Tagging Occitan using French and Castillan Tree Tagger
Marianne Vergez-Couret

To cite this version:
Marianne Vergez-Couret. Tagging Occitan using French and Castillan Tree Tagger. Less Resourced Languages, new technologies, new challenges and opportunities, Dec 2013, Poznan, Poland. hal-00986426

HAL Id: hal-00986426
https://hal.archives-ouvertes.fr/hal-00986426
Submitted on 2 May 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Tagging Occitan using French and Castillan Tree Tagger

Vergez-Couret Marianne

University of Toulouse Le Mirail
5 allées Antonio Machado, Toulouse, France
{vergez}@univ-tlse2.fr

Abstract

Part-Of-Speech (POS) tagging, including tokenization and sentence splitting, is the first step in all Natural Language Processing chain. It usually requires substantial efforts to annotate corpora and produce lexicons. However, when these language resources are missing like in Occitan, rather than concentrate the effort in creating them, methods are settled to adapt existing rich-resourced languages tagger. For this to work, these methods exploit the etymologic proximity of the under-resourced language and a rich-resourced language. In this article, we focus on Occitan, which shares similarities with several romance languages including French and Castillan. The method consists in running existing morpho-syntactic tools, here Tree Tagger, on Occitan texts with first a translation of language. In this article, we focus on Occitan, which shares similarities with several romance languages including French and Castillan. This method only requires the listing of the frequent words in a rich-resourced language. We performed two distinct experimentations, one exploiting similarities between Occitan and French and the second exploiting similarities between Occitan and Castillan. This method only requires the listing of the 300 most frequent words (based on corpus) to construct two bilingual lexicons (Occitan/French and Occitan/Castillan). Our results are better than those obtained with the Apertium tagger using a larger lexicon.

Keywords: less ressourced language (LRL), POS tagging, Tree Tagger, Occitan, dialect, language resources, language technologies.

1. Introduction

Occitan is a romance language spoken in southern France and in several valleys of Spain and Italy. It is written since the middle age and a very important language has been produced. The BaTelOc project (Bras, 2006; Bras and Thomas, 2011; Bras and Vergez-Couret, 2013) aims at creating wide coverage text collections by gathering written texts of literature (prose, drama and poetry) and other genres such as technical texts and newspapers, for modern and contemporary periods. More than one million words have already been gathered. The text base is also designed to provide online tools for interrogating texts, for example a concordancer to observe key forms in context. In the future, the aim is to enrich the text base with linguistic annotations. In this paper, we focus on Part-Of-Speech (hereafter POS) annotations and tools for annotate them automatically. Within the framework of the text base, POS would allow new possibilities of request, for example the disambiguation of homographs such as poder (common noun power) and poder (verb can):

1) Fau lo polit per [poder verb] far lo gòrre (Los croquants de Roergue, F. Delèris).
2) Lo Prince de las tenèbras al seu servici : l'argent, lo [poder common noun], las onors, la capitada… (L'estilò negre, B. Bergé.)

POS tagging is the first step in all Natural Language Processing chain. It usually requires substantial efforts to annotate corpora and produce lexicons. But these resources are missing for Occitan. Creating them is more subsequent since languages with various dialects present spelling and dialectal variations and these languages are not necessarily standardized. As a consequence, direct translation of existing models for resourced-rich languages is difficult and rather more compromised since there are not enough annotated data and structured lexicon for considering supervised learning. For similar cases, some works present systems to bypass the need of annotated data and lexicons. We followed on Hana et al. (2011) and Bernhard and Ligozat (2013) who used methods that exploit the etymologic proximity between an under-resourced language and a rich-resourced language. We performed two distinct experimentations, one exploiting similarities between Occitan and French and the second exploiting similarities between Occitan and Castillan.

The paper is organized as follows: Section 2 gives additional information on Occitan, its spelling and dialectal variations and the impact of these variations on Apertium which includes a POS tagger for Occitan. Section 3 presents some works on the development of language technologies when language resources are missing. Finally, section 4 is dedicated to the presentation of our two experiments.

2. Occitan language

Occitan language belongs to romance languages. The number of speakers, in France, several valleys of Spain and Italy is hard to estimate: according to several studies it can be evaluated between 600,000 to 2,000,000 speakers (Sibille, 2007).

