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1 Introduction

In this paper, we are interested in decision problems formulated as multicriteria
sorting problems, i.e., when a finite number of alternatives from a set A eval-
uated on a set of criteria {g;,j € J} are to be assigned to one of k predefined
ordered categories ¢; € ¢ K ... € ¢ K ... K ¢ (c1 being the worst category,
and ¢, the best one). The assignment is done based on the comparison of the
alternatives to external norms, rather than by comparison of the alternatives to
each other.

Several approaches have been proposed to address such multicriteria sorting
problem [&,|5]. We consider a well know multiple criteria sorting method, ELEC-
TRE TRI [4, (7, 19]. More precisely, we consider a variant of the ELECTRE TRI
method in line with the axiomatic work of Bouyssou and Marchant |1, [2]. This
variant assigns alternatives using the alternatives performances and preferential
parameters of three types: profiles defining the category limits, weights specify-
ing the importance of each criterion, and veto thresholds. To support specifying
their preferences, we suppose that the DMs are able to provide assignment ex-
amples, i.e. alternatives (fictitious or real) associated to the categories the DMs
think they belong to. Such assignment examples can correspond to past decision
records or be expressed directly by DMs.

Most of the work on preference elicitation in Multicriteria Decision Aid fo-
cuses on representing the preferences of a single decision maker (DM). We are
interested in elicitation procedures for multiple DMs that make it possible for
each DM to provide individual preference information in order to build a mul-
tiple criteria sorting model accepted by each DM as representing the group
preferences. We present linear programs able to find, on the basis of assignment
examples provided by DMs, common profiles, shared among all the DMs, but
allowing their weights (criteria importance factors) to vary individually. This
can be used as a first step towards reaching an agreement on a preference model.

In a recent paper [3], three linear and mixed integer programs solving the
following problems are described.

ICL, or Infer Category Limits, finds, if possible, a set of profiles such that it is
possible to satisfy the assignment examples of each DM using individual
weights and majority threshold parameters without using veto thresholds.



ICLV, or Infer Category Limits with Vetoes, finds, if possible, a set of profiles
such that it is possible to satisfy the assignment examples of each DM
using individual weights and majority threshold parameters and using
veto thresholds if necessary. This is a generalization of the first program
but they are presented in order of increasing complexity.

CWR, or Compute Weights Restrictions, having fixed a set of shared pro-
files, computes a measure indicating the remaining latitude for each DM
regarding their possibility of choosing the weights ordering on the criteria.

These inference programs may be used in a process aiming to build a con-
sensus by progressively reaching a common preferential model. These tools
should be combined with other decision aiding tools, therefore allowing to build
a comprehensive decision aiding process.

This technical report is mainly based on the disaggregation programs pro-
posed in that paper, which should be read before reading this report. (First
part of this introduction is reproduced from that article.) The MPs have been
implemented in J-MCDA, an open source software for Multicriteria Decision
Aiding (MCDA). This document gives detailed technical informations about
how the ELECTRE TRI disaggregation programs proposed in the companion
article have been implemented, including choice of constants and strategies to
avoid numerical errors.

More generally, several articles have appeared proposing Linear Programs
(LPs) and Mixed Integer Programs (MIPs) that aim to obtain ELECTRE TRI
like preference models on the basis of assignment examples from the Decision
Makers (DMs). Most often, the articles do not include discussions concerning
the problem of numerical imprecision, hence, implementing the proposed Mathe-
matical Programs (MPs) correctly can be difficult. It is the opinion of the author
of this document that the current situation where articles are often published
with no sufficient technical details to enable easy implementation is not fully sat-
isfactory. This hinders possibility to reproduce or exploit the published results.
Determining relevant technical informations can be very time consuming, and
in the current situation, it may be considered that the usual quality assessment
process in the OR community (perhaps also in other scientific communities) do
not sufficently value such work. More generally, it might be considered impor-
tant to ease reproducibility of the published results. Suggestions to improve the
situation include favoring development of open standards for data exchange,
and mandating their use when applicable; favoring development of open source
softwares.

1.1 Numerical errors and mathematical programs

Koch et al. [6] gives a good overview of problems related to numerical imprecision
when solving mathematical programs. The following paragraph is reproduced
from their section 3.1.

