Using the radium quartet (Ra-228, Ra-226, Ra-224, and Ra-223) to estimate water mixing and radium inputs in Loch Etive, Scotland

Y. T. Hsieh, W. Geibert, P. Van-Beek, H. Stahl, D. Aleynik, G. M. Henderson

To cite this version:

HAL Id: hal-00985387
https://hal.archives-ouvertes.fr/hal-00985387
Submitted on 29 Apr 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Using the radium quartet (228Ra, 226Ra, 224Ra, and 223Ra) to estimate water mixing and radium inputs in Loch Etive, Scotland

Yu-Te Hsieh,a,1* Walter Geibert,b,c Pieter van-Beek,d Henrik Stahl,c Dmitry Aleynik,c and Gideon M. Henderson a

a Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, United Kingdom
b School of Geosciences, University of Edinburgh, The King’s Buildings, West Mains Road, Edinburgh, United Kingdom
c Scottish Association for Marine Sciences (SAMS), Scottish Marine Institute, Oban, Argyll, United Kingdom
d Laboratoire d’Études en Geophysique et Oceanographie Spatiales (LEGOS), Observatoire Midi-Pyrénées, Toulouse, France

Abstract
The radium (Ra) quartet (228Ra, 226Ra, 224Ra, and 223Ra) has been investigated in Loch Etive, a Scottish fjord, to provide new constraints on water mixing rates and on the inputs of Ra from sediments. Maximum water transport rates for the inflowing estuarine layer at 5 m depth, determined from the excess 223Ra (223Ra$_{ex}$), indicate that this water travels at no more than 2.4 ± 0.2 cm s$^{-1}$ net and that it takes 17 ± 2 d for waters to travel from the mouth to the head of the loch if no horizontal mixing is taken into account. Alternatively, neglecting advection, the short-lived Ra distribution could be explained by horizontal mixing rates of 6.1 × 10$^{-6}$ cm2 s$^{-1}$ (226Ra$_{ex}$) or 9.1 × 10$^{-6}$ cm2 s$^{-1}$ (224Ra$_{ex}$). Periodic overturning circulation plays an important role in resetting chemical cycles in the isolated deep basin of the inner loch. Sediment in this deep basin provides the major input of 228Ra to the isolated deep water, and the accumulation of 228Ra in deep waters allows an assessment of sedimentary fluxes of 228Ra, a poorly constrained aspect of the 226Ra input to the global ocean. The calculated sedimentary 226Ra flux of 2.1 ± 0.2 (× 109) atoms m$^{-2}$ yr$^{-1}$ in the inner deep basin is comparable with previous measurements of sedimentary 228Ra inputs from shelf sediments, supporting existing global 228Ra budgets, which are used to assess global rates of groundwater discharge to the ocean.

Estuaries play an important role in the transformation of river water to seawater, showing strong physical and chemical gradients. Estuarine environments provide inputs of trace elements and nutrients to the ocean and can act as a significant filter between the land and the open ocean (Howe et al. 2010). Understanding the physical mixing and advection of waters in these environments is an important aspect of understanding the chemical cycles of estuaries and their role in controlling chemical fluxes to the open ocean.

Since fish farming started in the 1970s, fjords have been increasingly used for aquaculture. The fish farm industry has been found to have negative effects on the fjord ecosystem, such as the spreading of infectious diseases, waste pollution, and marine eutrophication (Cloern 2001). Studies (Karakassis et al. 2000; Skogen et al. 2009) have focused on assessing and modeling the environmental effects of fish farming in fjords. However, the fjord environment is a complex system in terms of water circulation and chemical exchange (Howe et al. 2010). Thus, understanding the physical and chemical environment in fjords would improve the assessment of the environmental effects of fish farming in fjords, which also has a societal and economic value.

* Corresponding author: yuteh@mit.edu

1 Present address: Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Fjords often have glacially over-deepened and semi-enclosed marine basins that provide a particular style of estuarine environment and generate distinct water circulation to control chemical and physical transitions from terrestrial to marine environments (Howe et al. 2010). Fjord circulation systems have also been shown to influence global ocean circulation by regulating glacial runoff and the water exchange between estuarine and coastal environments (Straneo et al. 2011). Despite the interest they generate, water mixing rates and chemical fluxes are not well quantified in typical fjord systems.

Radium (Ra) has four naturally occurring isotopes (226Ra, $T_{1/2} = 1600$ yr; 228Ra, $T_{1/2} = 5.75$ yr; 223Ra, $T_{1/2} = 11.4$ d; and 224Ra, $T_{1/2} = 3.66$ d), the so-called radium quartet (Rama and Moore 1996). These isotopes have been used as powerful tracers for estimation of chemical fluxes to the ocean, including riverine inputs (Li and Chan 1979); sediment inputs (Hancock et al. 2000); and submarine groundwater discharge (SGD) (Charette et al. 2001; Moore et al. 2008). Ra isotopes are produced by the radioactive decay of thorium isotopes, typically in sediments. They are dissolved in pore water and released from sediments into seawater. Ra is therefore a useful tracer for studying chemical interaction at the sediment–water interface. In addition, Ra behaves conservatively (except in the case of its known radioactive decay) once released into seawater. Ra isotopes have therefore also been widely applied to the study of a variety of oceanographic processes and chemical fluxes to the ocean, such as diffusion (Kadko et al. 1987), large-scale ocean mixing (Kaufman et al. 1973; Chung

An example of the power of Ra isotopes in seawater is their use in assessing global SGD fluxes to the oceans. The inventory of 228Ra in the surface Atlantic Ocean constrains the total SGD input to the ocean (Moore et al. 2008), provided that other important fluxes from rivers and sediments are known. This approach has demonstrated that SGD provides significant input of nutrients and other dissolved species to the ocean, potentially higher than that associated with riverine discharge. Confirming the use of open-ocean 228Ra to assess SGD fluxes requires firm knowledge of the flux of 228Ra from its other major source—marine sediments. Fjords with periodically isolated deep water in contact with marine sediment, such as Loch Etive, provide natural ocean laboratories in which to assess this sedimentary 228Ra flux.

