ψ3
R,b

(
Πe⊥(m)

)
=

∫ π

0
sin θ ϕR,b

(
|Πe⊥(m)| cos θ

)
dθ,

(this formula can be derived performing the change of variable de′ = sin θ dθ dϕ
with the basis (e, u = Πe⊥(m)/|Πe⊥(m)|, e× u)).
Again in the particular case where B̃ = 1 (hard spheres model), we can

compute explicitly the functions ϕ3
R (in this case a = b = 1),

ϕ3
R(s) = R2

[
2Sinc(Rs)− Sinc2(Rs/2)

]
, ψ3

R(s) = 2R2 Sinc2(Rs/2).

Now the function e → ϕ3
R,a(l · e)ψ3

R,b

(
Πe⊥(m)

)
is periodic on S

2
+ and so

the rectangular rule is of infinite order and optimal. Taking a spherical
parametrization (θ, ϕ) of e ∈ S

2
+ and uniform grids of respective size M1

and M2 for θ and ϕ we get

B̂F (l,m) =
π2

M1M2

M1,M2∑

p,q=0

αp,q(l)α
′
p,q(m)

where

αp,q(l) = ϕ3
R,a(l · e(θp,ϕq)), α′

p,q(m) = ψ3
R,b(Πe⊥

(θp,ϕq)
(m))
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and

ϕ3
R,a(s) =

∫ R

−R
ρ a(ρ) eiρs dρ, ψ3

R,b(s) =

∫ π

0
sin θ ϕ3

R,b(s cos θ) dθ

and

(θp, ϕq) =
( p π
M1

,
q π

M2

)
.

From now on we shall consider this expansion with M =M1 =M2 to avoid
anisotropy in the computational grid.

Remark 6.2. For any dimension, we can construct as above an approxi-
mated collision operator QR,AM with

AM =
{
(e, e′) ∈ S

d−1 × S
d−1 | e ∈ S

d−1
M,+, e′ ∈ e⊥ ∩ S

d−1
}

where Sd−1
M,+ denotes a uniform angular discretization of the half sphere with

M points in each angular coordinate (the other half sphere is obtained by
parity). Let us remark that this discretization contains exactlyMd−1 points.
From now on we shall denote

QR,M = QR,AM =
Md−1∑

p=1

QR,M
p .

Spectral accuracy

We are interested in computing the accuracy of the scheme according to the
three parameters N (the number of modes), R (the truncation parameter),
and M (the number of angular directions for each angular coordinate).
Instead of looking at the error on each kernel mode it is more convenient
to look at the error on the global operator. Here the Lebesgue spaces Lp,
p = 1 . . . +∞, and the periodic Sobolev spaces Hr

p , r = 0 . . . +∞ refer to
Dπ.

So in order to give a consistency result, the first step will be to prove a
consistency result for the approximation of QR by QR,M (see Mouhot and
Pareschi (2006) for details).

Lemma 6.1. The error on the approximation of the collision operator is
spectrally small, i.e for all r > d− 1 such that f ∈ Hr

p

‖QR(g, f)−QR,M (g, f)‖L2 ≤ C1
Rr

M r
‖g‖Hr

p
‖f‖Hr

p
.

For the second step we shall use the consistency result of Theorem 5.2
on the operator QR. Combining these two results, one gets the following
consistency result
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Table 6.1. Relative L1 norm of the error for different values of N and M for the
fast spectral method.

N M=2 M=4 M=8 M=16

32 2.129E-04 1.993E-05 2.153E-05 2.262E-05

64 2.109E-04 7.122E-10 6.830E-10 6.843E-10

128 2.112E-04 3.116E-12 3.117E-12 3.117E-12

Theorem 6.1. For all r > d− 1 such that f ∈ Hr
p(Dπ)

‖QR(f)−QR,M
N (fN )‖L2 ≤ C1

Rr

M r
‖fN‖2Hr

p
+
C2

N r

(
‖f‖Hr

p
+ ‖QR(fN )‖Hr

p

)
.

In the above theorem, to simplify notations, we used QR(f) instead of
QR(f, f).
Now let us focus briefly on the macroscopic quantities. First with Lemma 6.1

at hand one can establish the estimate

‖QR,M (g, f)‖L2 ≤ C ‖g‖Hd
p
‖f‖Hd

p
,

for a constant uniform in M . Then following the method of (Pareschi and
Russo 2000b, Remark 5.4) and using this estimate we obtain the following
spectral accuracy result

∣∣〈QR,M (f, f), ϕ〉 − 〈QR,M
N (fN , fN ), ϕ〉

∣∣
L2

≤ C3

N r
‖ϕ‖L2

(
‖f‖Hk+d

p
+ ‖QR,M (fN , fN )‖Hr

p

)

where ϕ can be replaced by v, |v|2. Indeed there is no need to compare

the momenta of QR,M
N (fN , fN ) with those of QR(f, f) since QR,M is also

conservative, and so they can be compared directly to those of QR,M . Thus
the error on momentum and energy is independent on M and is spectrally
small according to N even for very small value of the parameter M . The
same considerations of Remark 5.4 remain valid concerning the derivation
of exactly conservative methods based on the L2 projection (3.44).

Implementation aspects

The method of the previous subsections yields a decomposition of the colli-
sion operator, which after projection on P

N gives the following decomposi-
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tion

QR,M
N =

Md−1∑

p=1

PNQ
R,M
p . (6.15)

Each PNQ
R,M
p can be computed with a cost O(Nd log2N). Thus for a

general choice of M and N we obtain the cost O(Md−1Nd log2N). The
decomposition (6.15) is completely parallelizable and thus the cost can be
strongly reduced on a parallel machine (formally up to O(Nd log2N)). One
just has to make independent computations for the Md−1 terms of the
decomposition. The decomposition can be also interesting from the storage
viewpoint, as the classical spectral method requires the storage of a Nd×Nd

matrix whereas the fast method requires the storage of 2Md−1 vectors of
size Nd. As a numerical example we report the results obtained in the
case of space homogeneous two-dimensional Maxwellian molecules using as
a comparison the exact analytic solution (5.39). The results for the relative
L1 norm of the error at time t = 0.01 are reported in Table 6.1 and indicate
a very low influence of the number of directions over the accuracy of the
scheme.

6.3. Fast spectral methods for the quantum-Boltzmann equation

The fast method studied in the previous section is closely related to the
possibility of representing the collision operator in the form (6.1). A relevant
example is given by the quantum-Boltzmann equation. Here we follow the
derivation of the fast method by Filbet et al. (2012) and the improvements
obtained in Hu and Ying (2012). Related fast solvers in a discrete velocity
setting for a one-dimensional model have been constructed in Markowich
and Pareschi (2005).
In this case the collision term contains a cubic nonlinearity and in dimen-

sion d reads

Qq(f)(v) =

∫

Rd

∫

Sd−1

B(v, v∗, ω)
[
f ′f ′∗(1± θ0f)(1± θ0f∗)

(6.16)
−ff∗(1± θ0f

′)(1± θ0f
′
∗)
]
dωdv∗

where θ0 = ~
d, ~ is the rescaled Planck constant. Here, the upper sign (‘+’)

corresponds to the Bose gas while the lower sign (‘-’) to the Fermi gas. For
the Fermi gas, we also need f ≤ θ0

−1 by the Pauli exclusion principle.
We first write (6.16) as

Qq = Q± θ0(Q1 +Q2 −Q3 −Q4), (6.17)

where Q is the classical collision operator of rarefied gas dynamics. The
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cubic terms Q1 – Q4 are

Q1(f)(v) =

∫

Rd

∫

Sd−1

B(v − v∗, ω)f
′f ′∗f∗dωdv,

Q2(f)(v) =

∫

Rd

∫

Sd−1

B(v − v∗, ω)f
′f ′∗fdωdv,

Q3(f)(v) =

∫

Rd

∫

Sd−1

B(v − v∗, ω)ff∗f
′dωdv,

Q4(f)(v) =

∫

Rd

∫

Sd−1

B(v − v∗, ω)ff∗f
′
∗dωdv.

(6.18)

In order to derive a spectral method, we periodize the function f in the
conventional way over the domain DT = [−T, T ]d where T is chosen such
that T ≥ (3 +

√
2)R/2, R is the truncation of the collision integral (see

Section 5.1).
For the sake of simplicity we report the details in the case of d = 2 for

Maxwell molecules. We can apply the identity (2.24) used to represent Q
in the form (6.1) to the cubic terms to get

Q1(f)(v) =

∫

B0(R)

∫

B0(R)
δ(x · y)f(v + x)f(v + y)f(v + x+ y)dxdy,

Q2(f)(v) =

∫

B0(R)

∫

B0(R)
δ(x · y)f(v + x)f(v + y)f(v)dxdy,

Q3(f)(v) =

∫

B0(R)

∫

B0(R)
δ(x · y)f(v + x)f(v + x+ y)f(v)dxdy,

Q4(f)(v) =

∫

B0(R)

∫

B0(R)
δ(x · y)f(v + y)f(v + x+ y)f(v)dxdy.

(6.19)

Now the spectral method applies in a standard way and we focus on the
cubic terms, since the classical part can be treated through the fast spectral
scheme described in the last section. Starting from the kernel modes defined
in (6.6) we assume that they can be decomposed accordingly to (6.10). We
have:

• The k-th coefficient of Q̂1 is

N∑

l,m,n=−N
l+m+n=k

B̂F (l + n,m+ n)f̂lf̂mf̂n
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=
π

M

M−1∑

p=0

N∑

n=−N




N∑

l,m=−N
l+m=k−n

αp(l + n)α′
p(m+ n)f̂lf̂m


 f̂n

=
π

M

M−1∑

p=0

N∑

n=−N

ĝk−n(n)f̂n. (6.20)

Terms inside the bracket is a convolution (defined as ĝk−n(n)), which
can be computed by the Fast Fourier Transform (FFT). However, the
outside structure is not a convolution, since ĝk−n(n) itself depends on
n.

• The k-th coefficient of Q̂2 is

N∑

l,m,n=−N
l+m+n=k

B̂F (l,m)f̂lf̂mf̂n

=
π

M

M−1∑

p=0

N∑

n=−N




N∑

l,m=−N
l+m=k−n

αp(l)α
′
p(m)f̂lf̂m


 f̂n. (6.21)

In this case, both inside and outside are convolutions. The FFT can
be implemented easily.

• The k-th coefficient of Q̂3 is

N∑

l,m,n=−N
l+m+n=k

B̂F (l +m,m)f̂lf̂mf̂n

=
π

M

M−1∑

p=0

N∑

n=−N

αp(l +m)




N∑

l,m=−N
l+m=k−n

α′
p(m)f̂lf̂m


 f̂n. (6.22)

Factoring out αp(l+m), both inside and outside are convolutions again.

• The k-th coefficient of Q̂4 is

N∑

l,m,n=−N
l+m+n=k

B̂F (m, l +m)f̂lf̂mf̂n

=
π

M

M−1∑

p=0

N∑

n=−N

α′
p(l +m)




N∑

l,m=−N
l+m=k−n

αp(m)f̂lf̂m


 f̂n. (6.23)



86 G. Dimarco and L. Pareschi

Table 6.2. Comparison of the fast quantum solver on different Maxwellians.

model θ0 16× 16 32× 32 64× 64 convergence rate

classical gas 0 2.1746E-04 3.8063E-12 1.9095E-16 20.03

Bose gas 0.01 2.1084E-04 2.5512E-10 1.9080E-16 20.00
9 4.891E-01 3.10E-02 1.3496E-04 5.91

Fermi gas 0.01 2.2397E-04 1.6485E-10 1.9152E-16 20.05
9 8.9338E-04 2.0192E-06 1.5962E-10 11.21

This term can be evaluated similarly as Q̂3.

The computational cost of the method is O(Md−1N2d logN), which mainly
comes from computing Q1. The cost is slightly higher than O(Md−1N2d)
typical of a discrete velocity model based on a product quadrature rule.
But taking into account the high accuracy, the method may be considered
still more attractive than the quadrature method. A deeper analysis on the
structure of Q1 based on an exponential decomposition shows that the cost
can be further reduced to O(Md−1Nd+1 logN) which in dimension d = 3
implies a gain of a factor N2 (Hu and Ying 2012).

To illustrate the spectral accuracy of the above method, we consider a
steady state problem, namely, we compute the max norm of Qq(Mq[f ])
where Mq[f ] is the quantum Maxwellian given by

Mq[f ] =
1

θ0

1

z−1e
(v−u)2

2T ∓ 1
, (6.24)

with z the fugacity and T the temperature (see Escobedo et al. (2003)
for more details). This corresponds to the well-known Bose-Einstein (‘-’)
and Fermi-Dirac (‘+’) distributions. We consider also the classical case
corresponding to θ0 = 0. In all the numerical simulations, the particles
are assumed to be the 2-D Maxwellian molecules. In Table 6.2, we list the
values of ‖ Qq(Mq[f ]) ‖L∞ computed on different meshes N = 16, 32, 64,
M = 4. The computational domain is [−8, 8]× [−8, 8].
The results confirm the spectral accuracy of the method, although the

accuracy becomes worse when θ0 is increasing since the domain has been
kept fixed. To remedy this problem, one can add more grid points or more
effectively, shorten the computational domain.
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6.4. Fast discrete velocity methods

In this section we will see how the fast algorithms developed for the spec-
tral method can be extended to periodized discrete velocity methods. The
method that originates is in some sense related to the direct FFT approach
proposed in Bobylev and Rjasanow (1999).

In Section 4.2 starting from (4.58) we have seen how to derive discrete
velocity methods (Panferov and Heintz 2002, Mouhot et al. 2013). Similarly
to the spectral method the representation of QR in (6.3) can also be used
to derive fast discrete velocity methods in the form (4.59). Here, however,
instead of the usual truncation based on neglecting collisions violating the
velocity bounds we periodize the function f over the box and truncate the
sum in k and l. It yields for a given truncation parameter Ñ ∈ N

∗

QÑ
i (f, f) =

∑

−Ñ≤k,l≤Ñ

Γ̃k,l

[
fi+kfi+l − fifi+k+l

]
, (6.25)

for any i ∈ J−N,NKd. In the above sum we have

Γ̃kl = B̃(k, l)1(k · l)Wk,l.

It can be shown that QÑ preserves exactly the mass and it preserves mo-
mentum and energy up to aliasing issues. Thus, for a sufficiently large
computational domain, it is exact up to machine precision. This is slightly
different from spectral methods where the truncation of Fourier modes in-
troduces a spectrally small error in the conservation laws. Moreover in a
space homogenous setting it preserves also non negativity of the solution
and therefore we have also the stability of the method (Mouhot et al. 2013).
Finally a consistency results analogous of Theorem 4.8 holds true (Mouhot
et al. 2013).

Principle of the method: a pseudo-spectral viewpoint

We start from the periodized DVM in J−N,NKd with representation (6.25)
and as in the continuous case we set, for k, l ∈ −Ñ ≤ k, l ≤ Ñ ,

B̃(|k|, |l|) = 2d−1B

(
|k|√

|k|2 + |l|2
,
√

|k|2 + |l|2
)

(|k|2 + |l|2)− d−2
2 .