Most MIP solvers (...) are based on floating-point arithmetic and work with
tolerances to check solutions for feasibility and to decide on optimality. In their
feasibility tests, solvers typically consider absolute tolerances for the integrality
constraints and relative ones for linear constraints. Some normalize the activity
of linear constraints individually, others directly scale the constraint matrix.
The tolerances affect solution times and solution accuracy, normally in opposite



ways (...). If one fixes all integer variables from the reported solution to the
closest integer value and recomputes the continuous variables by solving the
resulting LP with exact arithmetic, some of these post-processed solutions turn
out to be infeasible with respect to exact arithmetic and zero tolerances. (...)
[This means] that the computed solution lies outside the feasible area described
by the input file, but inside the extended feasible area created by reading in the
problem and introducing tolerances.

This document refers to such situation where the solver considers some values
as satisfying some constraints when these values, in exact arithmetic, do not
satisfy the constraints, as a situation of numerical error. In the problems we
are concerned with, such numerical errors may have important consequences.
The MPs considered in this document are designed to satisfy all assignment
examples from the DMs. If no particular measures are taken against numerical
errors, a solver may report a solution which it considers feasible but which, when
applied again to the original problem, does not satisfy all assignment examples.

In order to avoid such numerical errors, this document describes how some
constraints must be modified by adding appropriate tolerance values. It also
describes how the constants the MPs use should be chosen to make sure their
use do not artificially reduce the set of feasible solutions. Finally, it includes
some simple extentions and optimizations reducing the size of the resulting MP
that have not been included in the companion article for simplicity. Tags have
been added to constraints following the names used in the source code and
displayed in files that can be exported from the library.

1.2 Constants used in the programs

e g; and gj, the worst and best performances on the criterion j. Defining
g; lower than the worst performance on the criterion j is also acceptable,
it must only represent a lower bound on the performances reached by any
alternative on that criterion. Similar remark holds for gj.

e Vj € J:4;, a value smaller than the minimal difference between any two
different performances on j (V5 € J : min; = ming qoca|g;(a) — gj(a’)])
divided by k. This leaves space to fit & — 1 profiles into the interval
[gj(a), gj(a")] corresponding to any two different alternatives performances
on j and separating each profile by §;. If there are no two different per-
formances for a given criterion, §; is defined arbitrarily to 1. It is used to
transform strict inequality constraints into loose constraints in Constraints
(b, increasef), (C', floor]), (C, ceiling)), (V', floor)), (V/, ceiling)), (V/, used).
We used min;/(k+1).

o VjeJ: 5?, the “profile margin”, maximal separation between the extreme
profiles (resp. best and worst) and the extreme performances (resp. gj
and g;). We want to let the successive profiles be at least d; apart from
each other, and at least §; apart from the extreme performances, thus,
5? must be defined so that 5? > (k —1)¢;, in order to let all profiles be
greater than the best performance, or lower than the worst performance,
if necessary. We used 5;? = ké;. It is used to define the bounds of the
profiles b; and bi_1, and indirectly in constraints involving M;.



eVicJ:M;=9g;—g;+ 5?, a scaling factor representing the maximal
performance difference on the criterion j including one extreme profile.
It is used in Constraints (C, floor]), (C, ceiling)), (V/, floor)), (V/, ceiling)),

(1, used).

e J,, an arbitrary small positive value, used in Constraints (support, ceiling))
and (support, ceiling-v)). We used d, = 0.001.

e 47, a value used in the definition of the veto variables ranges and in Con-
straints (V' ceiling), which must be greater than ;. We used §; * 2.

2 Infer Profiles (IP)

2.1 Stating the problem

Having a set of alternatives A, categories ¢y, ..., cp, ..., ci ordered by preference
where ¢; is the least preferred one, a set of profiles B = {b1,...,bgx_1}, where
by, is the upper profile to category ¢, and lower profile to category cp+1, a set
of criteria indices J, the evaluations of the alternatives g;(a),Va € A,j € J,
a set of DMs £, assignment examples E', the goal of IP is to determine the
performances of profiles g;(by),Vj € J,1 < h < k — 1 shared among the DMs,
together with individual weights wé and majority thresholds A, matching all
assignment examples. For each DM [ € £, the set of examples E' is the set of
pairs (a, by) € Ax B specifying that the alternative a is assigned to the category
cn, by 1. We write (a - h) to denote such an assignment example.

