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Abstract

Report on the numerical approximation of the Ventcel problem. The
Ventcel problem is a 3D eigenvalue problem involving a surface differen-
tial operator on the domain boundary: the Laplace-Beltrami operator.
We present in the first section the problem statement together with its
finite element approximation, the code machinery used for its resolution
is also presented here.
The last section presents the obtained numerical results. These results
are quite unexpected for us. Either super-converging for P

1 Lagrange
finite elements or under converging for P 2 and P

3.
The remaining sections 2 and 3 provide numerical results either for
the classical Laplace or for the Laplace-Beltrami operator numerical
approximation. These examples being aimed to validate the code im-
plementation.

1 Introduction

We present in this report an algorithm for solving the Ventcel problem [8, 9].
The code is detailed and validated considering various classical test cases. The
resolution of the Ventcel problem on the unit ball is used as a test case to
provide a convergence numerical analysis of the method.

1.1 The Ventcel problem

The Ventcel problem is the following eigenvalue problem. Let Ω denote some
bounded smooth domain in R

3. We search for the eigenvalues λ and for the

∗marc.dambrine@univ-pau.fr
†charles.pierre@univ-pau.fr

1



Marc Dambrine and Charles Pierre

associated eigenfunctions u satisfying,

∆u = 0 on Ω, ∆Bu− ∂nu+ λu = 0 on ∂Ω. (1)

Here n denotes the outward unit normal to ∂Ω and so ∂nu the derivative of
u on the normal direction to the boundary and ∆Bu stands for the surface
Laplacian of u on the boundary ∂Ω, i.e. the Laplace-Beltrami operator.

This problem has a simple weak formulation (2). Multiplying ∆u by a test
function v and integrating over Ω and assuming sufficient regularity we get by
integration by part, ∫

Ω

∇u · ∇v dx−

∫
∂Ω

∂nu v ds = 0.

By substituting the boundary condition in (1),∫
Ω

∇u · ∇v dx−

∫
∂Ω

(∆Bu+ λu) v ds.

We obtain by a second integration by part on the boundary ∂Ω,∫
Ω

∇u · ∇v dx+

∫
∂Ω

∇Tu · ∇Tv ds = λ

∫
∂Ω

uv ds, (2)

with ∇Tu the tangential gradient of u on ∂Ω, i.e. ∇Tu = ∇u− ∂nu n.
On the Hilbert space V = {u ∈ H1(Ω), ∇Tu ∈ L2(∂Ω)} the classical

theory applies as exposed in [3] providing an orthogonal set of eigenfunctions
associated with the eigenvalues 0 = λ0 < λ1 ≤ . . . . The first eigenvalues
λ0 = 0 is associated with the (one dimensional) eigenspace of the constants.
We will focus on the approximation of λ1.

The following discretisation of (2) will be used. Let M be some tetrahe-
dral mesh of Ω. We will denote by Ωh the computation domain (made of all
tetrahedra in the mesh M). We consider the classical Lagrange finite element
spaces Vh = P k(M). We search for u ∈ Vh and λ ∈ R so that, for all v ∈ Vh

we have: ∫
Ωh

∇u · ∇v dx+

∫
∂Ωh

∇Tu · ∇T v ds = λ

∫
∂Ωh

uhv ds. (3)

Considering a canonical bases of Vh we identify uh with its vectorial representa-
tion U ∈ R

N , with N the number of degrees of freedom (the dimension of Vh).
We then consider the matrices S3, S2 and M2 (mass and stiffness matrices)
representing the products on Vh × Vh in (3):

(u, v) 7→

∫
Ωh

∇u · ∇v dx = UTS3V, (4)

(u, v) 7→

∫
∂Ωh

∇Tu · ∇Tv ds = UTS2V, (5)

(u, v) 7→

∫
∂Ωh

uv ds = UTM2V. (6)
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Problem (3) under matricial form is the following generalized eigenvalue
problem,

(S3 + S2)U = λM2U. (7)

The matrix S3 + S2 is symmetric positive semi definite (with a one dimen-
sional kernel made of the constant vectors U = c representing the constant
functions). The matrix M2 also is symmetric positive semi definite but with a
high dimensional kernel made of all functions in Vh vanishing on the boundary
∂Ωh.