With this notation

Γ̃k,l = 1(k · l) B̃(|k|, |l|)Wk,l,

and thus discrete collision operator becomes

QÑ
i =

∑

−Ñ≤k,l≤Ñ

1(k · l) B̃(|k|, |l|)Wk,l

[
fi+kfi+l − fifi+k+l

]
.
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Now we transform this discrete operator into a new one using the involution
transformation of the discrete Fourier transform on the vector (fi)−N≤i≤N .
This involution reads for I ∈ J−N,NKd

f̃I =
1

2N + 1

N∑

i=−N

fi e−I(i), fi =
N∑

I=−N

f̃I eI(i)

where eK(k) denotes e
2iπ K·k
2N+1 , and thus we have

QÑ
i =

N∑

I=−N

Q̃I eI(i) (6.26)

with

Q̃I =
N∑

K,L=−N

(
1

2N + 1

N∑

i=−N

eK+L−I(i)

)




∑

−Ñ≤k,l≤Ñ

1(k · l) B̃(|k|, |l|)Wk,l (eK(k)eL(l)− eL(k + l))


 f̃K f̃L

for −N ≤ I ≤ N . We have the following identity

1

2N + 1

N∑

i=−N

eK+L−I(i) = 1(K + L− I)

and so

Q̃I =
N∑

K,L=−N
K+L=I

β̃(K,L) f̃K f̃L (6.27)

with β̃(K,L) = β(K,L)− β(L,L) where

β(K,L) =
∑

−Ñ≤k,l≤Ñ

1(k · l) B̃(|k|, |l|)Wk,l eK(k)eL(l). (6.28)

Let us first remark that this new formulation allows to reduce the usual cost
of computation of a discrete velocity model exactly to O(N2d) (as with the
usual spectral method) instead of O(N2d+δ) for δ ∼ 1 (Buet 1996, Panferov
and Heintz 2002). Note however that the (2N + 1)d × (2N + 1)d matrix
of coefficients (β(K,L))K,L has to be computed and stored first, thus the
storage requirements are larger. Nevertheless symmetries in the matrix can
substantially reduce this cost.
Now, as for the spectral method, the aim is to give an expansion of β(K,L)
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of the form

βK,L ≃
M∑

p=1

αp(K)α′
p(L),

for a parameter M ∈ N
∗ to be defined later.

Expansion of the discrete kernel modes
We make a decoupling assumption on the collision kernel as in the spectral
case

B̃(|k|, |l|)Wk,l = a(k) b(l). (6.29)

Note that the DVM constructed by quadrature in dimension 3 for hard
spheres in (Panferov and Heintz 2002) on the cartesian velocity grid hZ3 (for
h > 0) satisfies this decoupling assumption with a(k) = h5 |k|/gcd(k1, k2, k3)
and b(l) = 1, and gcd(k1, k2, k3) denotes the greater common divisor of the
three integers. For Maxwell molecules in dimension 2 on the grid hZ2, these
coefficients are a(k) = h3 |k|/gcd(k1, k2) and b(l) = 1.

The difference here with the spectral method, which is a continuous nu-
merical method, is that we have to enumerate the set of {−Ñ ≤ k, l ≤
Ñ | k⊥ l }. This motivates for a detailed study of the number of lines pass-
ing through 0 and another point in the grid (this is equivalent to the study
of this set), in order to compute the complexity of the method in term of
N .

To this purpose let us introduce the Farey series and a new parameter
0 ≤ N̄ ≤ Ñ for the size of the grid used to compute the number of directions.
The usual Farey series is

F1
N̄ =

{
(p, q) ∈ J0, N̄K2 | 0 ≤ p ≤ q ≤ N̄ , q ≥ 1, and gcd(p, q) = 1

}

where gcd(p, q) denotes again the greater common divisor of the two integers
(more details can be found in (Hardy and Wright 1979)). It is straightfor-
ward to see that the number of lines A1

N̄
passing through 0 in the grid

J−N̄ , N̄K2 is

A1
N̄ = 4

(∣∣F1
N̄

∣∣− 1
)
,

where the factor 4 allows to take into account the permutations when count-
ing the couples (p, q) as well as the ordering, minus the line which is repeated
during the symmetry process. We gave a schematic representation of the
two dimensional Farey series in Figure 6.1.
Similarly one can define the set

F2
N̄ =

{
(p, q, r) ∈ J0, N̄K3 | 0 ≤ p ≤ q ≤ r ≤ N̄ , r ≥ 1, and gcd(p, q, r) = 1

}

and the number of lines A2
N̄

passing through 0 in the grid J−N̄ , N̄K3 is

A2
N̄ = 24

(∣∣F2
N̄

∣∣−
∣∣F1

N̄

∣∣)− 2A1
N̄
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N

N

N̄

F1

N̄

A1

N̄

Figure 6.1. Representation of the Farey series F1

N̄
and A1

N̄
, the associated primal

representant of lines in [−N,N ], for N = 7 and N̄ = 3.

all possible permutations of the three numbers times 4 and minus the inter-
faces 2A1

N̄
accounting for the possible negative values by symmetry, minus

24
∣∣F1

N̄

∣∣ for the spurious terms when two equal numbers are swapped. The
exponents of the Farey series refer to the dimension of the space of lines
(which is d−1). Now we can estimate the cardinals of F1

N̄
and F2

N̄
(Mouhot

et al. 2013).

Lemma 6.2. The Farey series in dimension d = 2 and d = 3 satisfy the
following asymptotic behavior

∣∣F1
N̄

∣∣ =
N̄2

2 ζ(2)
+O(N̄ log N̄) =

3N̄2

π2
+O(N̄ log N̄),

∣∣F2
N̄

∣∣ =
N̄3

12 ζ(3)
+O(N̄2),

where ζ(s) =
∑

n≥0 n
−s denotes the usual Riemann zeta function.

Next one can deduce the following decomposition of the kernel modes using
their definition (6.28) and the decoupling assumption (6.29) on the discrete
kernel

β(K,L) =
∑

−Ñ≤k,l≤Ñ

1(k · l) a(|k|) b(|l|) eK(k)eL(l)
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≃ βN̄ (K,L) =
∑

e∈Ad−1
N̄

[ ∑

k∈eZ
−Ñ≤k≤Ñ

a(|k|) eK(k)
] [ ∑

l∈e⊥
−Ñ≤l≤Ñ

b(|l|) eL(l)
]

with equality if N̄ = Ñ . Here Ad−1
N̄

denotes the set of primal representants

of directions of lines in J−N̄ , N̄K passing through 0. After indexing this set,
which has cardinal Ad−1

N̄
, one gets

βN̄ (K,L) =

Ad−1
N̄∑

p=1

αp(K)α′
p(L) (6.30)

with

αp(K) =
∑

k∈ep Z

−Ñ≤k≤Ñ

a(|k|) eK(k), α′
p(L) =

∑

l∈e⊥p
−Ñ≤l≤Ñ

b(|l|) eL(l).

After inversion of the discrete Fourier transform, this method yields a de-
composition of the discrete collision operator

QÑ
i ≃ QÑ,N̄

i =

Ad−1
N̄∑

p=1

QÑ,N̄ ,p
i , i ∈ J−N,NKd, (6.31)

with equality with (6.25) if N̄ = Ñ . Each QÑ,N̄ ,p
i (f, f) is defined by the p-th

term of the decomposition of the kernel modes (6.30). Each term QÑ,N̄ ,p of
the sum is a discrete convolution operator when it is written in Fourier space.
Moreover, each αp (resp. α′

p) is defined as the discrete Fourier transform
of some non-negative coefficients a(|k|) times the characteristic function of
k ∈ epZ (resp. b(|l|) times the characteristic function of l ∈ e⊥p ). Hence,

we get after inversion of the transform that QÑ,N̄ ,p is a discrete convolution
with non-negative coefficients.
By using the approximate kernel modes βN̄ (K,L), we obtain a new dis-

crete collision operator, which inherits the same nice stability properties as
the usual DVM schemes (Mouhot et al. 2013).

Computational considerations
The fast DVM method described in the last subsection depends on the three
parameters N (the size of the gridbox), R (the truncation parameter) and N̄
(the size of the box in the space of lines). Thus one can see thanks to Lemma
6.2 that even if we take N̄ = Ñ = N , i.e. we take all possible directions in
the grid J−N,NKd, we get the computational cost O(N2d log2N) which is
better than the usual cost of the DVM, O(N2d+1) (but slightly worse than
the cost O(N2d) obtained by solving directly the pseudo-spectral scheme,
thanks to a bigger storage requirement).



92 G. Dimarco and L. Pareschi

102 103 104 105

Total number of grid points n := N2

10−1

100

101

102

103

104

105

106

S
ec
o
n
d
s

Classical DVM

n5/2

Fast DVM, N̄ = 3

n log(n)

Fast DVM, N̄ = 7

Fast DVM, N̄ = 14

Figure 6.2. Computational time with respect to the total number of points for the
classical and fast DVM methods for various values of N̄ in two dimensions.

More generally for a choice of N̄ < N we obtain the cost O(N̄dNd log2N),
which is slightly worse than the cost of the fast spectral algorithm (namely
O(Md−1Nd log2N) whereM is the number of discrete angle, but interesting
given that the algorithm is accurate for small values of N̄ , and more stable.
The justification for this is the low accuracy of the method (the reduction
of the number of direction has a small effect on the overall accuracy of the
scheme).

Remark 6.3.

1 Concerning the construction of the set of directions Ad
N̄
, it can be done

with systematic algorithms of iterated subdivisions of a simplex, thanks
to the properties of the Farey series. In dimension d = 2 this construc-
tion is quite simple (see Hardy and Wright (1979)). In dimension 3 we
refer to Nogueira and Sevennec (2006).

2 Let us remark that in order to get a regular scheme (i.e with no other
conservation laws than the usual ones) in spite of the reduction of di-
rections, it is enough that the schemes contains the directions 0 and
π/2 (Cercignani 1985). This is satisfied if we take the directions con-
tained in Fd−1

1 , i.e. as soon as N̄ ≥ 1.

3 In the practical implementation of the algorithm one has to take advan-
tage of the symmetry of the decomposition (6.30) in order to reduce the
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Table 6.3. Comparison of the L1 error between the classical DVM method and the
fast DVM method with different values of N̄ at time T = 0.01, after one iteration.

Number of Classical Fast DVM Fast DVM Fast DVM Fast DVM
points N DVM with N̄ = 1 with N̄ = 3 with N̄ = 7 with N̄ = 14

8 1.445E-03 1.4511E-03 x x x

16 8.912E-04 9.887E-04 8.9646E-04 x x

32 6.1054E-04 6.5209E-04 5.8397E-04 6.1328E-04 x

64 2.6351E-04 4.094E-04 2.906E-04 3.667E-04 2.7341E-04

128 x 2.6669E-04 1.8245E-04 2.0371E-04 1.6341E-04

number of terms in the sum: for instance in dimension 2, if a = b = 1,
one can write a decomposition with Ad−1

N̄
/2 terms.

Finally we report the results of an accuracy test for the exact solution (5.39)
of the homogeneous Boltzmann equation in dimension 2, with Maxwell
molecules. We will compare the fast DVM method with the method in-
troduced in Panferov and Heintz (2002), referred to as classical DVM. We
compare the error at a given time Tend when using N = 8 to N = 128 grid
points for each coordinate (the case N = 128 for the classical DVM has
been omitted due to its large computational cost). In Table 6.3 we give
the results obtained by the classical DVM method and the fast one, with
different numbers of N̄ . The corresponding computational times are plot-
ted in Figure 6.2. We choose the value Ñ such that the classical method is
convergent according to Theorem 4.8, namely

Ñ =

[
2N

3 +
√
2

]
.

Then, one has Ñ = 1 when N = 8, Ñ = 3 when N = 16, Ñ = 7 when
N = 32 and Ñ = 14 when N = 64. These values give a result corresponding
to the kernel mode (6.28), namely that no truncation of the number of lines
has been done: the solution obtained is essentially the same obtained with
the classical DVM method. Note that N̄ must be chosen less of equal than
Ñ and this is why we do not present the results with, e.g., N = 16 and
N̄ = 7. The size of the domain has to be chosen carefully in order to
minimize the aliasing error. In this test, we used T = 5 for N = 8, T = 5.5
for N = 16, T = 7 for N = 32 and T = 8 for N = 64, 128. We can see that,
even with very few directions, there is a small loss of accuracy for the fast
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DVM method compared to the classical one, and that taking all possible
directions we recover the original DVM solution. The observed order of
convergence in N is close to 1, as predicted by Theorem 4.8
From the computational cost point of view, taking e.g. N = 64 points in

each direction, the fast method is more than 28 time faster than the classical
one when no truncation is done (i.e. when we take N̄ = Ñ = 14), and even
109 times faster with a small loss of accuracy when taking N̄ = 7.

7. Asymptotic-preserving schemes

The numerical solution of kinetic equations in stiff regimes represents a
challenge in the construction of computational methods. In such regimes
particles interactions typically drive the underlying kinetic densities toward
local equilibria. This fact allows solutions of the kinetic equation to be ap-
proximated by solutions of a reduced system, typically a fluid-dynamical
system or diffusion equations (Cercignani 1988, Cercignani et al. 1994, De-
gond et al. 2004), that can be solved efficiently by classical numerical meth-
ods. However there are regimes, where collisions are plentiful enough to
make the kinetic equation stiff but not enough to drive the kinetic system
close to local equilibria. These transition regions are typically the most
difficult to solve numerically. In these cases, the multiscale nature of the
physical problem leads both to time or space step limitations which may be-
come extremely restrictive for numerical simulations, either at deterministic
or at stochastic level. On the other hand, the use of implicit schemes would
allow larger time steps but presents considerable limitations in the Boltz-
mann case since the collisional operator is highly nonlinear and nonlocal
and therefore its inversion prohibitive.
Asymptotic-preserving (AP) schemes have been particularly successful in

the construction of unconditionally stable numerical methods which are ca-
pable to capture the correct asymptotic behavior of the system by avoiding
the resolution of small scales (Coron and Perthame 1991, Jin 1995, Caflisch,
Jin and Russo 1997, Jin, Pareschi and Toscani 1998, Jin 1999, Jin and
Pareschi 2001, Klar 1998a, Gosse and Toscani 2002, Pareschi and Russo
2005). The main common idea of asymptotic preserving techniques is to
allow the use of the same numerical scheme to discretize a perturbation
problem and its limit problem, with fixed discretization parameters. This
permits to match regions where the perturbation parameter has very dif-
ferent orders of magnitude. In this case, the AP scheme realizes an au-
tomatic transition between the perturbation problem and its limit prob-
lem, therefore avoiding most drawbacks of techniques based on model cou-
pling. It is such an active field of research that it is essentially impos-
sible to do a comprehensive review of the different techniques developed.
For recent surveys on asymptotic-preserving schemes for various kinds of
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✲

Figure 7.1. Pε is a singular perturbation problem (the kinetic equation) and Pε
∆t

its numerical approximation characterized by the discretization parameter ∆t.
The method is asymptotic-preserving (AP) if Pε

∆t is a consistent and stable
discretization of P0 (the macroscopic limit) as ε→ 0 for a fixed ∆t.

systems we refer to the review papers by Jin (2012), Pareschi and Russo
(2011) and Degond (2014). We also mention the book by Gosse (2013)
for related problems for balance laws. For its relevance in applications,
in this section we focus our attention on asymptotic preserving schemes
specifically designed for the full Boltzmann equation in the classical fluid-
limit (Gabetta et al. 1997, Filbet and Jin 2010, Lemou 2010, Dimarco and
Pareschi 2011, Dimarco and Pareschi 2013) and report some recent ad-
vancements on the diffusion limit (Jin et al. 2000, Bennoune, Lemou and
Mieussens 2008, Lemou and Mieussens 2008, Boscarino et al. 2013, Dimarco,
Pareschi and Rispoli 2014). The general problem we will consider can be
written in the form (2.53) that we rewrite here

εα
∂f

∂t
+ v · ∇xf =

1

ε
Q(f, f), (7.1)

where ε > 0 is a small scaling parameter. The fluid-limit corresponds to
α = 0 and the diffusion limit to α = 1. For small values of ε we have
the presence of two scales, the scale ε1+α that forces f towards its local
Maxwellian and the scale εα which may originate some diffusive behavior in
the asymptotic process. In order to clarify the meaning of AP that will be
used in the sequel it is useful to introduce the following general definition
(see Figure 7.1).