In this study we have provided new constraints on the Ra cycle in the fjord system with a set of analyses on Loch Etive, a Scottish fjord. Resulting surface-water data constrain the rates of mixing in the loch. In the deep waters, the data constrain the sedimentary fluxes of 228Ra, with relevance to assessment of global budgets and SGD fluxes.

Methods

Study area—Loch Etive is a sea loch located on the west coast of Scotland (Edwards and Sharples 1986) (Fig. 1). The loch hosts a number of mussel farms and is used for occasional recreational boating. Details of the bathymetry and sedimentology of the loch have been investigated in a high-resolution seismic and gravity-coring survey (Howe et al. 2001, 2002). The loch is separated into an inner (inland; 145 m maximum depth) and an outer (seaward; 70 m maximum depth) basin by a sill of 13 m depth at Bonawe (see Fig. 1). The outer basin is separated from the coastal ocean by another sill, the Falls of Lora. The geological setting is a mixture of igneous and metamorphic rocks, mostly granite, which restricts groundwater penetration through this area. Tide flow drives seawater in and out of the loch. Seawater is mixed with freshwater from River Awe and River Etive from large catchment areas totaling 1400 km2 (Wood et al. 1973). The mean freshwater discharge is 3038×10^6 m3 yr$^{-1}$ (Edwards and Sharples 1986).

The hydrology and circulation of Loch Etive are reasonably well known (Edwards and Edelsten 1977) (Fig. 2a). In the inner basin, water masses are structured in three different vertical units (Edwards and Grantham 1986). The freshest waters are observed in a very shallow lens at the surface, with a vertical extent of only tens of centimeters. This layer is dominated by estuarine outflow. Below this surface layer seawater is mixed with smaller amounts of freshwater to varying degrees. While tidal flows lead to reversing flow patterns, in this second layer,
estuarine inflow dominates. This intermediate layer with reduced salinity prohibits flow of waters to depth in the inner deep basin, resulting in a usually stagnant deep third water mass in the inner basin below the depth of a second pycnocline (around 25 m). After a particularly dry period or when temperatures are cold during winter mixing with freshwater is reduced, and high-salinity dense seawater can flow over the Bonawe Sill (13 m) and sink into the deep inner basin to cause an overturn circulation. The average repeat period for overturn circulation is about 16 months (Edwards and Edelsten 1977), but there is no regular cycle to this overturning period.
Dissolved oxygen is constantly consumed in the deep waters and therefore decreases, so that the level of oxygen in deep waters can be used as an index to monitor overturning events. For example, dissolved oxygen suddenly increased from 0.9 to 9.5 mg L$^{-1}$ during an overturn event in May 2000 and then gradually decreased with time to semi-anoxic levels in the deep inner basin (Austin and Inall 2002). The change of dissolved oxygen also significantly controls other aspects of the chemistry of the loch, such as the manganese (Mn) cycle (Overnell et al. 2002; Statham et al. 2005).

The distribution of Ra isotopes in Loch Etive is dominated by seawater, river, and sediment inputs (Fig. 2a). The concentration of Ra isotopes in the isolated deep water of the inner basin is reset by overturn events. Between such overturns, 228Ra, 224Ra, and 223Ra concentrations can decrease as a result of radioactive decay or increase as a result of addition from the sediment. Measurement of changing Ra concentrations in the deep waters therefore has potential to be used to assess the rates of sedimentary Ra input to seawater.

Sampling methods—Water samples were collected aboard the R. V. *Calanus* during a 2-d cruise on 03 and 04 August 2010 in Loch Etive. Samples from 5 m depth were collected from seven stations from the mouth of the loch (LE1), the outer loch (LE4 and LE5), the inner loch (LE6, LE8, and LE9), and the head of the loch (LE10) (Fig. 1). Deep-water samples were collected from three stations at LE4, LE6, and LE8 (Fig. 2b). Sta. LE6 was reoccupied 10 months later on 08 June 2011 to assess the temporal evolution of Ra in the deep loch.

Each sample consisted of water from twelve 5 liter Niskin bottles mounted on a conductivity–temperature–depth (CTD) rosette and fired at the same depth as one another. Resulting 60 liter samples were stored briefly in cubitainers before shipboard pre-concentration of Ra. Samples were passed through a column of MnO$_2$-coated acrylic fiber by gravity at a flow rate < 0.5 L min$^{-1}$ to concentrate the Ra (Moore et al. 1985). For a summary of methods and considerations of Ra sampling refer to Moore (2008). After sampling, Mn fibers were rinsed three times with Milli-Q water to remove adhering salt and squeezed to reduce liquid content. A subsample of 250 mL was also collected from each location and depth for a separate measurement of 226Ra concentration (Foster et al. 2004).

Measurements—Seawater 224Ra and 223Ra by Ra delayed-coincidence counting system (RaDeCC): Mn fiber samples were first counted using a four-channel RaDeCC for 224Ra and 223Ra activities (Moore and Arnold 1996). Fibers were then stored for 2–3 weeks before a second count on the same device to determine how much of the 224Ra was supported by thorium-228 (228Th). When required, as a result of still-elevated activities in the second count, a third and final count was performed to assess how much of the 223Ra was supported by actinium-227 (227Ac) (Geibert et al. 2008). Supported 223Ra and 224Ra activities, as measured on the second and third counts, were subtracted to give the excesses of 223Ra and 224Ra$_{ex}$, respectively) in each sample. The RaDeCC was calibrated regularly with two standard samples from the parent nuclides of short-lived Ra, 227Ac, and 232Th, which had been obtained from the International Atomic Energy Agency–Marine Environmental Laboratories, Monaco, in 2009 (Scholten et al. 2010). As a result of the relatively low activities of short-lived Ra for a coastal environment, the overall uncertainties of 224Ra and 223Ra are 10% to 40% (2 standard errors [SE]).