1.2 Implementation

A python code is used for the numerical resolution of (7). The assembling of
the finite element matrices is made using Getfem++ 1.
The iterative Lanczos method (see e.g. Saad [6]) is used to solve the eigenvalue
problem. Because we are interested in the smallest eigenvalues and since the
matrix S3 + S2 is only semi definite, we consider the shifted invert variant of
this method. Actually the shifted matrix S3+S2− σM2 is symmetric positive
definite for any negative value of the shift parameter σ, fixed to σ = −1 here.
In practice the ARPACK library2 has been used for this.
Each Lanczos algorithm iteration requires two kind of advanced operations:
solving the linear system (S3 + S2 −M2)X = Y (shifted system matrix) and
performing matrix-vector multiplication X 7→ M2X . These two operations are
executed using the PETSc library3.
The largest amount of CPU consumption is devoted to the linear system res-
olution. A conjugate gradient algorithm is used with an incomplete Cholesky
(fill in 3) preconditioning, see e.g. Saad [7] for precisions. The system is solved
with a tolerance of 10−11.
The residual at end of the Lanczos algorithm is asked to be smaller than 10−10.
This residual is algebraic, we additionally re-computed an L2 residual: denot-
ing λi the ith eigenvalue and Ui the associated eigenvector, the L2 residual is
defined as,

‖(S3 + S2)Ui − λiM2Ui‖L2

‖Ui‖L2

,

assuming the identification Vh ≃ R
N . This functional residual is also controlled

to remain below 10−9.
Eventually all meshes have been built with the software GMsh4.

1Getfem++: an open-source finite element library,
http://download.gna.org/getfem/html/homepage/index.html

2ARPACK, Arnoldi Package, http://www.caam.rice.edu/software/ARPACK/
3PETSc, Portable, Extensible Toolkit for Scientific Computation,

http://www.mcs.anl.gov/petsc/
4Gmsh: a three-dimensional finite element mesh generator, http://geuz.org/gmsh/
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2 Code validation

We consider here the resolution of several classical problems aimed to validate
the code implementation: matrix assembling, eigenproblem solver and error
analysis. On each example our purpose is to recover the correct method’s
convergence rate as predicted by classical theories.

2.1 Matrix assembling validation

The three matrices S3, S2 and M2 associated with the products (4), (5) and
(6) need to be computed. The matrix S3 is a classical stiffness matrix on the
three dimensional domain Ωh. Conversely the matrices S2 and M2 are not as
classical. They correspond to two dimensional stiffness and mass matrices but
associated with the non flat domain ∂Ωh.
Remark nevertheless that the assembling of S2 (and similarly for M2) consist
of a loop over all element faces E of the mesh M included in ∂Ωh. Precisely
the elements of M are tetrahedra, their faces E thus are triangles and these
triangles subsets of ∂Ωh form a partition of ∂Ωh. On every such triangle E is
assembled the local matrix corresponding to the product,

(u, v) 7→

∫
E

∇Tu · ∇Tv ds =

∫
E

∇u|E · ∇v|E ds.

On one hand E is an affine deformation of the reference triangle in dimension 2
and on the other hand u|E, v|E ∈ P k(E). Therefore these local matrices indeed
are local matrices for a classical 2 dimensional stiffness matrix. As a result the
assembling of S2 and similarly of M2 do not need particular software but only
a 2D finite element library.

Taking the previous commentary into account, the validation for the as-
sembling of S3, S2 and M2 can be performed on flat domains ω ⊂ R

d, d = 2, 3.
We fix ω = (0, 1)d and solve the classical elliptic problem,

−∆u+ u = f on ω and ∂nu = 0 on ∂ω,

for the right hand side f = (2π2+1) cos(πx) cos(πy) and f = (3π2+1) cos(πx) cos(πy) cos(πz)
in dimension 2 and 3 respectively. The associated exact solutions are u =
cos(πx) cos(πy) and u = cos(πx) cos(πy) cos(πz) respectively. The numerical
solution uh is given by,

SdUh +MdUh = MdF , d = 2, 3.

We analyze the relative errors between u and uh both in L2-norm and H1-semi
norm,

e
L2

=
‖u− uh‖L2(ω)

‖u‖L2(ω)

, e
H1

=
‖u− uh‖H1(ω)

‖u‖H1(ω)

.

considering a series of refined meshes and using the P k(ω) finite element
method for k = 1, 2, 3, we recovered a k (resp. k + 1) order of convergence
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in H1 (resp. L2) norm as presented in table 1. These results are in complete
agreement with the classical theory (see e.g. Ciarlet [2]) and this test fully
validates a correct assembling of the desired matrices.

d = 2 P 1 P 2 P 3

e
H1

1.0 2.1 3.0

e
L2

2.0 3.1 4.0

d = 3 P 1 P 2 P 3

e
H1

1.0 1.9 2.8

e
L2

1.9 3.0 4.0

Table 1: Computed orders of convergence for problem (2.1)

2.2 Eigenvalue problem solver validation

We test the eigenvalue problem solver described in section 1.2 considering the
Laplace eigenproblem,

−∆u = λu on ω and ∂nu = 0 on ∂ω, (8)

on the same square or cubic geometry ω as in the previous section.
The first eigenvalue is λ0 = 0 with eigenspace the constant functions. The first
non-zero eigenvalue is λ1 = π2 with multiplicity d and with eigenspace E1 =
Span (cos(πx), cos(πy)) or E1 = Span (cos(πx), cos(πy), cos(πz)) for d = 2 or
d = 3.