Our programs are designed to be correctly defined if £ = 1. It is useful to
have a working program working even in such a trivial case for testing purposes
and to make it as general as possible.

Note that the lowest profile, by, must be outranked by every alternative
(because they must go into at least category ci, the worst one) and hence the
performances g;(bg) on every criterion necessarily consist in performances lower
than every other performances on the same criterion. The upper profile of
the best category, that would be by, is used only when an other assignment
procedure known as the optimistic procedure is used. Therefore, the lowest
and best profiles are not considered in our inference programs. Satisfying these
assignment examples can be written as follows:

VleE:V(a?h)eEl: > wh > N, and (1)
Jj€J:gj(a)>g;(bn-1)

VieL:V(a—h)€E: > wh< Al (2)
jeJ:gj(a)2g;(bn)

Equation (II) ensures that the example alternative is assigned to a category at
least as good as ¢, and (2) makes sure that it is assigned to a category not
better than ¢y,.

Hereafter we present a mathematical program finding adequate profiles with-
out using veto thresholds. The case where veto thresholds are allowed is con-
sidered later in Section Bl
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Figure 1: constraining C; to the appropriate value

2.2 Constraints
ViceJacA1<h<k-1:

1

ﬁj(gj(a) = g;(bn)) < Cj(a,bn), (3)

Cy(atn) < 5-(93(a) — g3()) + 1. @
J

Constraints @) and (@) define Cj(a,bs), binary variables indicating the
agreement of the criterion j to say that a is at least as good as by. See Figure
[ In order to transform (B]) into a non strict inequality, §; may be used. It is
defined so that adding this value to the constraint does not restrict the set of
acceptable values for g;(by). It is used to change the strict inequality to a loose

inequality: Vj € Jja€ A, 1 <h<k-1,

1
m(gj(a) = 9;(bn) + 6;) < Cj(a, bn). (C, floor)

Constraints (@) are exposed to numerical errors. The solver could find a
solution with g;(by) = gj(a) + €, for some alternative a, criterion j, profile
by, with € a small positive value, and consider Cj(a,by) = 1 although C}(a, by)
should equal zero as the profile value is higher than the alternative performance.
This is so because it could happen that C;(a,bs) = 1 satisfies the constraint ()
stating that Cj(a,bp) < 77 + 1 because of the solver tolerance. To avoid this

situation, Constraints (@) should be transformed to

Cj (a, bh) <

< W(gj(a) — gj(bn) — x;) + 1. (C, ceiling)

Having ¢ the tolerance for integer values used by the solver, ﬁ should be
at least ¢, thus x; > (M; + x;)t. This makes the constraint stronger, as it
now holds that g;(a) < g;(bn) + x; = Cj(a,by) = 0. The new constraint form
prevents situations where g;(b) < g;(a) < g;(bn) + x;, thus, prevents to choose

the performance of the profile such that 3a € A | g;(a) —z; < g;(br) < gj(a). In



Figure 2: constraining O’;— to the appropriate value

order to avoid reducing the feasible solution space, x; has to be small enough.
A practical solution is to take x; = d;. For this solution to be implementable,

it must hold that Méi 5= = 1,Vj € J. For example, the CPLEX solver version
J J

12.3 uses by default t = #. This implies that the proposed strategy does not
apply if the proportion of the minimal difference over the maximal difference of
performance is too small. A solution to this problem is to rescale the data. An
alternative strategy is to avoid using the values given by the solver for g;(bn),
instead of changing constraint ([@). The profiles evaluations may instead be
deduced from the solver values for Cj(a,by). This may be a better strategy
as it imposes no restriction on the input data, but it requires more efforts to
implement.

The following constraints are used to define the variables aé- (a,bp). These
variables are defined as non negative. Vi € L,j € Jja€ A*,1<h<k-—1:

Jé—(a, br) < Cj(a,bp) (o, ceiling C)
aé—(a, bp) < wé (o, ceiling w)
Cji(a,by) — 1+ wé— < aé—(a, bp). (o, bottom)

These variables represent the sum of the support for saying that a is at
least as good as bp. The constraints ensure that Jj-(a, bp) = wéCj (a, by) while
avoiding the use of a non-linear expression. See also Figure

Then we need to ensure that the sum of supports for each examples are lower

and greater than the related majority thresholds (Constraints (&), ().