Seawater 228Ra and 226Ra by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS)—The long-lived Ra isotopes (226Ra and 228Ra) were measured using a newly developed technique, which makes use of MC-ICP-MS (Hsieh and Henderson 2011). After RaDeCC counting, Mn fibers were ashed in a furnace and then leached with HCl for the purification of Ra. Ra was precipitated by Sr(Ra)SO$_4$ in the leaching solution and then converted to Sr(Ra)CO$_3$ for dissolution (Cohen and O’Nions 1991) before ion-exchange column chemistry (AG50-X8 and Sr-spec). The non-spiked Mn fiber samples were measured for the 226Ra/228Ra activity ratios. The ratios were then multiplied by 228Ra concentrations to calculate 226Ra concentrations. For measurement of 226Ra concentrations, water samples (250 mL) were spiked with an enriched 228Ra spike following the procedure described in Foster et al. (2004). In short, Ra is precipitated with CaCO$_3$ in seawater and then purified by ion exchange columns (AG1-X8, AG50-X8, and Sr-Spec) before analysis. The pure Ra aliquot was analyzed by MC-ICP-MS, with 228Ra and 226Ra simultaneously measured in two ion counters. Bracketing measurements of a uranium standard, Certified Reference Material–145, were used to assess and correct for mass bias and ion-counter gain between each sample. Chemical blanks were monitored for the whole procedure and are less than 1% of 228Ra of the sample and not detectable for 226Ra. The machine memory was also monitored and corrected between each measurement. The overall uncertainties of 226Ra and 228Ra are 3% to 4% (2 SE). The improved analytical precision allows us to more precisely calculate water mixing and Ra fluxes in Loch Etive.

Results

Temperature, salinity, and oxygen data—Temperature, salinity, and oxygen data are presented in Fig. 2. While salinity in the surface layer varies between 2 and 18 with a high dissolved oxygen of ~ 9.5 mg L$^{-1}$ and temperatures around 15°C, samples at 5 m all have salinities of > 24 (Fig. 3a). At depth, the inner loch had a homogeneous water mass below 30 m, with temperatures of 11–12°C, salinity of 28–29, and dissolved oxygen of 7.5–8.5 mg L$^{-1}$ during the August 2010 cruise (Fig. 4). A colder water layer with temperature < 10°C and lower dissolved oxygen of ~ 8 mg L$^{-1}$ covered the whole inner loch between 20 and 30 m. In the outer loch, deep water showed oxygen depletion (~ 7 mg L$^{-1}$) below 42 m.

Time-series oxygen data (Fig. 5) have been collected for the Hypox mooring (Stahl 2011) from December 2009 to January 2012 at 124 m at the inner-loch deep-basin
observatory (LE6 in Fig. 1). The Hypox time-series oxygen data generally show consistent results with the CTD measurements. The data indicate that deep water in the inner loch had just overturned between 22 and 28 June 2010, before our sampling. Oxygen concentrations in the deep inner loch decrease from 11 mg L$^{-1}$ to 3 mg L$^{-1}$ with time after this overturn circulation. Between the first and the second cruises (August 2010–June 2011), time-series oxygen data indicate that the deep water of the inner basin had remained isolated since the overturn event in late June 2010.

Ra isotopes—The radioactivity of Ra isotopes is present in millibequerel (mBq) in this article. To convert from mBq to disintegration per minute (dpm), the unit commonly used in the marine radioactive research community, 1 mBq is equal to 0.06 dpm.

Concentrations of 223Ra$_{ex}$ and 224Ra$_{ex}$ range from below the detection limit (< 1.7 mBq 100 L$^{-1}$) to 33 mBq 100 L$^{-1}$ and 203 mBq 100 L$^{-1}$, respectively (Table 1). In the water column of the inner basin (Fig. 4d,e), 223Ra$_{ex}$ and 224Ra$_{ex}$ show higher activities in the subsurface layer at the 5 m depth (6 and 40 mBq 100 L$^{-1}$, respectively), no measureable activity at mid-depths, and then an increase toward the basin floor (3.0 and 37 mBq 100 L$^{-1}$, respectively). However, 223Ra$_{ex}$ and 224Ra$_{ex}$ from the second cruise at LE6 are both below the detection limit in deep-water samples at all depths in the inner basin. At 5 m depth (Fig. 3b,c), 223Ra$_{ex}$ and 224Ra$_{ex}$ are both found to decrease with distance away from the mouth of the loch (from 10.8 to 4.3 mBq 100 L$^{-1}$ and from 100 to 30 mBq 100 L$^{-1}$, respectively).

The activities of 226Ra and 228Ra in the water samples range from 72 to 143 mBq 100 L$^{-1}$ and from 295 to 407 mBq 100 L$^{-1}$, respectively. The activity ratios of 228Ra : 226Ra show a range from 2.5 to 4.4 (Table 1). In the inner basin (Fig. 4a), 226Ra activity shows a constant distribution (137 ± 6 mBq 100 L$^{-1}$) below 30 m during the first and second cruises. 228Ra activity is also constant with depth (363 ± 23 mBq 100 L$^{-1}$) in the first cruise but significantly decreases, from 377 to 137 mBq 100 L$^{-1}$, at 90 m during the second cruise (Fig. 4b). In the outer basin, the water column shows a layer of oxygen depletion below 42 m, with constant salinity and temperature. In this layer, 226Ra and 228Ra both show the highest values of 138 and 392 mBq 100 L$^{-1}$, respectively, in the water column. At 5 m depth, 226Ra activities are relatively constant between 118 and 125 mBq 100 L$^{-1}$ (Fig. 3d), but 228Ra activities increase from 307 to 407 mBq 100 L$^{-1}$ (Fig. 3e) toward the head of the loch.

Discussion

Surface-water mixing in Loch Etive—The short-lived Ra isotopes, 223Ra and 224Ra, reflect horizontal mixing and net
advective transport. Key to their application here is the consideration of the specific hydrographic features of Loch Etive. The typical features of an estuary, the outward transport of fresh and brackish water at the surface, and the inward transport of seawater at deeper layers are present in Loch Etive, as seen in the salinity data, but they are forced through two shallow sills. The outer sill, the Falls of Lora, leads to turbulent mixing over the entire depth, and the water produced here has a salinity > 26 (LE1 and LE2). At Bonawe Sill (13 m), which separates the inner and outer basins, the net outward movement of fresher water is more restricted to the very surface, whereas the water at 5 m depth has a near-constant salinity of just above 24. The latter is the water that will mainly enter the inner basin during high tides. This combination of inflow and outflow at different depths at the same location has previously been described by Edwards and Grantham (1986). As our transect in surface waters is located at 5 m depth, considerably below the brackish surface layer, our data are likely to reflect the net inflowing layer. The salt introduced at 5 m depth will leave the inner basin as part of the brackish surface layer, with a net discharge that is larger than the inflow, as a result of the addition of freshwater from rivers. At 5 m depth, salinity decreases from 26.9 to 24.3 (Fig. 3a) toward the head of the loch. Activities of $^{223}\text{Ra}_{ex}$ and $^{224}\text{Ra}_{ex}$ decrease in concert with this salinity change (Fig. 3b,c). The decrease in activity of $^{223}\text{Ra}_{ex}$ and $^{224}\text{Ra}_{ex}$ with distance (x) can most readily be