Definition 7.1. A consistent and stable time discretization method for
(7.1) of stepsize ∆t is asymptotic preserving (AP) if, for a fixed time step
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∆t, in the limit ε → 0 becomes a consistent and stable time discretization
method for the reduced equilibrium system.

The method discussed in this section are therefore based on solving di-
rectly problem (7.1) in the whole computational domain independently on
the order of magnitude of the scaling parameter ε. Other approaches, based
on dynamic domain decomposition strategies and hybrid methods will be
reviewed in Section 8.

7.1. Splitting based exponential methods in the fluid regime

In this section we present the derivation of exponential schemes combined
with the operator splitting (2.57)-(2.58). A remarkable feature of the schemes
is that they can be designed to preserve all relevant physical properties of
the system including non negativity of the solution and entropy inequal-
ity (Gabetta et al. 1997, Dimarco and Pareschi 2011).
We mention here that exponential methods for parabolic partial differ-

ential equations and highly oscillatory problems have a long tradition and
have been extensively studied by several authors (see the recent review
by Hochbruck and Ostermann (2010)).

AP splitting and problem reformulation

In the case of operator splitting methods (2.57)-(2.58) applied to (7.1) in the
fluid limit α = 1, it easy to see that if the scheme used in the collision step
is AP then the whole scheme is AP. In a time interval [0,∆t] the collision
step Cε

∆t now reads

∂f

∂t
=

1

ε
Q(f, f),

(7.2)
f(x, v, 0) = f0(x, v),

where Q(f, f) is given by (2.14). As ε→ 0 (7.2) formally yields the algebraic
equation Q(f, f) = 0 which, thanks to the conservation properties (2.27) of
Q, can be solved as a function of the initial data to get C0

∆t(f0) = M [f0].
Coupling this projection with the transport step (2.58) originates a so-called
kinetic scheme (Coron and Perthame 1991, Godlewski and Raviart 1996) for
the Euler equation (2.42) given by T∆t(M [f0]). Analogous results hold true
for the higher order splitting methods (2.59) and (2.60).
The starting point of exponential schemes is to rewrite the homogeneous

equation (7.2) in the form

∂f

∂t
=

1

ε
(P (f, f)− µf), (7.3)

where P (f, f) = Q(f, f)+µf and µ > 0 is such that P (f, f) ≥ 0. Typically
µ is proportional to the density and is an estimate of the largest value taken
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by the loss part of the collision operator (2.14)

µ ≥
∫

R3×S2

B(v, v∗, ω)f(v∗) dv∗ dω. (7.4)

In the sequel we will assume that µ depends linearly on the density and
therefore that P (f, f) is a bilinear operator. By construction we have the
following

1

µ

∫

R3

P (f, f)(v)ϕ(v) dv =

∫

R3

f(v)ϕ(v) dv, ϕ(v) = 1, v, |v|2. (7.5)

Thus P (f, f)/µ is a density function. Let us denote f1 = P (f, f)/µ, we can
consider the following decomposition

f1 =M + g, (7.6)

where M is the Maxwellian with the same moments of f (and hence of
f1). Here we omit the explicit dependence of M on the solution f since,
thanks to the conservation properties (2.27), it remains constant during the
collision step. Moreover since f1 and M share the same moments we have

∫

R3

g(v)ϕ(v) dv = 0, ϕ(v) = 1, v, |v|2. (7.7)

The homogeneous Boltzmann equation can be then written in the form

∂f

∂t
=
µ

ε
g +

µ

ε
(M − f) =

µ

ε

(
P (f, f)

µ
−M

)
+
µ

ε
(M − f). (7.8)

The above system is equivalent to the penalization method introduced in Fil-
bet and Jin (2010).

Exponential Runge-Kutta methods

This class of methods has been proposed in Dimarco and Pareschi (2011).
Using the fact that M does not depend on time we can rewrite (7.8) as

∂(f −M)eµt/ε

∂t
=

1

ε
(P (f, f)− µM)eµt/ε. (7.9)

Starting from the above reformulation we consider the family of methods
characterized by the stages

F (i) = e−ciλfn + λ

i−1∑

j=1

Aij(λ)

(
P (F (j), F (j))

µ
−Mn

)

(7.10)
+

(
1− e−ciλ

)
Mn, i = 1, . . . , ν
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and by the numerical solution

fn+1 = e−λfn + λ
ν∑

i=1

Wi(λ)

(
P (F (i), F (i))

µ
−Mn

)

(7.11)
+

(
1− e−λ

)
Mn,

where λ = µ∆t/ε, ∆t is the time step, fn = f(tn), Mn = M(tn), ci ≥ 0,
and the coefficients Aij and the weights Wi are such that

Aij(0) = aij , Wi(0) = wi, i, j = 1, . . . , ν

with coefficients aij and weights wi given by a standard explicit Runge-
Kutta method called the underlying method. Different methods originate
from the different choices of the underlying method. The most popular
approaches are the Integrating Factor (IF) and the Exponential Time Dif-
ferencing (ETD) methods (Maset and Zennaro 2009). Since Mn does not
depend on time during the collision process to simplify notations in the
sequel we will omit the index n.

For the so-called IF methods we have

Aij(λ) = aije
−(ci−cj)λ, i, j = 1, . . . , ν, i > j

(7.12)

Wi(λ) = wie
−(1−ci)λ, i = 1, . . . , ν.

For such methods the order of accuracy is the same as the order of the
underlying method.
We recall the main properties for an IF exponential scheme in the form

(7.10)-(7.11). We refer to Dimarco and Pareschi (2011) for further details.
Let us define

R(λ) = e−λ +

ν−1∑

k=0

λk+1w̄(λ)T Ā(λ)kĒ(λ)ē, (7.13)

where Ā(λ) is the ν×ν matrix of elements |Aij(λ)|, w̄(λ) the ν×1 vector of
elements |Wi(λ)|, ē the ν×1 unit vector and Ē(λ) = diag(e−c1λ, . . . , e−cνλ).
We have

Theorem 7.1. If an explicit exponential Runge-Kutta method in the form
(7.10)-(7.11) satisfies

lim
λ→∞

R(λ) = 0, (7.14)

with R(λ) given by (7.13) then it is asymptotic preserving.

Note that for an IF method we have

|Aij(λ)| ≤ |aij |e−(ci−cj)λ, |Wi(λ)| ≤ |wi|e−(1−ci)λ,
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thus we require

0 = c1 ≤ c2 . . . ≤ cν ≤ 1, (7.15)

in order for the above quantities to be bounded independently of λ.
It can also be proved that if the underlying Runge-Kutta method is a ν-

stage explicit Runge-Kutta method of order ν, with nonnegative coefficients
and weights satisfying (7.15), then the scheme is unconditionally stable and
contractive (Dimarco and Pareschi 2010). As pointed out in Maset and
Zennaro (2009) examples of such methods are well-known up to ν = 4 and
the classical RK method of order four is the sole method with four stages.
For practical applications it may be convenient to require that as λ →

∞ the numerical solution fn+1 and each level F (i) of the IF method are
projected towards the local Maxwellian. It is straightforward to verify that
this stronger AP property is satisfied if we replace condition (7.15) by

0 = c1 < c2 < . . . < cν < 1. (7.16)

An important result concerns the convexity property of IF schemes (Dimarco
and Pareschi 2010).

Proposition 7.1. An explicit IF method is unconditionally positive and
convex if the underlying Runge-Kutta method has nonnegative coefficients
and weights satisfying

i−1∑

j=1

aijcj
k ≤ cki

k + 1
, k = 0, 1, 2, . . . , i = 1, . . . , ν (7.17)

ν∑

i=1

wic
k
i ≤ 1

k + 1
, k = 0, 1, 2, . . . , (7.18)

In the above conditions we did not use the bilinearity of P (f, f) which
would lead to weaker constraints on aij and wi. Examples of methods that
satisfy convexity are the second order modified Euler method and the third
order Heun method but not the classical fourth order Runge-Kutta scheme.
Let us finally remark that the convexity property implies that the scheme
preserves at a discrete level the entropy inequality (2.36).

Remark 7.1.

• The estimation of µ plays an important role in practical computations.
An overestimate may lead to over relaxation of the distribution f to-
wards the equilibrium. For example, choosing µ as the upper bound
in (7.4)

µp = sup
v

∫

R3

∫

S2

B(v, v∗, ω)f(v∗) dv∗ dω, (7.19)
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clearly guarantees positivity of the resulting exponential method but
leads to overestimate the true spectrum of the collision operator. Bet-
ter estimates may be obtained taking the average collision frequency
or, as suggested in Filbet and Jin (2010), an estimate of the spectral
radius of the linearized operator Q around the Maxwellian M . In fact

Q(f, f) ≈ Q(M,M) +∇Q(M,M)(M − f) = ∇Q(M)(M − f),

where ∇Q(M,M) is the Frechet derivative of Q evaluated at M . For
example one can take

µs = sup
v

∣∣∣∣
Q(f, f)

f −M

∣∣∣∣ . (7.20)

For simplicity, we assumed µ constant during the time stepping. In
general one can take µ = µ(t) and rewrite the exponential methods for
a time dependent µ (Dimarco and Pareschi 2011).

• The exponential integrators can be applied in conjunction with the
micro-macro decomposition (5.46). Inserting f = M [f ] + g in (7.2)
gives the reformulated space homogeneous equation (Lemou 2010)

∂g

∂t
=

1

ε
[LM (g) +Q(g, g)] , (7.21)

where LM (g) = Q(M [f ], g) + Q(g,M [f ]). Now the AP requirement
corresponds to the fact that g → 0 as ε→ ∞.
The exponential Runge-Kutta scheme (7.10)-(7.11) can be written in
the equivalent form as

G(i) = e−ciλgn +
∆t

ε

i−1∑

j=1

aije
−(ci−cj)λ

[
LM (G(j))

(7.22)
+ Q(G(j), G(j)) +G(j)

]
,

gn+1 = e−λgn +
∆t

ε

ν∑

i=1

bie
−(1−ci)λ

[
LM (G(i))

(7.23)
+ Q(G(i), G(i)) +G(i)

]
.

Alternatively one can apply the exponential methods directly to the
form (7.21), where the exact flow of the linear part LM (g), i.e. an
operator exponential, is used in the construction of the schemes.

Time Relaxed methods

Another important class of exponential methods for the numerical approx-
imation of the space homogeneous Boltzmann equation, the so-called Time
Relaxed (TR) methods, was introduced in Gabetta et al. (1997). These
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schemes were originally derived from the Wild sum expansion of the homoge-
neous Boltzmann equation (Wild 1951) together with a suitable Maxwellian
truncation. Historically they represent the first asymptotic preserving meth-
ods for the full Boltzmann equation and have found several application in
numerous contests, including Monte Carlo techniques (Pareschi and Caflisch
1999, Pareschi and Russo 2000a, Filbet and Russo 2003, Pareschi, Trazzi
and Wennberg 2008).
Here we show that the schemes can be derived starting from a suitable

Taylor expansion of (7.9). To this aim, let us first introduce the change of
variables

τ = 1− exp(−µt/ε),
which, using the bilinearity of P (f, f), gives the equation

∂

∂τ

[
(f −M)

1

1− τ

]
= (P (f, f)− µM)

1

µ(1− τ)2
. (7.24)

By taking the Taylor expansion of (f−M)/(1−τ) around τ = 0 in (7.24)
we get

(f −M)/(1− τ) = (f0 −M) + τ

[
P (f0, f0)

µ
−M

]
+

+
τ2

2

[
P (P (f0, f0), f0) + P (f0, P (f0, f0))

µ2
− 2M

]
+O(τ3)

where we have used the bilinearity of the operator P (f, f).
If we compute all the terms in the expansion and use recursively the

bilinearity of P (f, f) we can state the following

Proposition 7.2. The solution to problem (7.24) can be represented as

f(v, t) = (1− τ)f0(v) + (1− τ)
∞∑

k=1

τk(fnk (v)−M(v)) + τM(v), (7.25)

where f0 is the initial data and the functions fk are given by the recurrence
formula

fk+1(v) =
1

k + 1

k∑

h=0

1

µ
P (fh, fk−h)(v), k = 0, 1, . . . . (7.26)

By truncating expansion (7.25) at the order m, and reverting to the
old variables in a time interval ∆t, we recover the TR schemes presented
in (Gabetta et al. 1997)

fn+1 = e−λfn + e−λ
m∑

k=1

(1− e−λ)k(fnk −M) + (1− e−λ)M,
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which, using the fact that

1− e−λ
m∑

k=0

(1− e−λ)k = (1− e−λ)m+1,

can be rewritten in the usual form emphasizing their convexity properties

fn+1 = e−λ
m∑

k=0

(1− e−λ)kfnk + (1− e−λ)m+1M. (7.27)

The above class of schemes satisfy the following (Gabetta et al. 1997)

Theorem 7.2. The time discretization defined by (7.27) is such that

i) If supk>m{|fk −M |} ≤ C for a constant C = C(v) then it is at least a
m-order approximation in λ of (7.25) with f0 = fn and

|f(v,∆t)− fn+1(v)| ≤ C (1− e−λ)m+1.

ii) The coefficients fnk satisfy
∫

R3

fnk ϕdv =

∫

R3

fnϕdv, ϕ = 1, v, |v|2.

iii) The solution fn+1 is a convex combination of the coefficients fnk inde-
pendently of λ. Moreover, if P is a nonnegative operator then all fnk
and fn+1 are nonnegative densities independently of λ.

iv) For any m,n ≥ 0 we have

lim
λ→0

fn+1(v) =M(v).

Moreover, with the same assumptions of i), the following holds

|fn+1(v)−M | ≤ C [1− (1− e−λ)m+1].

Remark 7.2. Thanks to the nonnegativity and convexity properties of
exponential methods in Pareschi and Russo (2000a), Pareschi and Russo
(2001) a class of asymptotic preserving Monte Carlo methods has been
constructed. To illustrate the idea let us consider a general first order
exponential scheme in the form

fn+1 = A0f
n +A1f

n
1 +A2M (7.28)

where fn1 = P (fn, fn)/µ, A0 = e−λ, A2 = 1−A0−A1, and A1 = e−λ(1−eλ)
for the TR scheme or A1 = λeλ for the IF scheme.

The probabilistic interpretation of the above equation is given below.