Vleﬁ,v(a7>h)eEl,h>1:Za§(a,bh_1)2)\l. (5)
jeJ

VleE,V(aTML)eEl,hgkz—l:Zaé(a,bh)g)\l—é,\, (6)
jed

Constraints (Bl are subject to numerical errors. It is possible (and it has
been observed with CPLEX) that Eje.] aé- (a,bp—1) = A — ¢, for a given a, h, [,
with a small positive € value, such that the solver considers the constraint is
satisfied when it is strictly speaking not. Modifying the constraint by adding



a small positive ¢} is not a good solution because it would restrict the feasible
space, in particular it would exclude solutions where A = 0.5 involving two
disjoint winning coalitions. Moreover, this problem requires a more general
solution. Even when no MP is involved, imprecision may be introduced when
reading the weights values from a file, or obtaining them from an other source,
or when computing the sum itself, so that the computed sum of weights may
well be slightly below the A value even though the true weight values may be
greater than or equal to A\. The solution we adopted for this general problem
is the following. When comparing the sum of weight values to the majority
threshold A, we use a small tolerance margin £ (configurable in our library).
If ZjeJ\gj(a)zgj(bh) wj > AL — e, we consider that the alternative outranks the
profile, as if Zje.]lgj(a)zgj(bh) wj(a,bp—1) > Al held. This requires to make sure
that the true weight values (considering no numerical imprecision) are such that
no coalitions have a value in [A — e, A], otherwize the tolerance margin modifies
the intended result. In the case of the MP, suffices to take ¢ < J) (we suggest
€ = 0)/2), because Constraints (B) make sure that either the coalition is less
than or equal to A\ — &y, or it should be considered as a winning coalition. This
solves the MP imprecision problem as long as ¢ > ¢, with ¢ the imprecision
tolerance used by the solver for linear constraints (CPLEX version 12.3 uses
t = % by default). Omne problem remains when using this strategy. The
weights solution values taken from the solver solution to the MP have to be
interpreted using an appropriate € value, that the user has to know. A solution
to that problem would be to recompute equivalent weight and A values (not
posing any numerical imprecision risk), that have the same winning coalitions,
and show the recomputed values to the user instead of the direct values from
the solver.

Constraint (weights, suml) ensure that the weights sum to one. VI € L:

Zwé =1. (weights, sum)
jeJ
This is obviously subject to numerical imprecision, but it is very unlikely to
cause any practical problem.

Constraints make sure that the profiles are ordered correctly.
Vie J2<h<k-1:

95 (br—1) < g;(bn) — 6;. (b, increase)
Ensuring that the profiles are separated by J; permits to avoid numerical errors
where a profile would be higher than a worst one by a very small margin such
as le-10. Separating them by d; does not restrict the possibility that they are
semantically equal, as that value is small enough. Observe that it is therefore
possible that two profiles have semantically equal performance on all criteria,
thus are exactly the same. A necessary condition for this to happen is that at
least one category has no assignment examples.

Finally, note that it is necessary to define the bounds of the profiles (if & > 2),
to be able to use the scaling constants in the rest of the program. The bounds
must be defined only for the worst and best profiles as Constraints (b, increase)
ensure that the other profiles also satisfy the bounds. Bounds are defined as

follows, Vj € J:
{& — 08 < gj(by),
gj(br—1) <G5+ 65



2.3 Using intervals instead of crisp assignments

The user may wish to provide assignment examples in the form of a contiguous
interval of categories where an alternative may be assigned to, instead of a
single category. In the case of continuous intervals, the mathematical program
is easily transformed. If the assignments were allowed to be non contiguous, e.g.
alternative a may go to category 1 or 3, the change would be more complex.
Now E'! contains, for each example involving an alternative a, two pairs
(a, h) with the lowest and highest category the alternative may be assigned to.
Let us write (a - h) and (a - h) the lower category and the upper category

the alternative a should be assigned to according to the decision maker [. Note
that (a Y h) = (a - h) is possible, if the alternative is to be assigned into a

single category. This change requires to modify Constraints (Bl and (@]).
Vi e E,V(a?h) €E h>2:

Z Ué'(aa bp—1) > AL (support, floor)
jed

VlEE,V(a?E) cE h<k—1:

Z ol(a,by) < A = 6. (support, ceiling)

2.4 Objective function

If we want to maximize the separation between the sum of support and the
majority thresholds, we may maximize a slack variable s as objective of the
MIP and replace Constraints (support, floor]) and (support, ceiling) with the
following ones. VI € £,V(a T) h) € E',h > 2:

Zaﬁ»(a,bﬁ_l) >N,
jeJ

and VI eﬁ,v(a7>ﬁ) €eFE h<k-—1:

Zaé(a,bﬁ) +s5 <A =4,
JjeJ

2.5 Reduced mathematical program

The following program uses less constraints than what has been described pre-
viously by using the fact that only the technical variables required to ensure
satisfaction of the assignment examples are necessary. It is thus possible to re-
duce the size of the program. For example, it is not necessary to define C;(a, by,)
variables for each alternative a and profile b;,. Let us note P! the set of pairs of
alternatives and profiles that we have to consider to satisfy assignment examples
of DM [. For each assignment example (a 7 h), if h > 2, we have to consider

the comparison of a to b,_; to make sure alternative a is at least as good as



the profile and can reach category h. Similarily, for each assignment example
(a - h), if h <k — 1, the pair (a,by,) must be considered. Finally, we have:

P ={@mo e m e Blazef,

Pl = {(a,bh),V(a7E) eE h<k-— 1},

P'=P'UPL

Having a set of alternatives A, a set of criteria indices J, the evaluations
of the alternatives g;(a),Va € A, j € J, the number of categories k, a set of
DMs L, assignment examples E', determine the performances of the profiles
g;(br),Vj € J,1 < h < k —1, together with individual weights wé and majority

thresholds !, satisfying the following constraints.

VieL:
Zwé =1.

jeJ
VjeJ2<h<k-—1l:

95 (bn—1) < g;(bn) — 6;.
vie L, (a,by) € PjeJ:

1

m(gj(a) —gj(bn) +6;) < Cj(a,bp),

; <
Cj(a,bh) - Mj + 5]'

vie L, (a,by) € PjeJ:
Cj(a,bp) +w§ -1< aé»(a,bh),

0‘;» (a,by) < Cj(a,by),
Jj» (a,bp) < wé

Vi€ L, (a,by) € P

Zoé (a,bp) > AL

jeJ
Vi e L, (a,by) € P

Zaé(a,bh) < A\ — Ox.

jeJ

(gj(a) — g;(bn) — &) + 1.

(weights, sum)

(b, increase)

(C, floor)

(C, ceiling)

(o, floor)
(o, ceiling C)

(o, ceiling w)

(support, floor)

(support, ceiling)

The constants g;, g5, M;, ¢ , 5?, and §, are defined in Section The
variables Cj(a,bs) are binaries, g;(by) are real, with g; — 5? < g;(b1) and

gj(be—1) <7; + 5?, wé» and oé (a,bp,) are real and non negative, \! are in [0.5,1].



3 Infer Profiles with Vetoes (IPV)

Suppose now that the DMs are ready to accept veto thresholds in the individ-
ual preference models, i.e. when searching for common profiles, it is deemed
acceptable to use shared veto thresholds to satisfy the individual assignment
examples. This can enable to find common profiles in situations where it would
not be possible to satisfy all examples without vetoes.

This program can be seen as a generalization of the previous one, except
for the change in the objective function, as it tries to find solutions having zero
vetoes. However we choose to present the programs in an increasing order of
complexity. For simplicity, we also consider that the DMs share the vetoes.
The same approach would be applicable for searching individual vetoes, with
an objective function that could e.g. minimize the number of individual vetoes
used or minimize the number of DMs using some vetoes. Sharing the vetoes also
reduces the number of binary variables and reduces the risk that the resulting
preference model would overfit the provided data.

The mathematical program is based on the previous one, with a few additions
and changes. The veto situations are modeled as follows: a veto threshold ’Ujh
(a variable in our problem) is associated with each of the criteria j € J and
profile index 1 < h < k —1. We also need binary variables V;(a,bs),Vj € J,a €
A, 1 < h < k-1, equal to one iff there is a veto situation between a and by,.
When for any criterion and profile the evaluation g;(a) is strictly lower than the
corresponding ’Ujh veto threshold, the alternative may not outrank the profile.