Fig. 4. Water-column profiles of (a) ^{226}Ra, (b) ^{228}Ra, (c) ^{228}Ra; ^{226}Ra, (d) $^{224}\text{Ra}_{ex}$, (e) $^{223}\text{Ra}_{ex}$ (mBq 100 L$^{-1}$), and (f) salinity, temperature, and oxygen in the inner basin of Loch Etive. Data are from Sta. LE6, with the black line and filled squares representing data from 03 August 2010 and the gray line and open squares representing data from 08 June 2011. A. R. indicates activity ratio.
explained by the radioactive decay of Ra entering the loch in seawater as that water is transported toward the head of the loch by mixing or by advection.

The estuarine circulation in Loch Etive indicates that advective transport dominates Ra budgets and allows calculation of a maximum inflow rate in the estuarine inflow layer at 5 m depth. Alternatively, Ra might be controlled by mixing into the Loch, and we therefore assess a pure mixing scenario that assumes that the tidal in- and outflow are not vertically separated. The horizontal magnitude of salinity change is small at the 5 m depth (Fig. 3a) and is therefore consistent with both scenarios.

In an advection-only scenario, the distribution of 223Ra$_{ex}$ and 224Ra$_{ex}$ in the subsurface layer at the 5 m depth can be expressed by the following equation:

$$w \cdot \overline{A} / \partial x = \lambda A$$

(1)

where w is the mean water transport rate; x is the distance from the mouth of Loch Etive; A is 223Ra$_{ex}$ or 224Ra$_{ex}$ activity; and λ is the decay constant for 223Ra (0.0608 d$^{-1}$) or 224Ra (0.189 d$^{-1}$).

The solution for w is then given by

$$w = \lambda x / \ln(A_i/A) = X_{1/2}/T_{1/2}$$

(2)

where A_i is the initial activity of 223Ra$_{ex}$ and 224Ra$_{ex}$ (i.e., at LE1); $X_{1/2}$ is the distance at which $A = 0.5 A_i$; and $T_{1/2}$ is the half-life of 223Ra or 224Ra. Based on the data in Fig. 3b and c, we obtain water transport rates of 6.1 and 2.4 cm s$^{-1}$ from 224Ra$_{ex}$ and 223Ra$_{ex}$, respectively. For comparison, previous measurements made by current meters show that the water transport rates are usually below their detection limit of 5 cm s$^{-1}$ in the water 40 m below the surface in Loch Etive (Edwards and Edelsten 1977). Inall et al. (2004) found an average speed of 20 cm s$^{-1}$ using a current meter around the Bonawe Sill during spring tides. In terms of depth, distance, and timescale, the Ra-derived water transport rates appear to reflect a long-term (days to weeks) average water transport throughout the surface layer, which is more suitable for assessing long-term average chemical fluxes but not for short-term (minutes to hours) variability.

The water transport rate calculated by 224Ra$_{ex}$ is ≈ 2.5 times higher than the rate calculated by 223Ra$_{ex}$. Assuming that seawater inflow is the only input for 223Ra$_{ex}$ and 224Ra$_{ex}$ to the surface water, 223Ra$_{ex}$ should show less decay with distance than does 224Ra$_{ex}$ as a result of its longer half-life. Put another way, if the 223Ra$_{ex}$-derived mixing is correct, observed 224Ra$_{ex}$ values should decrease rapidly in the loch to values significantly lower than were observed. This discrepancy can be explained if there is an additional input of 224Ra$_{ex}$ to the surface water (see discussion below). The slower transport rate, derived from 224Ra$_{ex}$, is more likely to be a true estimate of transport and indicates a rate of 2.4 ± 0.2 cm s$^{-1}$, which is broadly consistent with a previously estimated horizontal mixing transport rate of ≈ 3.5 cm s$^{-1}$ in the inner loch basin (Inall 2009). This results in a seawater transport time of 17 ± 2 d from the mouth to the head of Loch Etive in the layer at 5 m depth. If there is a source of 223Ra within the loch, in addition to 224Ra, then these transport rates would be lower, but such a source appears unlikely, as discussed below.

In the alternative mixing-only scenario, following the approach in Moore (2000a), we obtain a horizontal mixing rate of 6.1×10^6 cm2 s$^{-1}$ (223Ra$_{ex}$) or 9.1×10^6 cm2 s$^{-1}$ (224Ra$_{ex}$) in the layer at 5 m depth (see Fig. 6). The value from 224Ra is possibly slightly affected by some additional inputs from the Rivers Awe and Etive, as discussed below. The mixing rates represent an upper limit for average horizontal mixing in the period observed, as they neglect the possible net advection in this subsurface layer. The actual situation in Loch Etive will include both advective terms (if
Table 1. Radium isotopic data in Loch Etive.