Given a set of samples from fn to generate a sample from fn+1 do the
following:

• with probability A0 take a sample from fn;
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• with probability A1 extract a sample from fn1 (this is equivalent to ap-
ply the usual DSMC collision algorithm between samples (Bird 1994));

• with probability A2 extract a sample from the Maxwellian M .

In this formulation the probabilistic interpretation holds uniformly in λ,
at variance with standard DSMC, which requires λ ≤ 1. Furthermore, as
λ → ∞, the distribution at time n + 1 is sampled from a Maxwellian. In
a space non homogeneous case, this would be equivalent to the particle
method for the Euler equations proposed by Pullin (1980).

7.2. High order exponential Runge-Kutta methods

In this paragraph we present the basic framework for the derivation of AP
exponential Runge-Kutta methods without time splitting (Li and Pareschi
2014). See also Lemou (2010) for a related approach based on a suitable
exponential integration of the space non homogeneous Boltzmann equa-
tion. The major difficulty is related to the time dependent nature of the
local Maxwellian equilibrium that does not allow a direct application of the
methods developed for the space homogeneous equation. On the other hand,
since splitting methods suffer from order reduction in the fluid limit (see Re-
mark 7.3), it represents an important step for the derivation of uniformly
accurate high order methods.

We reformulate, similarly to the previous paragraph the complete Boltz-
mann equation (7.1) as

∂

∂t

[
(f − M̃)eµt/ε

]
=

∂

∂t
(f − M̃)eµt/ε + (f − M̃)

µ

ε
eµt/ε

=

[
1

ε
(Q+ µf − µM̃)− ∂M̃

∂t
− v · ∇xf

]
eµt/ε

=

[
1

ε
(P − µM̃)− ∂M̃

∂t
− v · ∇xf

]
eµt/ε. (7.29)

Here, µ is independent of time and M̃ could be any arbitrary non-negative
function. The main problem in constructing a numerical method based on
(7.29) is to select the right M̃ and µ to meet stability and monotonicity
requirement.

The first possibility is to assume M̃ as a time independent function given
a-priori. Therefore, ∂M̃/∂t cancels and (7.29) becomes

∂

∂t

[
(f − M̃)eµt/ε

]
=

[
1

ε
(P − µM̃)− v · ∇xf

]
eµt/ε. (7.30)

A direct application of a standard explicit Runge-Kutta method to (7.30)
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yields then to the following scheme

(f (i) − M̃)eciλ = (fn − M̃) +
i−1∑

j=1

aij
∆t

ε

[
P (j) − µM̃ − εv · ∇xf

(j)
]
ecjλ,

(7.31)

(fn+1 − M̃)eλ = (fn − M̃) +

ν∑

i=1

wi
∆t

ε

[
P (i) − µM̃ − εv · ∇xf

(i)
]
eciλ,

where i indicates the stages, λ = µ∆t/ε, and P (j) = P (f (j), f (j)). Since
in the fluid regime the distribution function fn+1 should be projected to
the Maxwellian function Mn+1 whose macroscopic quantities satisfy the
limiting Euler equation, the simplest choice to obtain an AP scheme is to
take M̃ = Mn+1

E , where Mn+1
E is the local Maxwellian computed from the

macroscopic quantities satisfying the Euler system (2.42). In order to do
that one can compute the limiting Euler equation using the same explicit
Runge-Kutta scheme used for the kinetic equation and then, with these
moments, defines M̃ . Note that as ε→ 0, then fn+1 and M̃ share the same
moments, so the scheme is AP. However,Mn+1

E does not share moments with
fn+1 unless ε = 0 so that, with this choice, the scheme may be inaccurate
in regimes when ∆t ∼ ε.

We discuss now the case M̃ =M [f ], the time dependent local Maxwellian
that shares mass, momentum and energy with f . We reformulate the Boltz-
mann equation as

∂

∂t

[
(f −M [f ]) eµt/ε

]
=

(
P − µM [f ]

ε
− v · ∇xf − ∂M [f ]

∂t

)
eµt/ε. (7.32)

What we need now is to define the Maxwellian distribution for each stage of
the numerical scheme. This means we need the moments of the distribution
function at each level of the Runge-Kutta procedure. We then numerically
solve using an explicit Runge-Kutta method the following coupled system
of equations

∂

∂t
(f −M [f ])eµt/ε =

1

ε

(
P − µM [f ]− εv · ∇xf − ε

∂M [f ]

∂t

)
eµt/ε,

∂

∂t

∫

R3

ϕfdv = −
∫

R3

ϕv · ∇xfdv, ϕ(v) = 1, v, |v|2
(7.33)

where the second equation corresponds to the time evolution of the moments
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of the distribution f . Thus we have the following scheme for the stages

(f (i) −M [f (i)])eciλ = (fn −M [fn])+

i−1∑

j=1

aij
∆t

ε

[
P (j) − µM [f (j)]− εv · ∇xf

(j) − ε
∂M [f (j)]

∂t

]
ecjλ,

∫

R3

ϕf (i)dv =

∫

R3

ϕfndv +

i−1∑

j=1

aij

(
−∆t

∫

R3

ϕv · ∇xf
(j)dv

)
;

(7.34)

and for the numerical solution

(fn+1 −M [fn+1])eλ = (fn −M [fn])+
ν∑

i=1

wi
∆t

ε

[
P (i) − µM [f (i)]− εv · ∇xf

(i) − ε
∂M [f (i)]

∂t

]
eciλ,

∫

R3

ϕfn+1dv =

∫

R3

ϕfndv +

ν∑

i=1

wi

(
−∆t

∫

R3

ϕv · ∇xf
(i)dv

)
.

(7.35)

The two equations, the one for the kinetic equation and the one for the
moments, are intrinsically coupled, as to evaluate f (i), one needs to compute
M [f (i)], whose macroscopic quantities are obtained in the second equation,
and ∂M [f ](j)/∂t for all j < i. The time derivative of the Maxwellian is
computed as following, as M [f ] only depends on ρ, u and T , one has

∂M [f ]

∂t
=
∂M [f ]

∂ρ

∂ρ

∂t
+∇uM [f ] · ∂u

∂t
+
∂M [f ]

∂T

∂T

∂t
, (7.36)

where

∂M [f ]

∂ρ
=
M [f ]

ρ
, ∇uM [f ] =M [f ]

v − u

RT
,

∂M [f ]

∂T
=
M [f ]

2

( |v − u|2
RT 2

− 3

2πRT

)
,

(7.37)

and ∂ρ/∂t, ∂u/∂t and ∂T/∂t could be evaluated numerically taking the first
three moments of the distribution function

∂

∂t




ρ
ρu

3ρRT

2
+

1

2
ρu2


 = −

∫

R3




1
v
|v|2
2


 v · ∇xfdv. (7.38)

The asymptotic preservation property for this class of schemes is stated in
the following

Theorem 7.3. The class of exponential Runge-Kutta methods defined by
(7.31) or by (7.34)-(7.35) are AP for a general explicit Runge-Kutta methods
with 0 ≤ c1 ≤ c2 ≤ · · · ≤ cν < 1.
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In addition, using the Shu-Osher representation of Runge-Kutta methods
(Shu and Osher 1989) it is possible to prove that the schemes defined by
(7.31), under a suitable CLF condition, preserve non negativity of the nu-
merical solution. We refer to Li and Pareschi (2014) for further details.

Remark 7.3.

• The main feature of the AP exponential methods just described is the
possibility to achieve very high order uniformly in time. In contrast,
AP methods based on splitting suffer of order reduction for small values
of ε. This can be understood by observing that the collision step (7.2)
in such singular limit becomes independent of the time step since it
reduces to a projection over the local equilibrium

lim
ε→0

Cε
∆t(f0) =M [f0], ∀ ∆t > 0.

• As for the exponential splitting method, the high order scheme (7.34)-
(7.35) admits a natural extension to other Boltzmann-type equations
where the inversion of the collision operator is difficult. In the case of
the quantum Boltzmann equation this has been done in Li, Hu and
Pareschi (2014).

A convergence rate test

The following test is reported to illustrate the convergence rates for the non
splitting exponential schemes applied to the full Boltzmann equation. The
collision operator is solved with the fast spectral method of Section 6.1 and
a third order WENO discretization is used for the space derivatives. The
four schemes for which we report the rates of convergence are denoted as
ExpRK2-F, ExpRK2-V, ExpRK3-F and ExpRK3-V. They correspond to
the second order Runge-Kutta and the third order Heun method (Hairer
and Wanner 1996). The letters F and V indicate, respectively, the scheme
with a fixed M̃ =ME given by the solution of the Euler equations and the
scheme with a time variable M̃ =M [f ].
The initial data is

ρ0(x) =
1

2
(2 + sin (2πx)) ,

u1(x) = [0.75,−0.75]T , u2(x) = [−0.75, 0.75]T ,

T0(x) =
1

20
(5 + 2 cos (2πx)) .

The L1 norm of the error for the density for different values of the Knudsen
number, i.e. ε = 10−1, ε = 10−3 and ε = 10−6 is reported. Both equilibrium
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Figure 7.2. L1 error for the density ρ for different exponential schemes. From the
top to the bottom, results show ε = 0.1, 10−3, 10−6 respectively. Left column

equilibrium initial data, right column non equilibrium initial data.

initial data f0(x, v) =M [f0] and non equilibrium initial data

f(t = 0, x, v) =
ρ0(x)

2

(
e
− |v−u1(x)|

2

T0(x) + e
|v−u2(x)|

2

T0(x)

)
(7.39)

are considered. Here x ∈ [0, 1] and periodic boundary conditions on x
are applied. We use 32 × 32 grid points in velocity and Nx = 128, 256,
512, 1024 grid points in space. Time stepping ∆t is chosen to satisfy the
CFL transport condition with CFL number fixed to 0.5. One can observe
in Figure 7.2 that, as expected, in the kinetic and intermediate regimes,
ε = 0.1 and ε = 10−3, ExpRK-V generally performs better than ExpRK-F.
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On the other hand, when ε = 10−6, i.e. in the hydrodynamic regime both
methods achieve high order accuracy.

7.3. Implicit-Explicit Runge-Kutta schemes in the fluid regime

Another class of Asymptotic Preserving schemes is based on the use of
Implici-Explicit (IMEX) Runge-Kutta methods. Such schemes were devel-
oped originally in Ascher, Ruuth and Spiteri (1997) for parabolic partial
differential equations and later extended to hyperbolic system with relax-
ation in Pareschi and Russo (2005). Early examples of such schemes were
developed in Jin (1995) and Caflisch et al. (1997). Only recently, they
have been designed to achieve asymptotic preservation for the Bolztmann
equation in the fluid limit without requiring the inversion of the collision
operator (Filbet and Jin 2010, Dimarco and Pareschi 2012, Dimarco and
Pareschi 2013).

IMEX Runge-Kutta schemes

A standard IMEX Runge-Kutta method applied to a kinetic equation of the
type (7.1) for α = 1, reads

F (i) = fn −∆t
i−1∑

j=1

ãijv · ∇xF
(j) +∆t

ν∑

j=1

aij
1

ε
Q(F (j), F (j)) (7.40)

fn+1 = fn −∆t
ν∑

i=1

w̃iv · ∇xF
(i) +∆t

ν∑

i=1

wi
1

ε
Q(F (i), F (i)), (7.41)

where fn+1 represents the numerical solution and F (i) the stage values. The
matrices Ã = (ãij), ãij = 0 for j ≥ i and A = (aij) are ν × ν matrices such
that the resulting scheme is explicit in v · ∇xf , and implicit in Q(f, f). We
restrict to diagonally implicit Runge-Kutta (DIRK) schemes for the collision
operator (aij = 0, for j > i) and observe that this ensures that the transport
term v · ∇xf is always evaluated explicitly. Using the vector notations the
schemes can be written in compact form

F = fne+∆tÃ L(F ) +
∆t

ε
AQ(F ) (7.42)

fn+1 = fn +∆tw̃TL(F ) +
∆t

ε
wTQ(F ), (7.43)

where e = (1, .., 1)T ∈ R
ν , F = (F (1), . . . , F (ν))T , Q(F ) = (Q(F (1), F (1)),

. . . , Q(F (ν), F (ν)))T and L(F ) = (L(F (1)), . . . , L(F (ν))) with L(F (i)) = −v ·
∇xF

(i). In addition, suitable order conditions must be satisfied by the coeffi-
cients of the Runge-Kutta schemes. We refer to Ascher et al. (1997), Kennedy
and Carpenter (2003) and Pareschi and Russo (2005) for details. Here we
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just point out that, in general, additional coupling conditions for the two
Runge-Kutta methods must be satisfied.
It is useful to characterize the different IMEX schemes developed in the

literature accordingly to the structure of the DIRK method (Boscarino et
al. 2013).

Definition 7.2. We call an IMEX-RK method of type A if the matrix
A ∈ R

ν×ν is invertible, or equivalently aii 6= 0, i = 1, . . . , ν. We call an
IMEX-RK method of type CK if the matrix A can be written as

A =

(
0 0

a Â

)
, (7.44)

with a = (a21, . . . , aν1)
T ∈ R

(ν−1) and the submatrix Â ∈ R
(ν−1) × (ν−1)

invertible, or equivalently aii 6= 0, i = 2, . . . , ν. In the special case a = 0,
w1 = 0 the scheme is said to be of type ARS.

Finally, we recall the following definition that will be used in the sequel.

Definition 7.3. We call an IMEX-RK method globally stiffly accurate
(GSA) if the corresponding DIRK method is stiffly accurate, namely

aνi = wi, i = 1, . . . , ν, (7.45)

and in addition the explicit method satisfies

ãνi = w̃i, i = 1, . . . , ν. (7.46)

Note that for GSA methods the numerical solution coincides with the last
stage value of the method.
Keeping these definitions in mind, we summarize the results in Dimarco

and Pareschi (2013) concerning the AP property of the different IMEX
schemes.

Theorem 7.4. (AP-type A) If the IMEX method is of type A then in
the limit ε→ 0, scheme (7.42)-(7.43) becomes the explicit RK scheme char-
acterized by (Ã, w̃, c̃) applied to the limit Euler system (2.43). Moreover if
the scheme satisfies the GSA property we have

lim
ε→0

fn+1 =M [fn+1]. (7.47)

The first part of the result is an immediate consequence of the fact that,
as ε → 0 in (7.42), we get AQ(F ) = 0 which, since A is invertible, implies
Q(F ) = 0 and hence F = M . Plugging this into the numerical solution
(7.43) yields the desired result.
After a little algebra one observes that the additional property (7.47) is

achieved if the following conditions are satisfied

wTA−1e = 1, w̃T = wTA−1Ã, wTA−1M [F ] =M [fn+1]. (7.48)
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The first condition corresponds to the classical L-stability requirement of
the DIRK method (Hairer and Wanner 1996). Since the third condition
depends on the stage values vector F the only possibility to satisfy (7.48)
is that the IMEX scheme is GSA. In this case, in fact, we have

wTA−1 = (0, . . . , 0, 1)T , M [F ν ] =M [fn+1].

The request that the matrix A is invertible can be quite restrictive for
high order methods. However, under additional hypothesis, one can obtain
schemes which are asymptotic preserving for CK matrices. In order to do
this, we first introduce the notion of initial data consistent with the limit
problem.