Not using a veto threshold is equivalent to setting v;? < g4, the worst per-
formances on the criterion j. We thus define the variables v;? as having a range
gj — 5;? < v;? < g;(bn), where 5;4 > 6.

The implementation uses a more classical definition of the veto. E.g. Roy
19] defines a veto threshold r; > p;, with p; > 0 the preference threshold, which
prevents a from outranking b iff g;(a) < g¢;(b) — r;. In our implementation
v;.’ = g;(bn) — v;? (or: v;? = g,(bn) — v;’) An alternative a may not go into
category h if g;(bn) — gj(a) > v;.’, which is equivalent to g;(a) < v;?. Thus,
not using a veto threshold is equivalent to setting v;? > g;(bn) — gj, and the
variables v;‘ must have a range defined as at least 0 < v;‘ < g;(bn) —g;+97, with

67 > 6. We choose to define all upper bound for variables v;.’ as v;? < Mj;+467,
for simplicity. Using a classical definition of the veto makes it more efficient to
implement the case of constant veto thresholds, where the value of 'v;.‘ does not
depend on h.

In order to clarify the relation between the implementation and the compan-
ion article, the following subsection gives both form of constraints, those with
the companion article definition of the veto v;? and those with the implementa-
tion definition of the veto v;?.

3.1 Additional constraints

VieJ2<h<k-1:

h—1 h
v Sy

ensures that the veto thresholds are correctly ordered. Equivalently:

ol — ol Tt < g;(bn) — g5 (bn). (v, order)

10



The following constraints define the binary variables Vj(a, bs) indicating the
existence of a veto involving alternative a and category h. Vj € Ja € A;1 <
h<k-1:

’U;?' — gy (a) + 5j
Mj + 5j

< ol — gj(a)

1
- 2MJ+5; i

< VJ (aa bh)

or equivalently:
9i(bn) — gj(a) — vl +9;
Mj + 5j

< Vj(a,bn), (V, floor)

9j(bn) — gj(a) — v} —4;
2M; + 69 + 0

Note that g;(bn) —g;(a) fv;? € [-2M;— o7, M;]. Substracting ¢; in [/, ceiling))
permits to avoid numerical errors: (V/, floor) and (V/, ceiling)) together forbid
that there exists g,(bn) — g,(a) = v;.‘, therefore allowing a security margin for
numerical imprecision.

VZeﬁ,v(a7>Q) € ELh>2:

Vj(a,br) < +1. (V, ceiling)

Z oé (a,bp_1) > A + Z Vi(a, br—1). (support, floor-v)
jed jeJd

WEE,V(&?E) €E h<k—1:

Z J;_((L be) < A6y + Z Vi(a,by). (support, ceiling-v)
jed jeJ

Constraints (support, floor-vl), (support, ceiling-v]) take the veto into account
when computing the assignments. > jed Vj(a,br) accounts for the existence of
a veto situation between a and by,.

To minimize the number of vetoes used, we need a binary variable for each
criterion, Vj, capturing the fact that a veto is used for this criterion. The
following sufficient condition for considering that a veto is not used holds, Vj €
J1<h<k-1:

U§1<&:>Vj=0.

Thanks to the ordering of the vetoes (Constraints (v, order)), it can be refined
as it must hold only for h = k—1. In the linear model we only need to constrain
V; to one if necessary, thus having defined V; as a binary variable, Vj € J:

V->U;€_1_&+6j
T M+

or equivalently:
k—1
gj(bg—1) — gi + 05 — v;

V. >
' Mj +9;
This formulation is much more economical than the formulation used in the
companion paper (V; > Vj(a,by),Va, h), but requires more justification. Let us
say that a veto, associated to a profile b, and criterion j, is possibly used iff v* >
gj(br) — g;. By this phrase we mean that the veto is defined to a value which,

(V, used)

11



considering g; is the lowest possible value on the scale of performances of j,
makes it possibly intervene to veto an outranking situation. If the performance
g; is reached by some alternative in the set of alternatives used as example,

then the veto value v;‘ is reached by that alternative. If the veto value U;? is
reached by at least one alternative, we say that the veto is used. Note that is
an abuse of language, because it might be that the veto is not necessary for
the outranking situation not to hold. If the veto is necessary to prevent the
outranking situation for at least one alternative in the example alternative set,
that is, if the concordance is greater than or equal to the majority threshold for
the relevant alternative and profile, we say that the veto is useful. Recall we
authorize g; to be lower than all alternatives evaluations.