<table>
<thead>
<tr>
<th>Sample station</th>
<th>Date</th>
<th>Depth (m)</th>
<th>Salinity</th>
<th>T (°C)</th>
<th>Oxygen (mg L(^{-1}))</th>
<th>226Ra (mBq 100 L(^{-1}))</th>
<th>228Ra (mBq 100 L(^{-1}))</th>
<th>228Ra : 226Ra (activity ratio)</th>
<th>223Ra(^{ex}) (mBq 100 L(^{-1}))</th>
<th>224Ra(^{ex}) (mBq 100 L(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE1</td>
<td>04 Aug 2010</td>
<td>5</td>
<td>26.9</td>
<td>13.8</td>
<td>8.9</td>
<td>122±5</td>
<td>307±12</td>
<td>2.5±0.1</td>
<td>10.8±1.7</td>
<td>100±7</td>
</tr>
<tr>
<td>LE4</td>
<td>03 Aug 2010</td>
<td>10</td>
<td>25.9</td>
<td>13.1</td>
<td>8.4</td>
<td>118±3</td>
<td>318±12</td>
<td>2.7±0.1</td>
<td>0.5±1.5</td>
<td>10±7</td>
</tr>
<tr>
<td>23</td>
<td>26.8</td>
<td>13.5</td>
<td>8.5</td>
<td>127±5</td>
<td>327±12</td>
<td>2.6±0.1</td>
<td>bd</td>
<td>bd</td>
<td>65±8</td>
<td>bd</td>
</tr>
<tr>
<td>54</td>
<td>29.2</td>
<td>12.2</td>
<td>7.0</td>
<td>138±5</td>
<td>392±15</td>
<td>2.8±0.1</td>
<td>5.2±2.2</td>
<td>65±8</td>
<td>bd</td>
<td>bd</td>
</tr>
<tr>
<td>LE5</td>
<td>03 Aug 2010</td>
<td>5</td>
<td>24.5</td>
<td>13.3</td>
<td>8.5</td>
<td>118±5</td>
<td>325±12</td>
<td>2.7±0.1</td>
<td>6.3±2.2</td>
<td>57±7</td>
</tr>
<tr>
<td>LE6</td>
<td>03 Aug 2010</td>
<td>15</td>
<td>26.3</td>
<td>12.4</td>
<td>8.1</td>
<td>112±3</td>
<td>295±12</td>
<td>2.7±0.1</td>
<td>4.7±1.5</td>
<td>32±7</td>
</tr>
<tr>
<td>28</td>
<td>28.1</td>
<td>9.5</td>
<td>8.4</td>
<td>138±5</td>
<td>370±13</td>
<td>2.7±0.1</td>
<td>bd</td>
<td>bd</td>
<td>bd</td>
<td>bd</td>
</tr>
<tr>
<td>45</td>
<td>28.8</td>
<td>11.0</td>
<td>8.3</td>
<td>142±5</td>
<td>377±13</td>
<td>2.7±0.1</td>
<td>bd</td>
<td>bd</td>
<td>bd</td>
<td>bd</td>
</tr>
<tr>
<td>70</td>
<td>29.0</td>
<td>11.6</td>
<td>8.3</td>
<td>140±5</td>
<td>363±15</td>
<td>2.6±0.1</td>
<td>bd</td>
<td>bd</td>
<td>bd</td>
<td>bd</td>
</tr>
<tr>
<td>90</td>
<td>29.0</td>
<td>11.6</td>
<td>8.2</td>
<td>132±5</td>
<td>377±13</td>
<td>2.6±0.1</td>
<td>bd</td>
<td>bd</td>
<td>bd</td>
<td>bd</td>
</tr>
<tr>
<td>108</td>
<td>29.0</td>
<td>11.6</td>
<td>8.2</td>
<td>135±5</td>
<td>353±13</td>
<td>2.6±0.1</td>
<td>bd</td>
<td>bd</td>
<td>bd</td>
<td>bd</td>
</tr>
<tr>
<td>120</td>
<td>29.0</td>
<td>11.6</td>
<td>8.0</td>
<td>133±5</td>
<td>345±13</td>
<td>2.6±0.1</td>
<td>2.3±1.2</td>
<td>23±5</td>
<td>bd</td>
<td>bd</td>
</tr>
<tr>
<td>130</td>
<td>29.1</td>
<td>11.6</td>
<td>8.0</td>
<td>138±5</td>
<td>357±13</td>
<td>2.6±0.1</td>
<td>4.7±1.5</td>
<td>30±5</td>
<td>bd</td>
<td>bd</td>
</tr>
<tr>
<td>136</td>
<td>29.1</td>
<td>11.6</td>
<td>8.0</td>
<td>138±5</td>
<td>355±13</td>
<td>2.6±0.1</td>
<td>3.0±1.5</td>
<td>37±7</td>
<td>bd</td>
<td>bd</td>
</tr>
<tr>
<td>08 Jun 2011</td>
<td>90</td>
<td>28.5</td>
<td>10.5</td>
<td>4.8</td>
<td>135±5</td>
<td>317±17</td>
<td>2.3±0.1</td>
<td>bd</td>
<td>bd</td>
<td>bd</td>
</tr>
<tr>
<td>120</td>
<td>28.5</td>
<td>10.6</td>
<td>4.4</td>
<td>132±5</td>
<td>327±13</td>
<td>2.5±0.1</td>
<td>bd</td>
<td>bd</td>
<td>bd</td>
<td>bd</td>
</tr>
<tr>
<td>136</td>
<td>28.5</td>
<td>10.6</td>
<td>4.3</td>
<td>143±5</td>
<td>362±15</td>
<td>2.5±0.1</td>
<td>bd</td>
<td>bd</td>
<td>bd</td>
<td>bd</td>
</tr>
<tr>
<td>LE8</td>
<td>04 Aug 2010</td>
<td>5</td>
<td>24.2</td>
<td>12.7</td>
<td>7.9</td>
<td>122±5</td>
<td>365±13</td>
<td>3.0±0.1</td>
<td>5.2±1.8</td>
<td>30±5</td>
</tr>
<tr>
<td>33</td>
<td>28.3</td>
<td>9.9</td>
<td>8.2</td>
<td>138±5</td>
<td>365±13</td>
<td>2.7±0.1</td>
<td>bd</td>
<td>bd</td>
<td>bd</td>
<td>bd</td>
</tr>
<tr>
<td>70</td>
<td>28.9</td>
<td>11.4</td>
<td>8.2</td>
<td>138±5</td>
<td>363±15</td>
<td>2.6±0.1</td>
<td>bd</td>
<td>bd</td>
<td>bd</td>
<td>bd</td>
</tr>
<tr>
<td>LE9</td>
<td>04 Aug 2010</td>
<td>5</td>
<td>24.3</td>
<td>12.4</td>
<td>7.7</td>
<td>125±5</td>
<td>407±17</td>
<td>3.2±0.1</td>
<td>4.3±1.8</td>
<td>30±5</td>
</tr>
<tr>
<td>LE10</td>
<td>04 Aug 2010</td>
<td>1</td>
<td>4.1</td>
<td>14.7</td>
<td>9.8</td>
<td>72±3</td>
<td>313±13</td>
<td>4.4±0.2</td>
<td>33.7±3.0</td>
<td>203±10</td>
</tr>
</tbody>
</table>

All errors are given at ±2 SE. bd, below detection limit; T, temperature.
resolving tidal cycles or when including overturning events) as well as a mixing component (when looking at timescales that integrate tidal fluctuations or during slack tides).