Occitan is not a unitary language and is not standardized as a whole. It has several varieties organized in dialects. The most accepted classification suggested by Bec (1995) includes Auvergnat, Gascon, Languedocien, Limousin, Provençal and Vivaro-Alpin.

2.1. Written Occitan

Occitan is written since the Middle-Age. The spelling used at that time is called the “troubadour spelling”. This spelling disappeared gradually with the decline of the literary production. Since the 19th century, one can distinguish two major types of spellings, the first ones was influenced by the French spelling, such as the Mistral's spelling, created in Provence and the Gaston Febus's spelling used in Bearn. The second type appeared during the 20th century. It is a unified spelling, said "classical spelling", inspired from the “troubadour
spelling” and diffused in all Occitan territories (Sibille, 2007).
So, the existence of numerous spellings is one cause of
variation. Another cause is the dialectal state of the
language. The classical spelling naturally integrates the
geo-linguistic varieties (for instance lo filh vs. eth hilh ;
luna vs. lua and cabra vs. crabo (Bec, 1995)). Variations
are also due to the fact that the effort of spelling
normalisation is in progress (evolution for the spelling of
conjuate verbs: avian vs. avidan). And finally there are
also phonological intra-dialectal variations (for example
contes vs. condes).
Because of the spelling and dialectal variations, it is
difficult to simply apply the existing system of POS
tagging by creating annotated corpora and large coverage
lexicons as it is currently done with rich-resourced
standardized languages. We present in the next section
Apertium (Forcada et al, 2011) which includes a POS
tagger for Occitan based on a lexicon and raise some
problems about this system.

2.2. POS tagging Occitan with Apertium

Apertium originally proposes open source systems for
automatic translation, generally for related-language
pairs. Armentano I Oller (2008) developed a translation
system for the Occitan/Catalan pair, which includes a
POS tagger for Occitan. It is based on the use of one
lexicon containing 36 500 entries. Two difficulties can be
raised:

a) If a word is not in the lexicon, no tag is proposed for
this word. This results in important variations of
performances from a text to another one, especially
because all the possible spelling forms for all the dialects
do not occur in the lexicon. Armentano I Oller announces
an accuracy of 0.8 of correct tags for a text in
Languedocien. We made the same experiment on a text in
Gascon. We reached an accuracy of 0.6 of correct tags.
Indeed more words were unknown in Gascon (19%) than
in Languedocian (13 %).

b) The lexicon includes indiscriminately forms from
various dialects. It would be required to evaluate if it is
better to have one larger lexicon for all dialects or on the
contrary one lexicon for each dialect.

Finally, to improve the performance of Apertium, the
only way is to enrich the lexicon which is very time
consuming. To cope with this kind of problem, some
researchers develop system requiring a minimum of
lexical resources.

3. POS tagging other less-resourced
languages

For less-resourced languages, the main circumvention
strategy is to use existing systems for a rich-resourced
eytymologically close language: Hana et al (2011) use the
proximity between Old Czech and Modern Czech and
Bernhard and Ligozat (2013) exploit the similarities
between Alsatian and German.
Hana et al (2011) present two different strategies. The
first one consists in transforming a text in Old Czech to
make it looks like an approximate text in Modern Czech
with a finite number of spelling changes rules. The data
produced are then used to train a POS tagger for Old
Czech. The text is finally restored in its original form and
the result is an Old Czech text annotated in POS tagging.
The second strategy consists in creating a lexical resource
as much automatically as possible using resource-light
morphological analyzers (which is based on word
endings). This method permits to reduce the manual
annotation to a list of 250 frequent words, manually
analyzed with their possible tags.
Bernhard and Ligozat (2013) adopt the same idea, using
the proximity between Alsatian and German. The relation
between Alsatian and German is different than the one
between Old and Modern Czech (two successive state of
the language). Alsatian is considered as a German dialect.
They propose to directly use the morpho-syntactic tools
existing for German (Tree Tagger (Schmid, 1994) and the
Stanford POS Tagger (Toutanova et al, 2003)) on
Alsatian texts with pre-translations of grammatical words
(articles, pronouns, prepositions and conjunctions) and
auxiliaries. They obtain an accuracy of 0.8 with Tree
Tagger and 0.86 with Stanford POS Tagger. We propose
to adapt these two methods for Occitan and two
eytymologically related languages French and Castillan
using the Tree Tagger software.