Definition 7.4. The initial data for equation (7.1) are said consistent or
well prepared if

f0(x, v) =M [f0(x, v)] + gε(x, v), lim
ε→0

gε(x, v) = 0. (7.49)

It is possible to prove the following

Theorem 7.5. (AP-type CK) If the IMEX scheme is of type CK and
GSA then for consistent initial data, in the limit ε→ 0, the scheme (7.42)-
(7.43) becomes the explicit RK scheme characterized by (Ã, w̃, c̃) applied to
the limit Euler system (2.43). Moreover if one of the following conditions is
satisfied

(a) the initial data is consistent;

(b)

êTν Â
−1a = 0, (7.50)

where êν = (0, . . . , 0, 1)T ∈ R
ν−1,

then

lim
ε→0

fn+1 =M [fn+1], (7.51)

The proof is similar to the one for type A schemes, except that one has to
work with the invertible submatrix Â. One can then use the fact that, since
the initial data is consistent, F (1) = M (1) and that, thanks to the GSA
property, this projection is maintained at subsequent time levels. We refer
to Dimarco and Pareschi (2013) for the details.

Remark 7.4. If we restrict to the particular case where the collision term
is given by a BGK relaxation operator Q(f, f) = ν(M [f ]−f), a fundamental
property of equations (7.42)-(7.43) is that they can be solved explicitly. In
fact, since the implicit scheme is a DIRK method, the stage values take the
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form

F (i) = fn +∆t

i−1∑

j=1

ãijL(F
(j))+

∆t

i−1∑

j=1

aij
ν(j)

ε
(M [F (j)]− F (j)) + aii∆t

ν(i)

ε
(M [F (i)]− F (i))

(7.52)

where the only implicit term is the diagonal factor ν(i)(M [F (i)] − F (i)) in
which M [F (i)] and ν(i) depend only on the moments of F (i). If we now
integrate the above equation against the collision invariants ϕ = 1, v, |v|2,
we obtain the explicit moment scheme

∫

R3

ϕF (i) dv =

∫

R3

ϕfn dv +∆t

i−1∑

j=1

ãij

∫

R3

ϕL(F (j)) dv. (7.53)

Thus M [F (i)] and ν(i), can be computed directly from the moments of F (i)

and system (7.52) is explicitly solvable.

Penalized IMEX Runge-Kutta schemes

The IMEX methods just described provide high order AP schemes for col-
lision operator that are easy to invert, so that the solution of the implicit
term can be performed efficiently. This is the case, for example, of the BGK
model where it can be solved explicitly. For more general collision opera-
tors, like in the Boltzmann case, one can use the penalty method proposed
in Filbet and Jin (2010) to construct a class of AP IMEX methods. The
idea has been already used in the derivation of the exponential schemes for
the homogeneous equation, but let us illustrate it here in the general case.
We denote with QP (f) an arbitrary collision operator, easy to invert,

possessing the same physical properties of the Boltzmann integral so that
QP (f) = 0 implies f =M [f ]. Next we rewrite the collision operator in the
form

Q(f, f) = (Q(f, f)−QP (f)) +QP (f) = GP (f) +QP (f), (7.54)

where by construction
∫
R3 GP (f)ϕdv = 0, ϕ = 1, v, |v|2, and the corre-

sponding kinetic equation reads

∂f

∂t
+ v · ∇xf =

1

ε
GP (f) +

1

ε
QP (f). (7.55)

The general class of penalized IMEX Runge-Kutta schemes for the Boltz-
mann equation now reads

F = fne+∆tÃ

(
1

ε
GP (F ) + L(F )

)
+∆tA

1

ε
QP (F ) (7.56)
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fn+1 = fn +∆tw̃T

(
1

ε
GP (F ) + L(F )

)
+∆twT 1

ε
QP (F ), (7.57)

where GP (F ) = (GP (F
(1)), . . . , GP (F

(ν)))T .
We resume now the main results concerning the AP properties of penal-

ized IMEX schemes (Dimarco and Pareschi 2013).

Theorem 7.6. (AP-type A penalized) If the penalized IMEX method
is of type A and satisfies

w̃T = wTA−1Ã, (7.58)

then in the limit ε → 0, scheme (7.56)-(7.57) becomes the explicit RK
scheme characterized by (Ã, w̃, c̃) applied to the limit Euler system (2.43).
Moreover if the penalized IMEX satisfied the GSA property then

lim
ε→0

fn+1 =M [fn+1]. (7.59)

Note that condition (7.58) is automatically satisfied if the IMEX scheme is
GSA.
We consider now the case of penalized IMEX schemes of type CK. We

can state an analogous result of Theorem 7.5 for standard IMEX schemes
of type CK.

Theorem 7.7. (AP-type CK penalized) If the penalized IMEX scheme
is of type CK and GSA then for consistent initial data in the limit ε →
0 scheme (7.56)-(7.57) becomes the explicit RK scheme characterized by
(Ã, w̃, c̃) applied to the limit Euler system (2.43). Moreover if one of the
following conditions is satisfied

(a) the initial data is consistent;
(b)

êTν Â
−1 ˆ̃A = 0, êTν Â

−1ã = 0, êTν Â
−1a = 0, (7.60)

where êν = (0, . . . , 0, 1)T ∈ R
ν−1;

(c)

Â−1ã = 0, Â−1a = 0, (7.61)

then

lim
ε→0

fn+1 =M [fn+1]. (7.62)

Remark 7.5.

• The general penalization approach described in (7.54) can be applied
to any collision term Q(f) that can be efficiently penalized through
a suitable, easy to invert, operator sharing the same asymptotic be-
havior and conservation properties. The simplest choice of penalizing
operator satisfying the above requirements is the BGK-like operator
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QP (f) = µ(M [f ] − f), where µ > 0 is a suitable constant, used in
the development of exponential schemes. Other possibilities are given
by the ES-BGK relaxation (Holway 1966), which has the advantage
of matching the O(ε) expansion, i.e. the compressible Navier-Stokes
system, or the linearized Boltzmann operator QP (f) = Q(f,M [f ]).

• A simple BGK-like penalization suffices to give the correct behavior
also for the quantum Boltzmann equation (Filbet et al. 2012) and of the
multi species Boltzmann equation (Jin and Li 2013). However, beside
the question of the choice of the optimal operator for the penalization,
there are cases in which the simple BGK operator is not suitable as
a penalization any more. Most noticeably the Landau operator (2.51)
and the inelastic Boltzmann operator (5.57).
For the Landau equation one has the additional difficulty of the dif-
fusive nature of the operator QL(f, f), which introduces a parabolic
stiffness relating the time step to the square of the velocity mesh.
In Jin and Yan (2011) using the following Fokker-Planck operator as
the penalty operator for the Landau term

QP (f) = ∇v ·
(
M [f ]∇v

(
f

M [f ]

))
, (7.63)

an asymptotic preserving scheme has been derived. Note that, the use
of a diffusive penalization term is essential in removing the parabolic
stiffness.
For the inelastic Boltzmann equation the steady states are Dirac delta
distributions and it is not immediate to identify a simplified operator
that can be used as a penalization term. Asymptotic preservation is
achieved, for example, using the BGK-like model with friction proposed
in Astillero and Santos (2004)

QP (f) = µ(M [f ]− f) + βe∇v · [(v − u)f ], (7.64)

where βe ≥ 0 is a suitable constant depending of the restitution co-
efficient e. Alternatively in Filbet and Rey (2013) a standard BGK
operator has been used in the rescaled setting described in Section 5.2
by equations (5.61)-(5.62).

Convergence Rate for different IMEX schemes

Several examples of IMEX schemes satisfying the GSA property have been
developed in the literature. We mention the following methods: ARS(2, 2, 2)
and ARS(4, 4, 3) from Sections 2.6 and 2.8 in Ascher et al. (1997), JF-
CK(2, 3, 2) from (2.8) Section 2 in Filbet and Jin (2010), BPR-CK(3, 5, 3)
from the Appendix in Boscarino et al. (2013). Schemes DP1-A(1, 2, 1) and
DP2-A(2, 4, 2) from Dimarco and Pareschi (2013). In the above list, we used
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ε = 10−6, Maxwellian initial ε = 10−6, Non-Maxwellian initial

ε = 10−3, Maxwellian initial ε = 10−3, Non-Maxwellian initial

ε = 10−1, Maxwellian initial ε = 10−1, Non-Maxwellian initial

Figure 7.3. L1 error for the density ρ for different second and third order IMEX
schemes. Left column equilibrium initial data, right column non equilibrium

initial data. Top ε = 10−1, center ε = 10−3, bottom ε = 10−6.

the notation NAME(νE , νI , p) where νE , νI are, respectively, the number of
function evaluations of the explicit and the implicit methods and p is the
combined order of the IMEX scheme. The field NAME of the schemes is
composed by the initials of the authors and the scheme type. We emphasize
that the computational cost of penalized IMEX schemes is characterized
by the number of stages of the explicit method since, by construction, the
implicit part is applied to the easy invertible term used for penalization.
The test is performed on (x, v) ∈ [0, 1] × [−vmax, vmax]

2, with vmax = 8.
A 3rd order WENO scheme for the space discretization and a fast spectral
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method for solving the collision integral were employed. The number of
grid points in each velocity direction is Nv = 32. The time step is ∆t =
∆x/(2vmax). The initial data is

ρ0(x) =
2 + sin(2πx)

3
, u0(x) =

cos(2πx)

5
, T0(x) =

3 + cos(2πx)

4
. (7.65)

The L1 norm of the error for the density for different values of the Knudsen
number, i.e. ε = 10−1, ε = 10−3 and ε = 10−6 is reported in Figure 7.3.
Both equilibrium initial data f0(x, v) = M [f0] and non equilibrium initial
data

f0(x, v) =
ρ0(x)

(2πT0(x))1/2
1

2

(
exp

− |v−u0(x)|
2

2T0(x) +exp
− |v+3u0(x)|

2

2T0(x)

)
, (7.66)

are considered. As expected, all the schemes exhibit the prescribed order
of convergence for equilibrium initial data while degradation of accuracy is
observed for type CK schemes and initial values far from equilibrium.

7.4. Asymptotic preserving methods in the diffusion regime

Similar to the classical fluid limit the development of efficient numerical
methods for kinetic equations in diffusion regimes has been studied by sev-
eral authors (Jin et al. 1998, Jin and Pareschi 2000, Klar 1998a, Naldi and
Pareschi 2000, Gosse and Toscani 2003, Buet and Cordier 2007, Lemou
and Mieussens 2008, Carrillo, Goudon, Lafitte and Vecil 2008, Lafitte and
Samaey 2012, Boscarino et al. 2013, Dimarco et al. 2014). In this section,
without aiming at being exhaustive, we illustrate some of the main strategies
which have been developed in the recent literature to tackle the problem and
construct AP schemes. As a prototype model we consider here the linear
Boltzmann equation, characterized by the collision term (2.54) introduced
in Section 2.8, in the diffusive scaling

ε
∂f

∂t
+ v · ∇xf =

1

ε
Q(f) , (7.67)

with Q(f) given by (2.54).

Parity decomposition and AP splitting method

The numerical approach is based on a reformulation of equation (7.67)
through the even and odd parities formalism : we split equation (7.67)
into two equations, one for v and one for −v

ε ∂tf + v · ∇xf =
1

ε
Q(f)(v),

ε ∂tf − v · ∇xf =
1

ε
Q(f)(−v).

(7.68)
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Next, we introduce the so called even parity r and odd parity j defined by

r(x, v, t) =
1

2

(
f(x, v, t) + f(x,−v, t)

)
, (7.69)

j(x, v, t) =
1

2ε

(
f(x, v, t)− f(x,−v, t)

)
. (7.70)

This is equivalent to the decomposition

f(x, v, t) = r(x, v, t) + εj(x, v, t), f(x,−v, t) = r(x, v, t)− εj(x, v, t).

Adding and subtracting the two equations in (7.68) leads to

∂tr + v · ∇xj =
1

ε2
Q(r),

∂tj +
1

ε2
v · ∇xr = − 1

ε2
λj ,

(7.71)

where λ is the collision frequency defined in (2.55) and where the property
∫

R3

σ(v, w)j(w) dw = 0

has been used. An important advantage of this formulation is that now only
one time scale appears in our new system (7.71). Note that the standard
splitting method, based on the separation of convection and collision pro-
cesses, applied to (7.71) originates the wrong asymptotic behavior (Jin et
al. 1998, Naldi and Pareschi 2000).
The AP splitting method presented in Jin et al. (2000) is based on rewrit-

ing the above system into the following form

∂tr + v∇xj =
1

ε2
Q(r)(f),

∂tj + ψv∇xr = − 1

ε2
(
λj + (1− ε2ψ)v∇xr

)
,

(7.72)

where ψ = ψ(ε) is such that 0 ≤ ψ ≤ 1/ε2. This restriction on ψ guarantees
the positivity of ψ(ε) and (1 − ε2ψ(ε)) so the problem remain well-posed
uniformly in ε. The simplest choice of ψ is

ψ(ε) = min
{
1, ε−2

}
. (7.73)

Clearly system (7.72) preserves the same asymptotic behavior of the corre-
sponding kinetic equation (7.67) since it is mathematically equivalent. Thus
it will preserve the correct diffusion limit if discretized in a suitable way.
Note that the left hand side is a simple non stiff transport operator whereas
the right hand side contains all the stiff terms. Thus a natural splitting of
the previous system will be

∂tr + v∇xj = 0,

∂tj + ψv∇xr = 0,
(7.74)
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together with

∂tr =
1

ε2
Q(r),

∂tj = − 1

ε2
(
λj + (1− ε2ψ)v∇xr

)
.

(7.75)

In the limit ε→ 0 the relaxation step (7.75) gives

Q(r) = 0, λj = −v∇xr,

or equivalently

r = ρM, j = −M
λ
[v∇xρ]. (7.76)

Inserting (7.76) in the transport step (7.74) and integrating over v one
gets the drift diffusion equation (2.56). From a numerical point of view,
fully explicit schemes to treat (7.74) are then combined with fully implicit
schemes for (7.75) (see Jin et al. (2000) for further details). Note, however,
that as a consequence the limiting scheme will be an explicit scheme for
the diffusion equation (2.56) which may suffer of the usual parabolic CFL
condition which requires the time step ∆t to be of the order of the square
of the space grid ∆x. Moreover, the resulting space discretization of the
diffusive terms is not optimal, since usually it originates a non compact
stencil (typically a five point rather than a three point discretization of a
second order space derivative). Finally let us mention that the above AP
splitting in the case ψ = 0 was used in Klar (1998a), Klar (1998b), Naldi
and Pareschi (1998).

IMEX Runge-Kutta methods
The method recently derived in Boscarino et al. (2013) is based on a different
reformulation of the system with the goal to construct IMEX Runge-Kutta
methods that in the limit are capable to avoid the severe stability condition
∆t ≤ (∆x)2. First let us note that a standard IMEX Runge-Kutta method
can be applied to the original parity system in the form

∂tr = − v · ∇xj︸ ︷︷ ︸
explicit

+
1

ε2
Q(r)︸︷︷︸
implicit

,

∂tj = − 1

ε2
(v · ∇xr + λj)︸ ︷︷ ︸

implicit

.