Sedimentary inputs of \(^{224}\)Ra and \(^{228}\)Ra to the surface water—Based on the advection-only scenario discussed above, \(^{223}\)Ra\(_{ex}\)-derived water transport rate (Fig. 7a) and the radioactive decay of \(^{223}\)Ra can be used to calculate a theoretical curve of \(^{224}\)Ra\(_{ex}\) (solid line) in the surface water with distance from the mouth to the head of loch (Fig. 7b). If there was no additional input of \(^{224}\)Ra to the surface water, the decrease of \(^{224}\)Ra\(_{ex}\) activity should follow this theoretical curve, but observed activities fall above this expected decay curve.

The source of \(^{224}\)Ra\(_{ex}\) likely to explain these higher values is the shelves of the loch, particularly around Bonawe, where these shelves are pronounced and where strong cross-sill flow (Inall et al. 2004; Stashchuk et al. 2007) may enhance the release of alpha-recoiled \(^{224}\)Ra from sediments on the sill flat to surface water. \(^{224}\)Ra\(_{ex}\) concentrations continue to decrease further into the loch beyond the Bonawe Sill, but this decrease cannot be explained by simple exponential decay, and a further source of \(^{224}\)Ra is required at the head of the loch (see the gray area highlighted in Fig. 7b). In contrast, the Bonawe Sill does not increase \(^{228}\)Ra to the surface water. This is due to the high flushing rate and the shorter contact time of water and the host rock on the sill flat. To build up high Ra activity in water, \(^{228}\)Ra needs a much longer contact time than does \(^{224}\)Ra (Porcelli and Swarzenski 2003).

The additional source of \(^{224}\)Ra\(_{ex}\) at the head of the loch is associated with higher \(^{228}\)Ra and \(^{228}\)Ra:\(^{226}\)Ra ratios in surface waters (Fig. 3e,f). The increase of \(^{228}\)Ra seen toward the head of the loch (Fig. 3e) in the surface water is not controlled by radioactive decay, as the half-life of \(^{228}\)Ra is significantly longer than the surface-water transport rate, so an input of \(^{228}\)Ra is required. The decrease in salinity (from 24.5 to 24.3) in the 5 m depth waters at the head of the loch is small (Fig. 3a), indicating that the required inputs of \(^{228}\)Ra and \(^{224}\)Ra to this layer are not from freshwater or groundwater inputs. As at Bonawe in the middle of the loch, shelf sediments in the inner loch are likely to be the source of this \(^{228}\)Ra and \(^{224}\)Ra. The bathymetry of Loch Etive shows a large area of the shelf (with water depths < 15 m) at the head of the loch (Howe et al. 2001) where riverine sediment depositions might be releasing \(^{228}\)Ra and \(^{224}\)Ra to surface water.

Surface-water \(^{228}\)Ra and \(^{224}\)Ra\(_{ex}\) concentrations at Sta. LE9 minus seawater values can be used to estimate the excess \(^{228}\)Ra:\(^{228}\)Ra activity ratio from the sediment input. The resulting value is 0.15 ± 0.02, which is lower than the
expected ratio of 1.0 based on the secular equilibrium $^{228}\text{Th}:^{232}\text{Th}$ ratio in sediments. This could be explained by the radiogenic decay of ^{224}Ra since the last time the water was in contact with sediments and the apparent water age (Moore 2000b) in the loch surface layer. Based on the model in Moore (2000b), the apparent age could be calculated by comparing the estimated $^{224}\text{Ra}_{\text{ex}}:^{228}\text{Ra}$ activity ratio of 0.15 to the expected ratio of 1.0. The estimate age is 10.1 d in the surface water at LE9, which is comparable to the estimated water residence time (17 d) in the surface Loch Etive.

Compared to ^{224}Ra and ^{228}Ra inputs, the input of ^{223}Ra from shelf sediments is insignificant in Loch Etive because the bedrock of this region is granite, which usually has a lower content of uranium (^{235}U, grandparent of ^{223}Ra) than of Th (^{232}Th, parent and grandparent of ^{226}Ra and ^{224}Ra, respectively). For example, the granite in the Isle of Skye, Scotland, has an average ^{238}U concentration of 1.1 μg g$^{-1}$ and a ^{232}Th concentration of 7.3 μg g$^{-1}$ (Tamme-magi 1976). Based on the atomic ratios of $^{232}\text{Th}:^{238}\text{U}$ (6.6) and $^{238}\text{U}:^{235}\text{U}$ (137.88) in granite, the estimated input (or production) of ^{223}Ra activity is about 9100 times smaller than that for ^{224}Ra and ^{228}Ra from the sediment or bedrock of Loch Etive. However, bedrock or shelf sediments may not be able to entirely explain the input of ^{223}Ra outside the mouth of Loch Etive. Outside the Loch, Ra has multiple sources from sediments, seawater, and recirculated seawater.

Riverine inputs, seawater inflow, and shelf sediments in the inner loch are the three major end members for Ra in Loch Etive. Deviations from the mixing line between freshwater and seawater on the plots of ^{226}Ra and ^{228}Ra against salinity (Fig. 8) allow sedimentary inputs to be clearly identified. For ^{226}Ra (Fig. 8a), the trend shows two end members mixing between seawater and river inputs. For ^{228}Ra (Fig. 8b), the mixing between seawater and river inputs is equal. However, the magnitude of these deviations from the two end members mixing between the head and the mouth of the loch indicates that the sediment input could contribute 10–23% of the ^{228}Ra to the surface water.