It follows from Constraints that if a veto is possibly used, then
V; =1 and if V; = 0, then no veto is possibly used, thus, no veto is ever used,
for criterion j. The V; variables should be defined if and only if the objective
function includes minimizing the number of vetoes. Thanks to that objective,
V; = 1 requires that the veto on criterion j is useful. We also have that useful
implies possibly used, thus it holds that V; = 1 iff the veto on criterion j is
useful.

Should the user want to search for preference models where some criteria
are forbidden to use a veto, it is possible to force non use of a veto for a given
criterion j by constraining the value of v;.c_l to be at least g;(bg—1) — g, or

v;.“_l > Mj, or by simply not defining relevant v;.“_l and V; variables. Note also
that it is meaningless to force V; to one: supplementary constraints would be
needed to make sure the veto is used. In the implementation, it is also possible
to constrain a veto threshold to some value. This is implemented by simply
restricting the range of the appropriate v;‘ variable. It does not guarantee that
the veto is indeed useful. Remark that forcing the value of v;-‘ would be a
problem if the choice of g;(bs) would lead to g;(br) —g; < v;.’ < g;(bn) —g; +93.
In that case we would have V; = 1 although the veto would be unused. However,
this situation will not happen because the objective is to minimize the sum of
the V; variables, therefore leading the solver to choose a value for ¢;(by,) which
does not cause this situation. This also shows why these constraints should be
used only if the objective involves minimizing the sum of the V; variables.

3.2 Nul weights and veto thresholds

Procedures based on ELECTRE TRI take different decisions, depending on the
variant used, when a veto is bound to a criterion j having a nul weight. An am-
biguous situation happens when the concordance, thus the sum of weights of the
criteria in favor of an alternative a being at least as good as a profile by, equals
one, and criterion j has a veto against that affirmation. In the original ELECTRE
TRI definition [9], a concordance of one is a sufficient condition to determine
outranking, which opposes the rule that the veto should make outranking im-
possible. If a veto can be defined on a nul weight criterion, such an ambiguous
condition may happen. Let us qualify a solution involving at least one criterion
where a veto is defined and having a nul weight as a solution with zero-weight
vetoes. In the recently axiomatized version of ELECTRE TRI |1, 12], it is admitted
that a veto is defined on a criterion which has no role in any winning coalition.
In such a case, the veto plays its role, forbidding the outranking result. In our
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implementation, the question arises whether such a situation should be allowed.
We decide that if a veto is defined on a zero weight threshold, it should play its
role and veto the outranking, as suggested by [Bouyssou and Marchant. With
such a decision, let us show that by forbidding zero-weight vetoes, we do not
reduce expressiveness of the model, or conversely, adding such a possibility does
not augment the expressiveness of the model. We must show that if no solution
exists without zero-weights vetoes, then no solution exists allowing zero-weight
vetoes. Conversely, let us show that if a solution exists involving zero-weight
vetoes, then a solution exists without zero-weight vetoes.

Consider an ELECTRE TRI preference model M involving zero-weight vetoes,
let us transform it to M’ which does not involve zero-weight vetoes and is
equivalent, thus sorts all possible alternatives to the same categories. Let us
note j a criterion with zero weight and a veto in M. We show how to transform
the solution to an equivalent one in which j has a non zero weight. If several
criteria have zero weight and a veto, the procedure may be repeated.