(7.77)

Note that the inversion of the implicit term in the second equation is done
explicitly if one is able to compute efficiently r from the first equation. With
above partitioning it is easy to see that the results discussed in Section 7.3
applies. In particular the limiting scheme corresponds to the explicit Runge-
Kutta scheme applied to the limiting system (2.56). Therefore we obtain
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an AP scheme but with the same limitations on the time step induced by
the parabolic nature of the reduced limiting model.
The idea in Boscarino et al. (2013) is to write the parity system in the

equivalent form

∂tr + v · ∇x

(
j + η

v

λ
· ∇xr

)
=

1

ε2
Q(r) + v · ∇x

(
η
v

λ
· ∇xr

)
,

∂tj +
1

ε2
v · ∇x = − 1

ε2
λj ,

(7.78)

where η = η(ε) is a numerical positive function such that η(0) = 1. Note
that in (7.78) the fluxes have been penalized using the equilibrium fluxes of
the limiting behavior and so higher order space derivatives appear. Different
choices for η are possible, for example in Boscarino et al. (2013) it was used

η(ε) = exp(−ε2/∆x).
An IMEX method is then applied following the partitioning below

∂tr = − v · ∇x

(
j + η

v

λ
· ∇xr

)

︸ ︷︷ ︸
explicit

+
1

ε2
Q(r) + v · ∇x

(
η
v

λ
· ∇xr

)

︸ ︷︷ ︸
implicit

,

∂tj = − 1

ε2
(v · ∇xr + λj)︸ ︷︷ ︸

implicit

.

(7.79)

In particular for η = 0 we recover (7.77). Compared to the partitioning
(7.77) one has the additional problem of the inversion of v · ∇x

(
η v
λ · ∇xr

)
.

However this term it is exactly the equilibrium flux that originates the limit
equation. Therefore it contains the same difficulties of an implicit integrator
applied to (2.56), which we cannot skip if our goal is to achieve an implicit
scheme for (2.56). In addition the second order space derivatives in this
additional term can be discretized accordingly to the desired scheme for the
limiting parabolic equation and therefore non compact stencils are avoided.
In other words the value of η at ε = 0 realizes a transition between an
explicit solver (η = 0, non compact stencil) and an implicit solver (η = 1,
compact stencil) for the limiting diffusion system.

Remark 7.6.

• In the numerical methods just described the collision operator has to
be implicitly computed. For simple linear terms, like the case of neu-
tron transport Q(r) = ρ− r the implicit step can be solved explicitly.
Otherwise, similarly to the fluid limit one can use the penalization
technique by Filbet and Jin (2010) to avoid the inversion of the oper-
ator. In the case of the semiconductor Boltzmann equation this has
been done for IMEX schemes in Dimarco et al. (2014) and for the AP
splitting method in Deng (2014).
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• The diffusion limit needs a particular care in the treatment of the space
derivatives, this is due to the fact that in the limit the equation changes
of character passing from an hyperbolic to a parabolic type equation.
Different strategy can be adopted at this stage, see for instance Jin et
al. (2000), Jin and Levermore (1996), Naldi and Pareschi (2000) and
the references therein.

Micro-macro decomposition methods

Another approach to the problem is based on the so-called micro-macro
decomposition (Lemou and Mieussens 2008). The starting point is the de-
composition

f(x, v, t) = ρ(x, t)M(v) + εg(x, v, t), (7.80)

where the non equilibrium part g clearly is such that
∫
R3 g dv = 0. By direct

substitution into the original equation (7.67) we get

εM
∂ρ

∂t
+ ε2

∂g

∂t
+ v ·M∇xρ+ εv · ∇xg = Q(g). (7.81)

Note that integrating over v yields the equation for ρ

∂ρ

∂t
+∇x ·

∫

R3

vg dv = 0. (7.82)

An evolution equation for g is found by defining the operator Π such that
Π(f) =M

∫
R3 f dv and the identity operator I. If we now apply the operator

Π− I to the equation (7.81) we get

ε2
∂g

∂t
+ v ·M∇xρ+ ε(I −Π)(v · ∇xg) = Q(g). (7.83)

The micro-macro approach is then based on discretizing (7.82) and (7.83).
The method proposed in Lemou and Mieussens (2008) use the following
implicit-explicit partitioning

∂ρ

∂t
= −∇x ·

∫

R3

vg dv

︸ ︷︷ ︸
implicit

,

∂g

∂t
= − 1

ε2
v ·M∇xρ+

1

ε
(I −Π)(v · ∇xg)

︸ ︷︷ ︸
explicit

+
1

ε2
Q(g)︸ ︷︷ ︸
implicit

.

(7.84)

Note that, as for the schemes derived before, it is the possibility to invert
the collision operator that makes the whole scheme explicitly solvable. The
above approach is clearly AP, since as ε→ 0 the second equation gives

Q(g) = v ·M∇xρ,
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which gives

g = Q−1(vM) · ∇xρ =
M

λ

[∫

R3

σ(v, v∗)g(v∗) dv∗ − v · ∇xρ

]
.

Substituting this into the first equation in (7.84) gives the desired diffusion
limit (2.56). More precisely, at a time discrete level, one gets an explicit
scheme for the diffusion limit. A modified approach that permits to re-
cover an implicit scheme in the diffusion limit has been proposed in Lemou
(2010).

8. Fluid-kinetic coupling and hybrid methods

We discuss in this section numerical methods which address specifically the
multiscale nature of several physical problems described through kinetic
equations. In contrast with asymptotic preserving schemes, discussed in Sec-
tion 7, which aim at solving the kinetic equation in the whole computational
domain for all the different regimes, here we consider other complementary
approaches based on fluid-kinetic coupling strategies and hybrid schemes.
The fundamental principles are extremely simple and intuitive but their
practical realization poses several difficulties. Roughly speaking, one would
like to avoid the expensive cost of solving the kinetic equation in regions
well described by continuum fluid models (since the latter are easily solvable
by classical numerical methods). On the other hand, far away from equilib-
rium, it is desirable to maintain the flexibility and efficiency of stochastic
techniques, such as DSMC methods (Bird 1994, Nanbu 1980, Pareschi and
Russo 1999, Rjasanow and Wagner 2006). The crucial difficulty is the iden-
tification, the modeling and the numerics of the transition zone between the
fluid and the kinetic descriptions.
The amount of literature in this direction is enormous, since several dif-

ferent techniques are possible and often the implementation details of the
schemes are of fundamental importance for the effective understanding of
the simulation process (Burt and Boyd 2008, Burt and Boyd 2009, Degond et
al. 2007, Dimarco and Pareschi 2007, Caflisch, Wang, Dimarco, Cohen and
Dimits 2008, Degond et al. 2011, Wijesinghe and Hadjiconstantinou 2004,
Homolle and Hadjiconstantinou 2007a, Crestetto, Crouseilles and Lemou
2012, Alaia and Puppo 2011, Alaia and Puppo 2012). Here we limit our-
selves to illustrate some examples, that we consider to be representative of
the most common approaches used in this context. We refer also to the
recent review by Radtke, Péraud and Hadjiconstantinou (2013).

8.1. Dynamic fluid-kinetic coupling methods

Domain decomposition techniques represent the most natural way to tackle
the problem through a subdivision of the computational domain into two



Numerical methods for kinetic equations 121

a b

Ω2

kinetic region

Ω1

fluid region

Ω3

buffer zone

Figure 8.1. A schematic representation in one-dimension of the buffer zone
between the kinetic and the fluid regions.

complementary domains (Bourgat, LeTallec, Perthame and Qiu 1992, Bour-
gat, LeTallec and Tidriri 1996, Schneider 1996, Tiwari and Klar 1998, Tiwari
1998a). In the continuum region the gas is well described by either Euler or
Navier-Stokes equations, while in the kinetic region the gas needs a kinetic
description. Unfortunately, in most cases the two regions are themselves
unknown, and therefore they have to be computed and evolved as part
of the solution. Along this direction we review some recent contributions
which proposes a moving interface method to deal with the coupling of
the different regions (Degond et al. 2007, Degond et al. 2010, Degond and
Dimarco 2012). Related approaches realizing automatic domain decompo-
sition methods were derived in Kolobov, Arslanbekov, Aristov, Frolova and
Zabelok (2007) and in Tiwari (1998b).
For sake of simplicity we describe the methods in one space and velocity

dimensions for the Boltzmann equation in the fluid dynamic scaling

∂f

∂t
+ v

∂f

∂x
=

1

ε
Q(f), x, v ∈ R (8.1)

with initial data f(x, v, 0) = f0(x, v) and where the collision term is the
BGK relaxation operator Q(f) = ν(M [f ] − f). Extension of the approach
to the full Boltzmann equation is discussed at the end of the section.

A moving interface method

The method here described has been proposed in Degond et al. (2007) and
is based on a previous work of Degond et al. (2005), where a stationary
smooth transition strategy was proposed for this coupling. The main idea
is to derive the time evolution of the buffer zones between the kinetic and
the fluid regions based on several microscopic and macroscopic criteria. As
we will see, the construction of this buffer zone is based on the choice of a
cut-off function updated in time by certain out-of-equilibrium indicators.
Let now Ω1, Ω2, and Ω3 be three disjointed sets such that Ω1∪Ω2∪Ω3 =

R
1. The first set Ω1 is supposed to be a domain in which the flow is far

from the equilibrium (the ”kinetic region”), while the flow is supposed to
be close to the equilibrium in Ω2 (the ”fluid region”) and also in Ω3 (the
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”buffer zone”), see Figure 8.1. We define a function h(x, t) such that

h(x, t) =





1, for x ∈ Ω1,
0, for x ∈ Ω2,
0 ≤ h(x, t) ≤ 1, for x ∈ Ω3,

(8.2)

and set h(x, 0) = h0(x).
The time dependence of hmeans that we account for possibly dynamically

changing fluid and kinetic zones. We will denote Ω3 = [a, b] so that Ω1 =
(−∞, a) and Ω2 = (b,∞). The topology and geometry of these zones is
directly encoded in h and may change dynamically as well. For instance, h
can be chosen piecewise linear in [a, b]

h(x, t) =
x− b

a− b
for x ∈ [a, b].

We define two distribution functions such that

fK = hf, fF = (1− h)f. (8.3)

We look now for an evolution equation for fK and for fF . We write

∂fK
∂t

=
∂

∂t
(hf) = f

∂h

∂t
+ h

∂f

∂t
,

∂fF
∂t

=
∂

∂t
((1− h)f) = −f ∂h

∂t
+ (1− h)

∂f

∂t
.

Thus multiplying the Boltzmann equation (8.1) by h and 1−h respectively,
(8.1) can be rewritten in the following form

∂fK
∂t

= f
∂h

∂t
+ h

(
−v∂f

∂x
+
ν

ε
(M [f ]− f)

)
,

∂fF
∂t

= −f ∂h
∂t

+ h

(
−v∂f

∂x
+
ν

ε
(M [f ]− f)

)
,

which finally leads to the following system for fF and fK

∂fK
∂t

+ hv

[
∂fK
∂x

+
∂fF
∂x

]
=
hν

ε
(M [f ]− f) + f

∂h

∂t
, (8.4)

∂fF
∂t

+ (1− h)v

[
∂fF
∂x

+
∂fK
∂x

]
=

(1− h)ν

ε
(M [f ]− f)− f

∂h

∂t
,(8.5)

with initial data

fK(x, v, 0) = h0(x)f0(x, v) , fF (x, v, 0) = (1− h0(x))f0(x, v). (8.6)

Let us note that if f = fF + fK is the solution of (8.1) with initial data
f0(x, v), then (fF , fK) is the solution of (8.4)-(8.5) with initial data (8.6)
and conversely.
Let us now assume that the domain can be subdivided in two regions: in
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one of the regions, the distribution function is close to a local Maxwellian
while in the other, it is far from it. We choose to set h = 0 in the re-
gion where f is close to the Maxwellian. Therefore, fF = f is close to its
associated Maxwellian M [fF ] = M [f ] and we can replace the Boltzmann
equation by the Euler equations without making any significant error. We
also suppose that in the buffer zone, fF remains close to the equilibrium
and thus, it can be replaced by M [fF ] in the whole interval Ω1 ∪ Ω3.
We introduce the notations

〈f〉 =
∫

R

f dv, 〈f m〉 =
∫

R

f




1
v
|v|2
2


 dv =



ρ
ρu
E


 , (8.7)

where m = (1, v, |v|2/2)T . Replacing fF by M [fF ] in (8.5) and taking
the hydrodynamic moments, leads to the following modified Euler system
defined in the interval x ≤ b

∂ρF
∂t

+ (1− h)
∂

∂x
(ρFuF ) = −(1− h)

∂

∂x
〈vfK〉 − ρ

∂h

∂t
,

∂ρFuF
∂t

+ (1− h)
∂

∂x
(ρFu

2
F + pF ) = −(1− h)

∂

∂x
〈v2fK〉 − ρu

∂h

∂t
,

∂EF

∂t
+ (1− h)

∂

∂x
((EF + pF )uF ) = −(1− h)

∂

∂x
〈v |v|

2

2
fK〉 − E

∂h

∂t
,

(8.8)

where pF = ρFTF , EF = ρF (TF + u2F )/2, and initial data

(ρF , uF , TF )|(x,0) = (1− h0(x))(ρ, u, T )|(x,0).
Under these assumptions, we have f = fK +M [fF ], where fK is a solution
of

∂fK
∂t

+ hv
∂fK
∂x

+ hv
∂

∂x
M [fF ] =

hν

ε
(M [f ]− f) + f

∂h

∂t
, (8.9)

in the interval Ω3 ∪Ω2. The coupling model consists of system (8.8) for the
hydrodynamic moments in the region Ω1 ∪ Ω3 and eq. (8.9) for the kinetic
distribution function in the region Ω3 ∪ Ω2.

When h = 0, system (8.8) coincides with the Euler system (2.43) because
fK = 0 and fF =M [fF ]. Moreover no boundary condition is needed at the
boundary x = b because h = 1 at this point, and the factors in front of the
spatial derivatives of (8.8) vanish. A similar remark is true for fK . Indeed,
when h = 0, fK = 0 and no boundary condition is needed for the kinetic
equation at x = a because h = 0 at this point and the factor in front of the
spatial derivatives in (8.9) vanishes. In the buffer zone Ω3, the solution of the
full kinetic problem f is computed as the sum of the MaxwellianM [fF ] and
of the function fK . To summarize, the solution of the full kinetic problem
is given by fK in Ω2, by M [fF ] in Ω1 and by M [fF ] + fK in Ω3.
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Once the coupled model is derived one can use classical finite volume
techniques to discretize both the kinetic equation (8.9) and the modified
Euler system (8.8). We refer to Degond et al. (2007) for more details.

Remark 8.1. An important feature of the method is that it is very easy
to divide the domain in more than two zones. Thus we can define as many
buffers and as many kinetic regions as necessary. Additionally, we can
create new buffer zones and new kinetic zones during the simulation. For
this purpose, one can update the cut-off function h according to convenient
criteria to a new value and reset fK = hf and fF = (1 − h)f at the time
when h is changed.