According to the dimension d the numerical approximation for (8) is,

SdUh = λhMdUh.

The first non-zero numerical eigenvalue λh,1 is computed to analyze the relative
error,

eλ =
|λh,1 − λ1|

λ1
.

One associated eigenvector Uh,1 of L2-norm equal to 1 (for normalization) is
considered to compute the following H1 and L2 errors,

e
L2

= ‖uh.1 − puh,1‖L2(ω) e
H1

= ‖uh,1 − puh,1‖H1(ω),

where p is the L2-orthogonal projection onto the eigenspace E1.

d = 2 P 1 P 2 P 3

e
H1

1.0 2.0 3.1

e
L2

2.0 3.0 4.1

eλ 2.0 4.2 5.9

d = 3 P 1 P 2 P 3

e
H1

1.0 2.0 2.7

e
L2

1.9 3.0 3.8

eλ 1.95 4.0 5.9

Table 2: Computed orders of convergence for problem (8)

The order of convergence is computed considering a series of refined meshes
and several Lagrange finite element spaces P k(ω), they are reported in table
2. They are in full agreement with the theoretical orders presented e.g. in
Babušhka and Osborn [1] : using P k finite elements provides a convergence of
order k for e

H1
, k + 1 for e

L2
and 2k for eλ.
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3 Curved surface effects

In this section we illustrate the influence of computing the two dimensional
stiffness and mass matrices S2 and M2. We consider again the geometrical
situation of the Ventcel problem in section 1.1: Ω is an open smooth domain
in R

3 with boundary Γ. M is a tetrahedral mesh of Ω, Ωh is the domain of the
mesh M, i.e. the union of its element. The matrices S2 and M2 are computed
on Γh = ∂Ωh. Note that Γh itself is the domain of a triangular mesh M2 of Γ,
the element of M2 are the boundary faces of M.
As developed in section 2.1, the assembling of S2 and M2 on the curved domain
Γh (i.e. embedded in R

3) is essentially the same as their assembling in a flat
domain (a two dimensional domain in R

2). We however check here that the
third dimension z is taken into account for this assembling.

3.1 Laplace-Beltrami problem

We will consider the elliptic problem

−∆Bu+ u = f on Γ, (9)

no boundary condition are needed here (Γ has no boundary!). This problem
is well posed : existence and uniqueness of a solution u ∈ H1(Γ) for any
f ∈ L2(Γ).
The finite element approximation of (9) has been theorized by Demlow in [5].
We need some notations. To x ∈ Γ is associated its unit outer normal n(x).
We consider a tubular neighborhood ω of Γ so that for all x ∈ ω, there exists
a unique p(x) ∈ Γ so that x − p(x) = λ(x)n(p(x)) (p(x) is an orthogonal
projection of x on Γ) and so that the segment [x, p(x)] ⊂ ω. A function
f : Γ −→ R can be extended to a function f e : ω −→ R by: f e(x) = f(p(x)).
We assume that Γh ⊂ ω. A function f : Γ −→ R can then be lifted to a
function f l : Γh −→ R by f l = f e

|Γh
.

The lift operation allows to compare the exact solution u defined on Γ with a
numerical approximation uh defined on Γh. Note that it would have also been
possible to lift uh to a function ul

h on Γ by ul
h(p(x)) = uh(x). Demlow showed

in [5] that analyzing the error in terms of ul − uh (lift of u to Γh) or in terms
of u − ul

h (lift of uh to Γ) are equivalent, we choose the first strategy for its
practical convenience.

Equation (9) is discretised on Vh = P k(M2) as,

(S2 +M2)Uh = M2F
l. (10)

The L2 and H1 approximation errors are alternatively defined as,

e
L2

= ‖ul − uh‖L2(Γh) , e
H1

= ‖ul − uh‖H1(Γh).

The convergence properties of this scheme are quite different from those on flat
domains illustrated in section 2.1. The reason for this is analyzed in Demlow
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[5]: the curved surface Γ is approximated by the surface Γh that is the boundary
of a polyhedral and thus piecewise flat (made of triangles). Approximating a
curved surface by a (piecewise) linear one induces upper bound errors for (9),

e
H1

= O(hk + h2) , e
L2

= O(hk+1 + h2),

for P k finite elements. Therefore a saturation of the convergence order to 2 is
predicted.