4. Experimental validations

4.1. Motivations

This paper describes experiments aiming at creating
morpho-syntactic resources for Occitan, exploiting the
similarities between Occitan and French and Castillan.
The relation between the three languages is looser than the
one between German and Alsatian. Occitan, French
and Castillan belong to romance languages and are then
eytymologically related. We focus on Gascon dialect for
which we have a corpus for evaluation (see section 2.2.).

4.1.1 Evaluation corpus
We extract and annotate with POS 1024 words (104
sentences) from a Gascon novel. The POS annotation has
been done manually with a simplified tag set inspired by
the one used in Frantext1, an online text base with POS
annotations and tools for French. The tag set is given in
Table 1. The manual annotation was done by revising the
Apertium POS tag (see section 2.2.). This annotated
corpus is our Gold standard. An extract is given Table 2.

<table>
<thead>
<tr>
<th>A</th>
<th>Adjective (except Ap)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ap</td>
<td>Possessive adjective</td>
</tr>
<tr>
<td>Adv</td>
<td>Adverb</td>
</tr>
<tr>
<td>Cc</td>
<td>Coordination conjunction</td>
</tr>
<tr>
<td>Cs</td>
<td>Subordination conjunction</td>
</tr>
<tr>
<td>D</td>
<td>Article (except Dg)</td>
</tr>
<tr>
<td>Dg</td>
<td>Amalgamated article</td>
</tr>
<tr>
<td>Dca</td>
<td>Cardinal number as article</td>
</tr>
<tr>
<td>Pe</td>
<td>Enonciative particle</td>
</tr>
<tr>
<td>V</td>
<td>Finite verb (except Vi, Vpp, Vps)</td>
</tr>
<tr>
<td>Vi</td>
<td>Infinite verb</td>
</tr>
<tr>
<td>Vpp</td>
<td>Present participle</td>
</tr>
<tr>
<td>Vps</td>
<td>Past participle</td>
</tr>
<tr>
<td>Inj</td>
<td>Interjection</td>
</tr>
</tbody>
</table>

1 www.frantext.fr
4.1.2. Tree Tagger Software
We choose Tree Tagger software (hereafter TT), training for both French and Castilian. The TT’s performance relies on the use of a large coverage lexicon. But unlike Apertium, TT predicts tags, using the probability of POS shared with the two related languages French and Castillan. Examples below show specificities in be fairly similar between Occitan and French and Occitan

We then indicate if yes or no these specificities are and Castillan. Examples below show specificities in

The question is now how to adapt the French and Castillan TT to tag Occitan. We use the method of translation described by Bernhard and Ligozat (2013) that only requires a small lexicon of translated words.

4.2. Methods
The two experiments using French and Castilian resources are based on the same methodology.

4.2.1. Lexicon creation
The lexicon is built on ad-hoc criteria. It is a trilingual lexicon, composed of the 300 most frequent words extracted from one novel in Gascon with their translation in French and Castilian. An example is given Table 3.

Table 3. Extract from the lexicon

<table>
<thead>
<tr>
<th>Gascon</th>
<th>French</th>
<th>Castillan</th>
</tr>
</thead>
<tbody>
<tr>
<td>deu</td>
<td>Du</td>
<td>del</td>
</tr>
<tr>
<td>devath</td>
<td>Sous</td>
<td>bajo</td>
</tr>
<tr>
<td>dinc</td>
<td>jusqui</td>
<td>hasta</td>
</tr>
</tbody>
</table>

The 300 most frequent words belong mostly to grammatical categories. We stopped at 300 to reduce the presence of words from lexical categories which are specific to the novel. We assume that our lexicon is exportable for others novels.

Homonyms words which are translated in French or in Castillan with two different words have been deleted from the lexicon. For instance, the Occitan word a can be either a verb (have third person singular) or a preposition. In the first case it would be translated in French by a; and in the second case it would be translated by à. Any of these ambiguity was excluded from the lexicon.

6) Frasis de Gèrbet que m’acompagna dinc [a r̃] la crampa mia.
7) Qué m’[a v] deishat, Cohita, en airetatge ?

4.2.2. Translation on word-to-word basis
The next step consists in transposing (see Table 4) the Occitan words which are in the lexicon in French (Trans_Fr, for example entà → pour in 8a) and in Castillan (Trans_Sp, for example entà → para in 8b). Only the bold words have been translated. The other ones remain in their original form.