Ra cycles and overturn circulation in the inner loch basin—Overturning circulation plays an important role in controlling Ra cycles in the isolated deep waters of Loch Etive. In the inner basin, the vertical water profiles of ^{226}Ra and ^{228}Ra show uniform distributions with depth in the water column below 20 m. This can be interpreted as due to the recent overturning of loch waters, known to have occurred, based on O_2 data, 1 month prior to our major sampling. This event reset the ^{226}Ra and ^{228}Ra activities in the water column (Fig. 4a,b) and may have led to temporary perturbation of deep-water ^{223}Ra and ^{224}Ra through sediment disturbance or enhanced vertical mixing. Assuming that ^{224}Ra is in steady state, the vertical profile of $^{224}\text{Ra}_{\text{ex}}$ activity (Fig. 4d) indicates a strong vertical mixing coefficient (K_z) of 18.8 cm2 s$^{-1}$, based on the commonly used one-dimensional diffusion model summarized in Ku and Luo (2008). In contrast, a much lower value of K_z of < 2.5 cm2 s$^{-1}$ is obtained in the well-stratified deep water in the inner loch (Inall 2009), which also explains the observations of low $^{224}\text{Ra}_{\text{ex}}$ and $^{223}\text{Ra}_{\text{ex}}$ activities (below detection limit) during the second cruise.

The ^{228}Ra activity in inner loch water below 20 m is rather constant between 345 and 377 mBq 100 L$^{-1}$ (Fig. 4b), which is about 10–17% higher than the value of 312 mBq 100 L$^{-1}$ in the ^{228}Ra-salinity mixing relationship between seawater and freshwater in Fig. 8b. This indicates either that the mixing relationship was somewhat different at the time of the last overturn or that the additional input of ^{228}Ra from the loch shelf sediment also contributes ^{228}Ra to the new deep waters during overturn. In this latter situation, surface waters incorporate additional ^{228}Ra from shelf sediments before and as they overturn and fill the deep loch.
Sedimentary ^{228}Ra flux in the inner loch basin—Following overturn, the deep water in the inner basin is isolated, and addition of further ^{228}Ra can happen only from sediments below the loch. Addition of groundwater to the deep loch is not expected, given the granite basement, and there is no evidence for such flow from salinity measurements in this or other studies. The activity of ^{228}Ra is therefore controlled only by the balance between radioactive decay and sedimentary inputs.

The sedimentary input flux of ^{228}Ra in the deep basin can be calculated from data for Ra isotopes from the two cruises in August 2010 and June 2011. Oxygen data indicate that deep waters of the inner loch remain isolated between these dates and that there are no overturning events. The ^{226}Ra activity shows very consistent results between the two cruises in the deep inner basin, which supports such isolation (Fig. 4a). Changes in ^{226}Ra are not expected because the half-life is long compared to the period between overturning events, allowing insufficient time for decay and little chance for alpha-recoil from sediments. However, the data for ^{228}Ra activity and $^{226}\text{Ra} : ^{228}\text{Ra}$ ratio show a significant decrease at 90 m in the inner basin from August 2010 to June 2011 (Fig. 4b,c). This implies that the ^{228}Ra input from the deep basin sediment is not high enough to balance the output by radioactive decay in the water column.

A simple box model is used to calculate the average ^{228}Ra sediment flux in the inner basin. Because of the somewhat variable distribution of ^{228}Ra activity in the water column (Fig. 4b), the activity ratios of $^{228}\text{Ra} : ^{226}\text{Ra}$ in Fig. 9 are used to normalize the ^{228}Ra activities. The activities of ^{228}Ra between these two cruises are relatively constant, with a mean value of $137 \pm 3 \text{ mBq} \cdot 100 \text{ L}^{-1}$. At the time of the first cruise, the average activity ratio of $^{228}\text{Ra} : ^{226}\text{Ra}$ in the deep water is constant (2.6 ± 0.1) because an overturn event reset the value a month before sampling. Therefore, the normalized ^{228}Ra activity is $355 \pm 8 \text{ mBq} \cdot 100 \text{ L}^{-1}$. Assuming no subsequent overturning and that there is no sediment input, the activity of ^{228}Ra should decrease from 355 to 320 mBq $\cdot 100 \text{ L}^{-1}$, and the activity ratio should decrease from 2.60 to 2.34 as a result of the radioactive decay of ^{228}Ra. At the time of the second cruise, ^{228}Ra activities higher than 320 mBq $\cdot 100 \text{ L}^{-1}$ or activity ratios higher than 2.34 demonstrate input of ^{228}Ra from deep basin sediments.

The total additional ^{228}Ra contributed to deep waters is calculated from the observed increase in ^{228}Ra above that expected from decay. The integrated increase of ^{228}Ra between 90 m (the depth of the top of deep waters) and 136 m (the loch floor) during the period between the two cruises can be expressed by the following equations:

$$A_d = A_1 \times 2^{-t/T_{1/2}}$$

$$I_{ex} = \int_{z_1}^{z_2} (A_2 - A_d) dz$$

of ^{228}Ra (320 mBq $\cdot 100 \text{ L}^{-1}$) estimated by the radioactive decay; A_1 is the normalized activity of ^{228}Ra (355 mBq $\cdot 100 \text{ L}^{-1}$) from the first cruise; A_2 is the normalized activity of ^{228}Ra (320, 340, and 345 mBq $\cdot 100 \text{ L}^{-1}$) at 90 m, 120 m, and 136 m, respectively) from the second cruise; I_{ex} is the depth-averaged integral excess ^{228}Ra inventory: A_2 minus A_d in the water column between z_1 (90 m) and z_2 (136 m) from the second cruise; t is the time between the two cruises (0.85 yr); and $T_{1/2}$ is the half-life of ^{228}Ra (5.75 yr). The integrated excess ^{228}Ra inventory (I_{ex}) is 6900 mBq m$^{-2}$.

Based on the above equations, the sedimentary ^{228}Ra flux [$F_{sed}(^{228}\text{Ra})$] can be further calculated in the following equation:

$$F_{sed}(^{228}\text{Ra}) = I_{ex} / t$$

where $F_{sed}(^{228}\text{Ra})$ is the ^{228}Ra sedimentary flux (atoms m$^{-2}$ yr$^{-1}$). The calculated ^{228}Ra sedimentary flux is 2.1 ± 0.2 ($\times 10^9$) atoms m$^{-2}$ yr$^{-1}$. This flux is based on the assumption that vertical mixing cannot remove ^{228}Ra from the deep waters, which is justified given the very slow vertical mixing ($K_z \sim 2.5 \text{ cm}^2 \text{s}^{-1}$) in the deep inner loch basin (Inall 2009).