A micro-macro moving interface method

The method just described can be improved (Degond et al. 2010) by con-
sidering the micro-macro decomposition of the distribution function

f =M [f ] + g. (8.10)

Because the equilibrium distribution has the same first three moments as f
we have 〈g m〉 = 0. Then it can be easily proved that the following coupled
system

∂

∂t
〈f m〉+ ∂

∂x
〈vM [f ]m〉+ ∂

∂x
〈v gm〉 = 0 (8.11)

∂g

∂t
+ v

∂g

∂x
= −ν

ε
g −

(
∂

∂t
+ v

∂

∂x

)
M [f ] (8.12)

is satisfied. The corresponding initial data are

〈f(x, v, 0) m〉 = 〈f0(x, v) m〉,
g(x, v, 0) = g0(x, v) = f0(x, v)−M [f0].

(8.13)

The converse statement is also true: if 〈f m〉 and g satisfy system (8.11)
and (8.12) with initial data (8.13), then f = M [f ] + g satisfies the kinetic
equation (8.1) (see Degond et al. (2005) for details).
Next, we introduce the buffer zone function h(x, t) as in (8.2) and split the

perturbation term in two distribution functions gK = hg and gF = (1−h)g.
It is therefore easy to derive the following coupled system of equations

∂

∂t
〈f m〉+ ∂

∂x
〈vM [f ]m〉+ ∂

∂x
〈vgK m〉+ ∂

∂x
〈vgF m〉 = 0, (8.14)

∂gK
∂t

+ hv
∂gK
∂x

+ hv
∂gF
∂x

= −ν
ε
gK − h

(
∂

∂t
+ v

∂

∂x

)
M [f ] +

gK
h

∂h

∂t
, (8.15)

∂gF
∂t

+ (1− h)v
∂gK
∂x

+ (1− h)v
∂gF
∂x
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= −ν
ε
gF − (1− h)

(
∂

∂t
+ v

∂

∂x

)
M [f ]− gF

1− h

∂h

∂t
, (8.16)

with initial data

gK(x, v, 0) = h0(v)g0(x, v),

gF (x, v, 0) = (1− h0(x))g0(x, v),

〈f(x, v, 0)〉 = 〈f0(x, v)〉.
(8.17)

Again, system (8.14)-(8.16) with initial data (8.17) is equivalent to sys-
tem (8.11)-(8.12) with initial data (8.13).

Now assume that the flow is very close to equilibrium in Ω2 ∪ Ω3. This
means that g is very small in these domains and can be set to zero. Since
g = gF in Ω2, we set gF = 0 in this domain. In Ω3, we also set gF = 0, which
means that we approximate g by gK . Consequently, gF can be eliminated
from (8.14)-(8.16) to get

∂

∂t
〈f m〉+ ∂

∂x
〈vM [f ]m〉+ ∂

∂x
〈vgK m〉 = 0 (8.18)

∂gK
∂t

+ hv
∂gK
∂x

= −ν
ε
gK − h

(
∂

∂t
+ v

∂

∂x

)
M [f ] +

gK
h

∂h

∂t
, (8.19)

with initial data (8.17).
Note that since by definition gK is zero in the fluid zone Ω2, the kinetic

equation equation (8.19) is solved in the kinetic and buffer zones Ω1 and
Ω3 only. Indeed, in the fluid zone, we only solve (8.18) with gK = 0,
which is nothing but the Euler equations. In the kinetic zone, we have
gK = g and hence system (8.18)-(8.19) is nothing but system (8.11)-(8.12),
which is equivalent to the original BGK equation. With this system, the
distribution function f is approximated by M [f ] + gK . Similarly to the
previous paragraph finite volume techniques can be used to discretize the
coupled system (8.18)-(8.19). We refer to (Degond et al. 2010) for details
on the discretizations and on the breakdown criteria of the fluid model.
As a numerical example, we consider the classical Sod test in the compu-

tational domain [−20, 20] for the micro-macro fluid-kinetic coupling. The
simulations are initialized with a thermodynamic equilibrium with h = 0
and gK = 0 everywhere. In Figure 8.2 the density on the left, the transi-
tion function, the heat flux and the local Knudsen number on the right are
reported. For the density we plot the solution computed with the moving
interface micro-macro method (mic-mac in the legend) and as a reference
the solution computed with the full kinetic model. We also report the so-
lution computed with a macroscopic fluid solver. We observe that due to
the initial shock, a kinetic region appears immediately and starts to grow
in time, but as soon as the different non equilibrium regions separate, the
kinetic region itself splits into three: one around the rarefaction wave, one
around the contact discontinuity, and one around the shock. In this test
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Figure 8.2. Moving interface method in Sod shock tube problem. Density (left)
and transition function (right). Solution at t = 12× 10−3 (top) and t = 24× 10−3

(bottom). The small panels are a magnification of the solution close to the shock.

case the dynamic coupling allows for a reduction of approximately 60%
of the computational time employed by the full kinetic scheme. We refer
to Degond et al. (2010) for further numerical results.

Remark 8.2. The method can be extended to the full Boltzmann equa-
tion

∂f

∂t
+ v · ∇xf =

1

ε
Q(f, f), x, v ∈ R

3 (8.20)

by introducing the same cut-off function h(x, t) as in (8.2) except that now
Ωi ⊂ R

3 are disjoint sets such that ∪3
i=1Ωi = R

3.
By repeating similar calculations as before we arrive to the system (Degond

and Dimarco 2012)

∂

∂t
〈f m〉+∇x · 〈vM [f ]m〉+∇x · 〈vgK m〉 = 0 (8.21)

∂fK
∂t

+ v · ∇xfK =
1

ε
Q(M [fF ] + fK ,M [fF ] + fK)

(8.22)
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+

(
∂h

∂t
+ v · ∇xh

)
fK
h
.

In this case, to achieve maximum efficiency one can combine a Monte Carlo
solver for (8.22) with a finite volume method for (8.21). This originates
an hybrid scheme of the type of those we will discuss in the next subsec-
tions (Degond and Dimarco 2012).

8.2. Low-variance deviational Monte Carlo methods

Variance reduction methods are a popular way to improve the accuracy
of Monte Carlo methods by reducing the amount of fluctuations in the re-
sults (Caflisch 1988). Control variates methods have been studied for DSMC
simulations of low speed gas flows (Homolle and Hadjiconstantinou 2007a,
Homolle and Hadjiconstantinou 2007b, Baker and Hadjiconstantinou 2005,
Radtke and Hadjiconstantinou 2009, Radtke et al. 2011). Other methods are
based on the use of weighted samples in each computational cell (Rjasanow
and Wagner 1996, Rjasanow and Wagner 2001).
Numerical simulations of low speed gas flows typically involve small de-

viations from equilibrium, which translates to small hydrodynamic signals
(e.g. flow velocity, heat flux, etc.). In this limit, DSMC methods become
very expensive because resolution of the hydrodynamic signals requires very
large numbers of samples. Here we describe the method proposed in Radtke
and Hadjiconstantinou (2009) in the case of the BGK equation

∂f

∂t
+ v · ∇xf = ν(M [f ]− f). (8.23)

The starting point is to represent the kinetic solution using the decomposi-
tion

f(x, v, t) =MB(x, v) + fD(x, v, t), (8.24)

whereMB(x, v) is a suitable time-independent Maxwellian equilibrium func-
tion, characterized by the macroscopic quantities ρB(x), uB(x) and TB(x),
and fD represents a deviation from the equilibrium distribution, character-
ized by signed particles (with sign sgn(MB −f)). The rationale behind this
approach is that it leads naturally to a control variate integration

∫

R3

fϕ dv =

∫

R3

(f −MB)ϕdv +

∫

R3

MB ϕdv, (8.25)

for a given function ϕ(v) where MB(x, v) must be close to the solution
MB ≈ f . Using a Monte Carlo method to evaluate only the second integral
in (8.25) results in significantly reduced statistical uncertainty, because most
of the statistical uncertainty is removed through the deterministic evaluation
of the last integral.
The simulation proceeds by using the splitting method (2.58)-(2.57) of
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the BGK model (8.23). The collision and advection substeps are described
in details as follows.

1 The collision step reads

∂fD

∂t
= ν(M [f ]−MB)− νfD, (8.26)

which can be exactly solved in a time step ∆t to give

fD,n+1(x, v) = e−λfD,n(x, v) + (1− e−λ)(M [fn]−MB(x, v)),

where λ = ν∆t. The first term describe a particle deletion with prob-
ability e−λ whereas the second a signed particle generation (with sign
sgn(M [fn]−MB(x, v))) with probability (1− e−λ) from the distribu-
tion |M [fn]−MB(x, v)|.

2 The transport step becomes

∂fD

∂t
+ v · ∇xf

D = −v · ∇xM
B. (8.27)

This is solved by free advection of particles and generating additional
particles from the cell interfaces at every time step to satisfy the inho-
mogeneous term on the right hand side. This can be done using the
ratio-of-uniforms sampling method. We refer to Radtke and Hadjicon-
stantinou (2009) for the details.

In practice the value MB(x, v) is adjusted along the computations in or-
der to achieve maximum efficiency and minimize the number of deviational
particles at each time step. We refer to Homolle and Hadjiconstantinou
(2007a), Homolle and Hadjiconstantinou (2007b), Radtke et al. (2011) for
extensions to the full Boltzmann equation.

8.3. Moment guided Monte Carlo methods

The basic idea described here consists in obtaining reduced variance Monte
Carlo methods by forcing the statistical samples to match prescribed sets
of moments given by the solution of deterministic macroscopic fluid equa-
tions (Degond et al. 2011, Dimarco 2013). These macroscopic models, in
order to represent the correct physics for all range of Knudsen numbers in-
clude a kinetic correction term, which takes into account departures from
thermodynamical equilibrium and couples the kinetic and fluid models.
The starting point of the method is the micro-macro decomposition

f =M [f ] + g, (8.28)

where the function g, with 〈g m〉 = 0, represents the non-equilibrium part
of the distribution function. In the case of the Boltzmann equation in the
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fluid-limit scaling it is easy to see that f and g satisfy the coupled system
of equations

∂U

∂t
+∇x · F (U) +∇x · 〈vmg〉 = 0, (8.29)

∂tf + v · ∇xf =
1

ε
Q(f, f). (8.30)

where U = 〈f m〉 and F (U) = 〈vM [f ]m〉. The method aims at solving the
macro-scale moment system (8.29) using as a closure the time evolution of
g, which is given by the solution of the micro-scale kinetic equation (8.30).
Of course, solving equation (8.30) also mean knowing the solution to (8.29).
However, if the numerical solution of equation (8.30) is computed by DSMC
methods and the solution of the moment system (8.29) by a finite volume
scheme, we may expect this latter solution to be less affected by fluctuations
and therefore to represent a better estimate of true solution. This is the
statement on which the method is build.
The method can be summarized as follows. Given an initial data fn at

time tn = n∆t the new solution fn+1 is computed as a sequence of three
steps.

1 Solve the kinetic equation (8.30) with a DSMC scheme and obtain a
first set of moments U∗ = 〈mf∗〉.

2 Solve the fluid equation (8.29) with a finite volume/difference scheme
using the DSMC solution to close the system and obtain a second set
of moments Un+1.

3 Match the moments of the kinetic solution with the fluid solution
through a transformation of the samples values fn+1 = T (f∗) so that
〈mfn+1〉 = Un+1.

Note that, if we want the method to be efficient in the fluid regime a
robust Monte Carlo solver for small values of ε is required. In fact, both
solvers, the deterministic and the DSMC methods are used in the whole
computational domain. To this aim one can use the asymptotic-preserving
Monte Carlo methods introduced in Remark 7.2 (Pareschi and Russo 2001).

An AP moment guided method
Here we describe the basic structure of the first order method based on
splitting (2.58)-(2.57), higher order can be achieved by Strang splitting. We
assume to apply first the transport and then the collision part. If we denote
with f̃ the solution after the transport, the solution of the kinetic equation
is computed approximating the collision part with the scheme

f∗ = A0f̃ +A1f̃1 +A2M [f̃ ] (8.31)

where f1 = P (f, f)/µ, P (f, f) = Q(f, f) + µf , A0 = e−λ, A1 = e−λ(1− eλ)
for TR scheme or A1 = λeλ for IF scheme, and A2 = 1−A0−A1. Here λ =
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µ∆t/ε and µ > 0 is such that P is a nonnegative operator (see Section 7.1).
The AP property of the scheme correspond to the fact that the coefficients
satisfy

lim
λ→∞

A2 = 1, lim
λ→∞

Ai = 0, i = 0, 1. (8.32)

Next, since g is computed from the particle solution we can write

g∗ = f∗ −M [f∗] = A0f̃ +A1f̃1 + (A2 − 1)M [f̃ ], (8.33)

where we used the fact that M [f∗] = M [f̃ ] for the conservation properties
of the collision term. The above expression tells that the moments 〈vmg∗〉
can be obtained as a contribution of three terms

A0〈vmf̃〉+A1〈vmf̃1〉+ (A2 − 1)〈vmM [f̃ ]〉. (8.34)

The first two terms are obtained by simple evaluation of the particles mo-
ments. The third term is obtained by integrating over the velocity space the
analytic expression of the Maxwellian distribution. Finally, observe that in
the limit ε→ 0 the contribution of the perturbation g goes to zero

lim
ε→0

g∗ = 0, (8.35)

because of (8.32) and the kinetic correction in (8.29) disappears. As a
consequence, in such limit we obtain a purely deterministic solver for the
Euler equations.
There are several possible types of space and time discretizations that

can be used to approach the moments equations (8.29). We did not discuss
it here. We remark that the most delicate point is the reconstruction of
the value 〈vmg∗〉 which is used as a correction term (Degond et al. 2011,
Dimarco 2013).

The moment matching procedure permits to the scheme to reduce the
variance of DSMC even far from the fluid regime and to advance in time the
method to the next time step. Note that, after solving (8.29) and (8.30) we
obtain two different sets of moments U∗ and Un+1. Since we assume Un+1

to be a better estimate of the expected values of the statistical samples we
force the particles to have the prescribed moments. For the mass density this
can be achieved only introducing a particle weight in each cell, whereas for
momentum and energy one can use the classical transformation described
in Caflisch (1988).
In Figure 8.3 we gave a simple example of the variance reduction obtained

with the present method. An unsteady shock for the BGK model is con-
sidered in a regime close to the fluid limit. The shock is produced pushing
the particles against a wall which is located on the left boundary. For this
model the collision step is solved exactly which corresponds to A0 = e−λ,
A1 = 0 and A2 = (1 − e−λ) in (8.31). We report also in each figure the
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Figure 8.3. Temperature solution. Monte Carlo method (left) and Moment
guided method (right). Knudsen number ε = 10−4.

results for the compressible Euler equation. Finally, the reference solutions
are obtained by solving the BGK scheme with a discrete velocity method.

8.4. Hybrid multiscale methods

In this paragraph we discuss another idea to blend together determinis-
tic and stochastic solvers. The starting point of the method is a different
kind of representation of the solution as equilibrium and non equilibrium
part first introduced in Pareschi and Caflisch (1999). In these schemes,
the solution in each cell is represented as a combination of two different
parts, a stochastic particle representation of the non equilibrium fraction
and a deterministic representation of the equilibrium part (Pareschi and
Caflisch 2004, Dimarco and Pareschi 2006, Dimarco and Pareschi 2007, Di-
marco and Pareschi 2010). To simplify the presentation we make use of the
one-dimensional BGK model. Extensions of the methods to the multidi-
mensional case are straightforward. The full Boltzmann case can be treated
by using a suitable AP Monte Carlo method and will be addressed at the
end of the paragraph.