Let us note the vetoes and profile levels in M bound to criterion j as v? and
gj(br),Vh. As criterion j has zero weight, the profiles may be transformed to
any values g; (bp), for all h, keeping the resulting model equivalent to the original
one. We may also choose new veto values v;h but the vetoes must operate in
the same conditions, otherwise the transformed solution is not equivalent to the
one found, thus we must have g’ (bs) — v;.h close enough to g;(by) — v;‘. Define
95 (bn) = g;(bn) — v;-‘ and v;.h = 0, so that the veto occurs for a category h and
alternative a exactly when the alternative is less good than the corresponding
profile according to j. It is then possible to associate a non nul weight to the
criterion j. When the criterion is not in favor of a > b, its weight does not
matter as the veto will be decisive. In all cases where its weight matter, it will
be part of the winning coalition. We may thus give this criterion any weight
(e.g., 0.1), and raise the majority threshold by the same value.

The above result proves that forbidding vetoes on zero-weight criteria does
not reduce the set of feasible solutions when a single preference model is involved.
Observe however that this holds in the case of a single DM. In our case of
multiple DMs sharing profiles, adding such constraints could reduce the set of
feasible solution. We therefore chose to authorize solutions involving zero-weight
vetoes.

3.3 Objective function

In most situations it is probably reasonable to find a solution involving the least
possible number of vetoes: allowing too many veto thresholds to be used may
lead to an over-fitting of the model with ad-hoc veto thresholds. The objective
function should then be to minimize the sum of the V; variables:

jed

An alternative could be e.g. to minimize the number of situations where a veto
is used.
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3.4 Reduced mathematical program

Having a set of alternatives A, a set of criteria indices J, the evaluations of
the alternatives g;(a),Va € A,j € J, the number of categories k, a set of DMs
L, assignment examples E', determine the performances of the profiles g;(by)
and veto levels v;?, Vi e J,1 < h <k —1, together with individual weights
wé and majority thresholds A, minimizing Zje ; Vj subject to the following
constraints. Note that this MP is also smaller than the one published in the

companion article.

Vie L:
Zwé =1. (weights, sum)
jeJd
VieJ2<h<k—1:
gi(bn—1) < g;(bp) — 9;. (b, increase)
vie L, (a,by) € PjeJ:
1
W(gj(a) =g (bn) + 0;) < Cj(a, bn), (C, floor)
1 -
Cj(a,bn) < Y (95(a) — g;(bn) — &;) + 1. (C, ceiling)
Vi€ L, (a,by) € PLje J:
Cj(a,bn) + wé— —-1< Jé—(a, br), (o, floor)
0‘;— (a,by) < Cj(a,by), (o, ceiling C)
0‘;» (a,bp) < wé (o, ceiling w)
VieJ,2<h<k—1:
v — ol < gi(bn) — gj(br-1). (v, order)
Vi€ L, (a,by) € PLje J:
g;(br) — g;j(a) — v +6;
M, 49, z <Vj(a,bn), (V, floor)
9i(bn) — gj(a) — vl = 4; s
; < 1. 1
V](G/’bh) — 2M] + 5}1 + 5j + (V7 cel lng)
vie L, (a,by) € P
Zaé-(a, bp) > A+ Z Vj(a, by). (support, floor-v)
JjeJ JjeJ
Vie L, (a,by) € P
Z aé»(a, bp) < A =6y + Z V;(a, by). (support, ceiling-v)

Jj€J Jje€J
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Vj e J:
gj(br—1) — gj + 65 — v;“_l

v >
' Mj +9;

(V, used)

The constants g;, g;, M;, 6;, 5?, 07 and 0, are defined in Section The
variables Cjj(a,bp), Vj(a,bs) and V; are binaries, g;(by) are real, with g; — 5? <
g;(b1) and g;(bx—1) < g5 + 0%, wh, ol (a,by) are real and non negative, A' are in
[0.5,1], v} are in [0, M; + &3]

4 Conclusion

We have presented in this techical report implementation details permitting to
formulate several disaggregation programs as MPs while taking into account
numerical imprecision thresholds used by solvers. The report also presents re-
duced MPs that permit a more efficient implementation than the one which
was previously published. These algorithms are available in J-MCDA, a free
(libre) open source software library. The report uses, as much as possible, the
same technical terms and notations as are used in the source code and it may
therefore also be useful as a detailed code documentation.

As is mentioned in the companion paper, some instance sizes are not cur-
rently solvable in a reasonable time using this approach. For example, instances
involving more than eight criteria remain difficult to solve. One possibility to
reduce the resolution time is to design resolution algorithms making use of the
specific structure of the problems to solve. This is left for future work.
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