There are several factors controlling the sedimentary Ra flux in estuarine environments: sediment grain size, pore-water diffusive transport (porosity and partition coefficient K_{d}), bioturbation mixing, sedimentation rate, and Ra production and decay (Coehen and Krishnaswami 1980; Kadko et al. 1987). The new calculated sedimentary flux of 2.1 ± 0.2 ($\times 10^9$) atoms m$^{-2}$ yr$^{-1}$ in the inner basin is ~25 times lower than the average global sediment flux of 50 ± 25 ($\times 10^9$) atoms m$^{-2}$ yr$^{-1}$ from the fine-grained shelf.
sediments seen in previous studies (Santschi et al. 1979; Cochran 1984; Hancock et al. 2000) but higher than the flux of $1.0 \pm 0.5 \times 10^{10}$ atoms m$^{-2}$ yr$^{-1}$ from the coarse-grained shelf sediments (Hancock et al. 2006), as summarized in Moore et al. (2008). Sediments on the continental shelf generally have higher 228Ra flux values, in the range 0.1 to 110×10^{10} atoms m$^{-2}$ yr$^{-1}$, than those on the continental slope, which are in the range 5 to 11×10^{10} atoms m$^{-2}$ yr$^{-1}$ (Hammond et al. 1990), or on the deep seafloor, which are in the range 1.4 to 4.3×10^{9} atoms m$^{-2}$ yr$^{-1}$ (Cochran and Krishnaswami 1980).

The grain size in the upper 0.60 m of sediment of the Loch Etive inner basin floor has a mean grain size range of 40–70 μm from coarse silt to very fine sand (Howe et al. 2002), which could explain the lower sedimentary 228Ra flux in Loch Etive compared to the average flux from the fine-grained shelf sediments. The sedimentation rate in the inner basin of Loch Etive is relatively high, ∼ 0.89 cm yr$^{-1}$ (Ridgway and Price 1987), which may also restrict Ra sediment fluxes. Hancock et al. (2000) suggested that groundwater flow is important to enhance sedimentary Ra fluxes in the estuarine environments, but groundwater flow is insignificant in Loch Etive. The low sedimentary 228Ra flux observed in this study is therefore perhaps not surprising and is consistent with sedimentary fluxes calculated in other settings. It certainly does not indicate an unusually high 228Ra sedimentary flux and therefore supports the assertion that 228Ra inventories in the open ocean require significant input from global groundwater sources (Moore et al. 2008).

The new estimated sedimentary 228Ra flux in Loch Etive improves our understanding of the 228Ra inventory in the ocean, which is important in constraining global freshwater and groundwater discharges to the ocean. Moore et al. (2008) have estimated a substantial discharge of submarine groundwater to the Atlantic, based on the 228Ra inventory in the surface ocean. The estimated total SGD is 2.4 ($\times 10^{16}$) L yr$^{-1}$, which is about 0.8 to 1.6 times the total river flux to the Atlantic. In their inventory, the inferred total sedimentary 228Ra flux (1.3×10^{23} atoms yr$^{-1}$) is high, about 68% of the total inferred SGD 228Ra flux (1.9×10^{23} atoms yr$^{-1}$). Assuming that the total sedimentary flux of 228Ra is 25 times lower, based on the new estimate in this study, the inferred SGD 228Ra flux would become 3.2×10^{23} atoms yr$^{-1}$ and the SGD would become 3.4 to 6.7×10^{16} L yr$^{-1}$. Thus, SGD may become 1.3 to 2.7 times the river flux to the Atlantic. This rough calculation does not provide any actual estimate of SGD. Nevertheless, it highlights the importance of an improved understanding of sedimentary 228Ra flux to the global freshwater and groundwater discharges in the ocean.

In summary, this study has used a suite of water-column measurements of the Ra quartet to deduce seawater advection rates and sedimentary inputs of Ra in Loch Etive. In the advection-only scenario, the observed decrease of 223Ra with distance from the mouth of the loch at 5 m depth is used to derive a maximum seawater advection rate into the loch of 2.4 ± 0.2 cm s$^{-1}$. In the mixing-only scenario, the short-lived Ra distribution could be explained by horizontal mixing rates of 6.1×10^{6} cm2 s$^{-1}$ (223Ra$_{ex}$) or 9.1×10^{6} cm2 s$^{-1}$ (224Ra$_{ex}$). Addition of both 224Ra and 228Ra to this subsurface layer is required within the loch. These cannot come only from the river water of River Etive, at the head of the loch, but are instead likely to come largely from shelf sediments of the loch. Sedimentary input of 228Ra is also indicated in deep waters of the inner loch, and a flux of $2.1 \pm 0.2 \times 10^{9}$ atoms m$^{-2}$ yr$^{-1}$ is calculated. This value falls at the low end of previous estimate of sedimentary 228Ra fluxes and therefore supports the assertion that open-ocean 228Ra inventories are not explained by sedimentary inputs and require significant input in groundwaters around the globe.

Acknowledgments

We thank the crew of R/V Calanus for sampling assistance. Sabine Cockenpoe, Tristan Horner, Robyn Tuerena, and Xinyuan Zheng are also acknowledged for their assistance in sample collections. We thank John Howe for providing the bathymetry and sedimentary background of Loch Etive and Mark Inall for discussion of ocean mixing in Loch Etive. Willard Moore and Don Porcelli are also thanked for helpful discussion. Alex Thomas, Andrew Mason, and Steve Wyatt are acknowledged for assistance with mass spectrometry and laboratory support. W.G. and P.v.B. were supported by the British Council ‘Alliance’ grant 09.014. W.G. was supported by the Scottish Alliance for Geosciences, Environment and Society (SAGES). The cabled mooring installation in Loch Etive was supported by EU FP7 project HYPOX (grant 226213). The Swire Educational Trust is thanked for Hsieh’s scholarship at University College, University of Oxford. We are grateful to Bo Thamdrup, the associate editor, Michel Rutgers van der Loeff, and an anonymous referee for very helpful reviews and constructive comments.

References

Associate editor: Bo Thamdrup

Received: 30 August 2012
Accepted: 12 February 2013
Amended: 25 February 2013