The methods are based on the following definition of hybrid representation
of the solution.

Definition 8.1. Given a density f(v, t), and a Maxwellian densityM [f ](v, t)
we define w(v, t) ∈ [0, 1] and f̃(v, t) ≥ 0 in the following way

w(v, t) =





f(v, t)

M [f ](v, t)
, f(v, t) ≤M [f ](v, t) 6= 0

1, f(v, t) ≥M [f ](v, t)
(8.36)

and

f̃(v, t) = f(v, t)− w(v, t)M [f ](v, t). (8.37)



132 G. Dimarco and L. Pareschi

 

w(v)M [f ] βM [f ]

equilibrium

non-equilibrium

equilibrium

non-equilibrium

Figure 8.4. Distribution function as a combination of equilibrium and
non-equilibrium part. Representation (8.38) (left) and (8.39) (right).

Thus f(v, t) can be represented as (Figure 8.4)

f(v, t) = f̃(v, t) + w(v, t)M [f ](v, t). (8.38)

If one takes β(t) = minv{w(v, t)} and f̃(v, t) = f(v, t)−β(t)M [f ](v, t), this
leads to ∫

v
f̃(v, t)dv = 1− β(t).

Defining for β(t) 6= 1 the probability density

fp(v, t) =
f̃(v, t)

1− β(t)
,

then =f(v, t), can be written as a convex combination of two probability
densities in the form (Pareschi and Caflisch 1999, Pareschi and Caflisch
2004)

f(v, t) = (1− β(t))fp(v, t) + β(t)M [f ](v, t). (8.39)

The case β(t) = 1 is trivial since it implies f(v, t) =M [f ](v, t).
We consider now the following general representation, including space

dependence

f(x, v, t) = f̃(x, v, t) + w(x, v, t)M [f ](x, v, t), (8.40)

where w(x, v, t) ≥ 0 is a function characterizing the equilibrium fraction
and f̃(x, v, t) the non equilibrium part of the distribution function.
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A hybrid method for the BGK model

The core idea in the method is to represent f̃(x, v, t) with particles andM [f ]
by its analytical expression through the moments of f . Then we must find
a way to compute the evolution of the hybrid representation (8.40) in time.
The starting point of the method is again the classical operator splitting
where the collision step for the BGK model Q(f) = ν(M [f ] − f) is solved
exactly.
In a single time step ∆t a simple hybrid method can be summarized as

follows.

1 Starting from a function fn = f̃n + wnM [fn] in the form (8.40) solve
the relaxation step

∂f∗

∂t
=
ν

ε
(M [f∗]− f∗). (8.41)

For example, using the exact solution we have

f∗ = e−λfn + (1− e−λ)M [fn]

= e−λf̃n + (1− e−λ + e−λwn)M [fn],

where λ = ν∆t/ε. This decomposition can be recast in the form

f∗ = f̃∗ + w∗M [fn],

taking f̃∗ = e−λf̃ and w∗ = 1− e−λ + e−λwn. Note that w∗ > wn.
2 Discard a fraction e−λ of the sample particles since f̃∗ = e−λf̃ .
3 Starting from the function f∗ solve the transport step.

(a) Transport the particle fraction f̃∗ by simple particles shifts which
solve

∂f̃∗

∂t
+ v · ∇xf̃

∗ = 0.

(b) Transport the deterministic fraction w∗M [f ] by a deterministic
scheme for

∂w∗M [f ]

∂t
+ v · ∇xw

∗M [f ] = 0. (8.42)

(c) Project the computed hybrid solution fn+1 to the form (8.40) using
Definition 1. This gives wn+1 and f̃n+1.

Note that as ε → 0 we have w∗ → 1 and therefore the solution becomes
fully deterministic.

Remark 8.3.

• An important aspect in the previous method is the possibility to use a
cut-off weight function

wR(x, v, t) = w(x, v, t), |v| ≤ R, wR(x, v, t) = 0, |v| > R,
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where the choice of R is done in such a way that the deterministic solver
does not suffer of restrictive CFL conditions due to high velocities. In
this way, high speed velocities |v| > R are treated by a full particle
scheme whereas for |v| ≤ R the hybrid method is used.

• In the case of representation (8.39) the method can be modified to avoid
the limitations induced by the use of a kinetic scheme in step 3(b) for
the equilibrium part and to allow the coupling with an arbitrary fluid
solver for the Euler equations (Dimarco and Pareschi 2010).

Extension to the Boltzmann equation

We conclude by showing how the scheme modifies in the case of the full
Boltzmann equation. The only modifications concern Step 1 of the above
algorithm. In this case the starting point is the AP scheme (8.31) for the
collision step. Assuming now the convex representation (8.39)

fn = f̃n + βnM [fn]

with f̃n = (1− βn)fnp in (8.31) we have

f̃∗ + β∗M [fn] = A0(f̃
n + βnM [fn]) +A1f

n
1 +A2M [fn] (8.43)

where

fn1 =
P (fn, fn)

µ
=

1

µ

[
P (f̃n, f̃n) + βnP (f̃n,M [fn])

+ βnP (M [fn], f̃n) + (βn)2µM [fn]
]
.

Collecting the various terms we obtain the evolution equation

f̃∗ = A0f̃
n +

A1

µ

[
P (f̃n, f̃n) + βnP (f̃n,M [fn])

+ βnP (M [fn], f̃n)
] (8.44)

and the equilibrium fraction

β∗ = A0β
n +A1(β

n)2 +A2. (8.45)

Note that β∗ → 1 as ε → 0 and therefore in the limit we have a pure
deterministic method. Finally using the fact that f̃∗ = (1 − β∗)f∗p and
(8.45) the non equilibrium particle density satisfies

f∗p = p1f
n
p + p2

[
q1
P (fnp , f

n
p )

µ
+ q2

P (fnp ,M [fn]) + P (M [fn], fnp )

2µ

]
, (8.46)

in which

p1 =
A0

A0 +A1(1 + βn)
, p2 =

A1(1 + βn)

A0 +A1(1 + βn)
, (8.47)
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q1 =
1− βn

1 + βn
, q2 =

2βn

1 + βn
. (8.48)

Note that, p1 ≥ 0, p2 ≥ 0, p1+p2 = 1, q1 ≥ 0, q2 ≥ 0, q1+q2 = 1. Therefore
(8.46) is a convex combination of probability density that is suitable for the
construction of DSMC methods. See Caflisch, Chen, Luo and Pareschi
(2006) for space non homogenous results based on the above hybrid scheme
for the Boltzmann equation.

9. Concluding remarks

The development of approximation methods for solving the Boltzmann
equation has a long history which goes back to Hilbert, Chapmann and
Enskog (Cercignani 1988) at the beginning of the last century. Only later,
starting in the 70s with the pioneering works by Chorin (1972) and Sod
(1977), the problem has been tackled numerically with particular care to
accuracy and computational cost. After those pioneering works there has
been an enormous amount of literature on the subject, with a strong increase
in recent years. This made it virtually impossible to give a comprehensive
survey on such a vast research topic.
The focus of the survey was on deterministic methods, therefore we did

not cover Monte-Carlo techniques (Bird 1994, Nanbu 1980) except for few
remarks on their use coupled with deterministic solvers in the development
of hybrid schemes. Compared to DSMC techniques, deterministic methods
offer clear advantages for problems where high accuracy and low noise are
required. In addition, the possibility to compute accurate solutions makes
them an important source of validation for large-scale DSMC simulations.
We expect that future progress, both in more powerful computers and im-
proved numerical algorithms, will continue to act in favor of deterministic
methods.
There are several important aspects concerning the numerical solution

of kinetic equations that we skipped or quickly mentioned in the present
survey, here is a non exhaustive list of them.

• Other deterministic methods for the the Boltzmann integral. Several
other approaches have been pursued to discretize the collision opera-
tor, such as finite difference methods (Aoki 1989, Ohwada 1993), meth-
ods based on polar coordinates (Preziosi and Longo 1997), discontinu-
ous Galerkin methods (Majorana 2011, Alekssenko and Josyula 2012),
wavelet based methods (Antoine and Lemou 2003, Tran 2013) and
pseudo-spectral discretization (Ghiroldi and Gibelli 2014). See also
the books edited by Bellomo and Gatignol (2003) and Degond et al.
(2004)

• AP schemes for other kind of asymptotic behaviors. For instance
plasmas with strong magnetic field and drift limits (Crouseilles and
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Lemou 2011, Hauck, Chacon and del Castillo-Negrete 2014), highly os-
cillatory Vlasov-Poisson models (Crouseilles, Lemou and Mehats 2013)
and high-field regimes for kinetic semiconductors equations (Jin and
Wang 2013). We refer to the recent review by Degond (2014) for fur-
ther examples.

• Numerical treatment of boundary conditions. It depends on the geom-
etry of the domain and on the details of the space discretization. In
particular, adequate space discretization are necessary in presence of
boundary layers (Sone, Ohwada and Aoki 1989). We refer to Carrillo,
Gamba, Majorana and Shu (2006), Gamba and Tharkabhushanam
(2010) and Filbet (2012) for a numerical treatment of boundary condi-
tions using deterministic schemes. Few studies have been addressed to
AP schemes for boundary value problems (Lemou and Mehats 2012, Jin
and Levermore 1993).

• Well-balanced techniques for stationary flows. Stationary solutions,
thanks to averaging procedures, are usually computed efficiently with
Monte Carlo methods (Bird 1994). However, when high accuracy is
required one may be interested in schemes aimed to capture the sta-
tionary state (Greenberg and Leroux 1996, Botchorishvili, Perthame
and Vasseur 2003). We refer to Gosse (2012) and Gosse (2013) for
their application to kinetic equations.

We also mention the following topics which, while being connected to the
content of this review, have not been discussed in the text.

• Moment based methods. The problem of finding high order closures to
the moment system for small and moderate Knudsen numbers has been
tackled by several authors with the goal to avoid the expensive solution
of the kinetic equation (Müller and Ruggeri 1993, Struchtrup 2005).
The numerical discretization of the resulting systems, however, may
pose new difficulties (Jin, Pareschi and Slemrod 2002, Rana, Torrilhon
and Struchtrup 2013). In particular, when a large number of moments
is considered the methods are closely related to discrete velocity models
for the BGK equation.

• Kinetic and relaxation schemes, Lattice Boltzmann methods. The
asymptotic procedure that leads from a kinetic equation to its cor-
responding fluid or diffusion limit can be used as a framework for the
derivation of new schemes for the limiting equations. This idea is at
the basis of the kinetic schemes for the compressible Euler (Deshpande
1986, Perthame 1990) and Navier-Stokes equations (Xu 2001), the re-
laxation schemes for conservation laws (Jin and Xin 1995), and the
Lattice Boltzmann schemes for the incompressible Navier-Stokes equa-
tions (Succi 2001, Banda, Klar, Pareschi and Seäıd 2008).

In recent years, kinetic equations have found applications in new emerging
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areas like car traffic flows (Klar and Wegener 1997), tumor immune cells
competition (Bellomo and Bellouquid 2004), bacterial movement (Perthame
2007), wealth distributions (Cordier et al. 2005), supply chains (Armbruster,
Degond and Ringhofer 2007), flows on networks (Herty and Ringhofer 2011),
flocking dynamics (Ha and Tadmor 2008) and many other. Surveys of appli-
cations to socio-economic and life sciences can be found in Naldi, Pareschi
and Toscani (2010) and Pareschi and Toscani (2013). These represent new
emerging fields where the construction of accurate numerical methods for
kinetic equations will play a major rule in the future.
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lagrangian schemes for Vlasov-type equations’, J. Comput. Phys. 229, 1927–
1953.

N. Crouseilles, T. Respaud and E. Sonnendrücker (2009), ‘A forward semi-
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A. Narayan and A. Klöckner (2009), Deterministic numerical schemes for the Boltz-
mann equation, Technical report, arXiv:0911.3589v1.

T. Nishida (1978), ‘Fluid dynamical limit of the nonlinear Boltzmann equation at
the level of the compressible euler equations’, Commun. Math. Phys. 61, 119–
148.

A. Nogueira and B. Sevennec (2006), ‘Multidimensional Farey partitions’, Indag.
Math. (N.S.) 17(3), 437–456.

T. Ohwada (1993), ‘Structure of normal shock waves: Direct numerical analysis of
the Boltzmann equation for hard sphere molecules’, Phys. Fluids A 5, 217–
234.

A. Palczewski, J. Schneider and A. Bobylev (1997), ‘A consistency result for a



148 G. Dimarco and L. Pareschi

discrete-velocity model of the Boltzmann equation’, SIAM J. Numer. Anal.
34, 1865–1883.

V. Panferov and A. Heintz (2002), ‘A new consistent discrete-velocity model for
the Boltzmann equation’, Math. Methods Appl. Sci. 25, 571–593.

L. Pareschi (1998), Characteristic-based numerical schemes for hyperbolic systems
with nonlinear relaxation, in Proceedings of the IX International Confer-
ence on Waves and Stability in Continuous Media (Bari, 1997), number 57,
pp. 375–380.

L. Pareschi (2003), Computational methods and fast algorithms for Boltzmann
equations, in Chapter 7 Lecture Notes on the discretization of the Boltzmann
equation (N. Bellomo and R. Gatignol, eds), pp. 527–548.

L. Pareschi and R. Caflisch (1999), ‘Implicit Monte Carlo methods for rarefied gas
dynamics I: The space homogeneous case’, J. Comput. Phys. 154, 90–116.

L. Pareschi and R. Caflisch (2004), ‘Towards an hybrid method for rarefied gas
dynamics’, IMA Vol. App. Math. 135, 57–73.

L. Pareschi and B. Perthame (1996), ‘A spectral method for the homogeneous
Boltzmann equation’, Trans. Theo. Stat. Phys. 25, 369–383.

L. Pareschi and G. Russo (1999), ‘An introduction to Monte Carlo methods for the
Boltzmann equation’, Esaim Proceedings, EDP Sciences, ESAIM 10, 1–38.

L. Pareschi and G. Russo (2000a), ‘Asymptotic preserving Monte Carlo methods
for the Boltzmann equation’, Transport Theory Statist. Phys. 29, 415–430.

L. Pareschi and G. Russo (2000b), ‘Numerical solution of the Boltzmann equation I.
Spectrally accurate approximation of the collision operator’, SIAM J. Numer.
Anal. 37, 1217–1245.

L. Pareschi and G. Russo (2000c), ‘On the stability of spectral methods for the
homogeneous Boltzmann equation’, Trans. Theo. Stat. Phys. 29, 431–447.

L. Pareschi and G. Russo (2001), ‘Time relaxed Monte Carlo methods for the
Boltzmann equation’, SIAM J. Sci. Comput. 23, 1253–1273.

L. Pareschi and G. Russo (2005), ‘Implicit-explicit Runge-Kutta methods and ap-
plications to hyperbolic systems with relaxation’, J. Sci. Comp. 25, 129–155.

L. Pareschi and G. Russo (2011), Efficient asymptotic preserving deterministic
methods for the Boltzmann equation, in Models and Computational Methods
for Rarefied Flows, AVT- 194 RTO AVT/VKI, Rhode St. Genese, Belgium.

L. Pareschi and G. Toscani (2004), Modelling and numerical methods for granular
gases, in Modeling and computational methods for kinetic equations, Model.
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