Table 4. Example of translation

<table>
<thead>
<tr>
<th>8) Original</th>
<th>Alavetz</th>
<th>8a) Trans Fr</th>
<th>8b) Trans_Sp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Then</td>
<td>to</td>
<td>fool</td>
<td>the sleep</td>
</tr>
</tbody>
</table>

8a) Trans Fr
Alors... pour trompar le som
8b) Trans_Sp
Entonces... para trompar el som
4.2.3. POS tagging with TreeTagger

POS tagging was done twice, first on the original text and then on the translated text. Table 5 for French and 6 for Castillan give an example of tags for original texts and for translated texts. Translated words are in bold. The symbol ✓ means known words and ✗ unknown words by TT. Finally correct tags are greyed out.

First, we deleted all the enunciative particles (strikethrough text in Table 5 and 6) because there is no equivalent in both French and Castillan and the tags for them would have been inevitably wrong. While these particles play a role at the enunciative level, the following proposition is still grammatical.

- **Running TT on original text**

Some words are graphically similar in each pair of languages. For example the feminine singular definite article is la both in Occitan, French and Castillan (see Table 5 and 6). TT will consider them as known words (✓ in Table 5 and 6) and will use the available information about this word. Nonetheless, it does not insure that the similar words in the two languages will have the same POS.

- **Running TT on translated text**

In the translated text, similar words and translated words are considered known by TT.

<table>
<thead>
<tr>
<th>Original text</th>
<th>Tag</th>
<th>Trans_fr</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dab</td>
<td>✗</td>
<td>S</td>
<td>✓</td>
</tr>
<tr>
<td>la</td>
<td>✓</td>
<td>D</td>
<td>✓</td>
</tr>
<tr>
<td>complicitat</td>
<td>✗</td>
<td>Pp</td>
<td>✗</td>
</tr>
<tr>
<td>de</td>
<td>✓</td>
<td>D</td>
<td>✓</td>
</tr>
<tr>
<td>la</td>
<td>✓</td>
<td>S</td>
<td>✓</td>
</tr>
<tr>
<td>lua</td>
<td>✗</td>
<td>lua</td>
<td>✓</td>
</tr>
<tr>
<td>que</td>
<td>✗</td>
<td>que</td>
<td>✓</td>
</tr>
<tr>
<td>vau</td>
<td>✗</td>
<td>S</td>
<td>✓</td>
</tr>
<tr>
<td>poder</td>
<td>✗</td>
<td>S</td>
<td>✓</td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>adara</td>
<td>✗</td>
<td>S</td>
<td>✓</td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>tirar</td>
<td>✗</td>
<td>S</td>
<td>✗</td>
</tr>
<tr>
<td>camin</td>
<td>✗</td>
<td>S</td>
<td>✗</td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 5. Extract from original texts and translated texts in French tagged with French TT.

<table>
<thead>
<tr>
<th>Original text</th>
<th>Tag</th>
<th>Trans_es</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dab</td>
<td>✗</td>
<td>Np</td>
<td>✓</td>
</tr>
<tr>
<td>la</td>
<td>✓</td>
<td>D</td>
<td>✓</td>
</tr>
<tr>
<td>complicitat</td>
<td>✗</td>
<td>Pp</td>
<td>✗</td>
</tr>
<tr>
<td>de</td>
<td>✓</td>
<td>D</td>
<td>✓</td>
</tr>
<tr>
<td>la</td>
<td>✓</td>
<td>S</td>
<td>✓</td>
</tr>
<tr>
<td>lua</td>
<td>✗</td>
<td>lua</td>
<td>✓</td>
</tr>
<tr>
<td>que</td>
<td>✗</td>
<td>que</td>
<td>✓</td>
</tr>
<tr>
<td>vau</td>
<td>✗</td>
<td>A</td>
<td>✓</td>
</tr>
<tr>
<td>poder</td>
<td>✓</td>
<td>Vi</td>
<td>✓</td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>adara</td>
<td>✗</td>
<td>A</td>
<td>✓</td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>tirar</td>
<td>✓</td>
<td>Vi</td>
<td>✓</td>
</tr>
<tr>
<td>camin</td>
<td>✗</td>
<td>S</td>
<td>✗</td>
</tr>
<tr>
<td>.</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 6. Extract from original texts and translated texts in Castillan tagged with Castillan TT.