The numerical scheme (10) has been implemented for the sphere. In this
case the projection p is very simple, p(x) = x/||x|| on ω = R

3 − {0}. The
right hand side to (9) is set to f = x(2 + x) exp(x) so that the exact solution
is u = exp(x). The results are reported in table 3. The saturation of the
convergence order to h2 is clearly seen, in agreement with Demlow convergence
analysis [5].

P 1 P 2 P 3

e
H1

1.1 2.0 2.0

e
L2

2.0 2.0 2.0

P 1 P 2 P 3

e
H1

1 2 2

e
L2

2 2 2

eλ 2 2 2

Table 3: Computed orders of convergence for the Laplace-Beltrami problem
(9) (left) and for the Laplace-Beltrami eigenvalue problem (11).

3.2 Laplace-Beltrami eigenvalue problem

The Laplace-Beltrami eigenproblem is considered on the sphere,

−∆Bu = λu on Γ. (11)

Its discretisation takes the form: find Uh ∈ Vh = P k(Γh) and λh ∈ R so that,

S2Uh = λhM2Uh.

Problem (11) has λ0 = 0 for eigenvalue associated to the eigenspace of con-
stant functions. The first non-zero eigenvalue is λ1 = 2 of multiplicity 3 with
eigenspace E1 = Span(x, y, z) the restriction of the linear functions in R

3 to
the sphere.

The space E1 is lifted to Γh as in the previous section. The lifted space El
i is

the vector space of functions of the form X = (x, y, z) 7→ (αx+βy+ δz)/||X||
with ||X|| = (x2 + y2 + z2)1/2. The orthogonal projector p from Vh onto El

1 is
considered to define the numerical errors,

eλ =
|λh,1 − λ1|

λ1
, e

L2
=

‖uh,1 − puh,1‖L2(Γh)

‖uh,1‖L2(Γh)

and e
H1

=
‖uh,1 − puh,1‖H1(Γh)

‖uh,1‖L2(Γh)

,

on the first computed non zero eigenvalue λh,1 and associated eigenfunction
uh,1/‖uh,1‖L2(Γh) normalized in L2-norm.
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The results are reported in table 3 on the right. The convergence in H1-
norm is in O(hk + h2) for P k Lagrange finite element which is consistent with
the previous subsection assertions. Order 2 convergence in L2-norm is observed
in all cases P k, k = 1, 3.
The eigenvalue convergence clearly shows a saturation to order 2 convergence.
In section 2.2 we quote the analysis of Babuška and Osborn [1] who showed
an order 2k convergence for the eigenvalues with k the convergence order of
the eigenfunctions in H1-norm. This analysis does not apply here since it
is restricted to Galerkin type approximations with Vh ⊂ V . In the present
case this is no longer true because V and Vh are function spaces associated to
different domains, Γ and Γh respectively.

Conclusion. The numerical results showed in this section together with
the theoretical analysis of Demlow [5] show that one cannot get better than an
order 2 convergence when considering a piecewise affine mesh Γh of the curved
boundary Γ of the domain Ω. This point also was addressed in [5] where
piecewise polynomial interpolation of order p Γp

h of Γ are considered providing
now a saturation of the convergence order to p+ 1.

4 The Ventcel problem numerical convergence

P 1 P 2 P 3

e
H1

1. 1.5 1.5

e
L2

2. 2.5 2.5

eλ 2. 2. 2.

Table 4: Convergence orders for the Ventcel problem

We analyze here the numerical approximation of the Ventcel problem ex-
posed in section 1.1 using the numerical scheme (7).

The domain Ω is set to the unit ball. In this particular case the eigenval-
ues/eigenfunctions have been computed in [4]. The nth eigenvalue λn for n ≥ 0
is given by λn = n2 +2n, with multiplicity 2n+1 and with eigenspace En the
space of harmonic functions of order n.
The numerical domain Ωh here is a subset (by convexity) of Ω. Therefore func-
tions f on Ω simply are lifted to functions f l on Ωh by restriction: f l = f|Ωh

.
We consider a numerical approximation λn,h of the nth non zero eigenvalue λn

(since λn is of multiplicity 2n+1, we numerically get 2n+1 approximations of
λn, we fix one of them). We denote Un,h an associated eigenfunction, so that
‖Un,h‖L2(Ωh) = 1 (L2 normalisation). We introduce the orthogonal projection
(for the L2-scalar product on Ωh) p : Vh −→ El

n, where here El
n is the space

made of the restrictions of all functions in En to Ωh.
with these notations we define the numerical errors,

eλn
=

|λn,h − λn|

λn
, e

L2
= ‖Uh,h−pUn,h‖L2(Ωh) and e

H1
= ‖∇Un,h−∇pUn,h‖L2(Ωh)