For French and Castillan, known words are correctly tagged as well as the words near them (see the correctly tagged common nouns complicitat and lua). After translation, translated words are correctly tagged. In this case, it does not result in additional correct tags but see Table 9 for more investigation on this point.

<table>
<thead>
<tr>
<th>Original text</th>
<th>Translated text</th>
</tr>
</thead>
<tbody>
<tr>
<td>French TT</td>
<td>0.55</td>
</tr>
<tr>
<td>Castillan TT</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Table 7. Percentage of unknown words

As expected, the number of unknown words reduces after translation. On the basis of all the tags given for the known words, TT will predict the tags for the unknown ones. This should work if a) enough tags are first correctly predicted and b) the probabilities of POS tag sequences are fairly similar between Occitan, and French and Castillan.

4.3. Results and perspectives

4.3.1. Results

For the evaluation, we first compare the annotation done by Apertium and TT with the reference annotation. The detailed tags given by Apertium and TT were initially simplified according to our tag set (see Table 1).

<table>
<thead>
<tr>
<th>Original text</th>
<th>Translated text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apertium</td>
<td>0.65</td>
</tr>
<tr>
<td>French TT</td>
<td>0.49</td>
</tr>
<tr>
<td>Castillan TT</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Table 8. TT precision

The precision of Apertium, 0.65, is rather low. As we explained above, Apertium only assigns tags to known words. As a consequence, the performances correlate significantly with the number of unknown words (19% for our evaluation corpus).

The TT precision for the original text is unsurprisingly low, less than 0.5. After translation, the precision reaches up to 0.75 for French and 0.8 for Castillan. As expected, the best results are obtained with Castillan translation, probably because of the higher distribution similarities between Occitan and Castillan than between Occitan and French.

We also calculated the precision only for non-translated words, in order to evaluate the method for tagging those words.

<table>
<thead>
<tr>
<th>Original text</th>
<th>Translated text</th>
</tr>
</thead>
<tbody>
<tr>
<td>French TT</td>
<td>0.67</td>
</tr>
<tr>
<td>Castillan TT</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Table 9. Precision for non-translated words

As Table 9 shows, even non-translated words are analyzed better in translated texts than in original texts, thanks to the probabilistic system of TT based on the tags previously assigned.
4.3.2. Difficulties

The main difficulty concerns words which can have two different POS, as for example the very frequent Occitan word *a*. As explained in Section 4.2.1., this word was excluded from the lexicon and corresponds to the third person singular form of the French verb *avoir*. Unsurprisingly, French TT always tags this word as a finite verb.

We also expectedly observe difficulties concerning "cross-language homographs", i.e. Occitan words having the same spelling but not the same POS than in French or Castilian. As for example, the word *ne* is a pronoun in Occitan and an adverb in French. These two difficulties can be easily overcome.

4.3.3. Perspectives

Our approach is resource-free and gives a precision of 0.8 which is fairly good. Nevertheless, improvements are required to raise the precision up to 0.95, as usually expected for POS tagging. Other types of strategies to bypass the use of lexicon would help. As for example, Scherrer and Sagot (2013) acquire German/Palatine cognates pairs with unsupervised automatic learning methods. Such cognates would be used in our case for pairing a) Occitan words with their translation(s) in other romance languages; b) dialectal variations and c) spelling variations. Moreover this strategy would also help for lemmatizing which is currently left undone in the project.

The main objective of these experiments is to create a gold standard for Occitan POS taggers training (Tree Tagger and Talismane (Urieli and Tanguy, 2013)). Experiments described in this paper propose strategies for reducing the cost of this very long and fastidious process. They will be extended to other dialects and also to other related-languages such as Catalan by using Freeling (Carreras et al., 2004), a Catalan POS tagger.

5. Conclusion

The main objective of this study is to help the very long and fastidious process of creating a gold standard for POS annotation in Occitan. This approach is almost resource-free and gives a precision of 0.8 using Castilian TT. It is a very good start to annotate a large amount of data and the manual checking of annotations will be speed up in order to build a Gold standard.

These experiments show that the methodology first used between a language and one of its dialects (Bernhard and Ligozat, 2013) is exportable with similar results for pairs of languages, less close even if etymologically related.

References

\(^2\) German dialect.