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Abstract. This paper is devoted to the Moser-Trudinger-Onofri inequality
on smooth compact connected Riemannian manifolds. We establish a rigidity
result for the Euler-Lagrange equation and deduce an estimate of the optimal
constant in the inequality on two-dimensional closed Riemannian manifolds.
Compared to existing results, we provide a non-local criterion which is well
adapted to variational methods, introduce a nonlinear flow along which the
evolution of a functional related with the inequality is monotone and get an
integral remainder term which allows us to discuss optimality issues. As an
important application of our method, we also consider the non-compact case
of the Moser-Trudinger-Onofri inequality on the two-dimensional Euclidean
space, with weights. The standard weight is the one that is computed when
projecting the two-dimensional sphere using the stereographic projection, but
we also give more general results which are of interest, for instance, for the
Keller-Segel model in chemotaxis.

In this paper we assume that (M, g) is a smooth compact connected Riemannian
manifold of dimension d ≥ 1, without boundary. We denote by ∆ the Laplace-
Beltrami operator on M. For simplicity, we assume that the volume of M, is
chosen equal to 1 and use the notation dvg for the volume element. We shall also
denote by Ric the Ricci tensor, by Hu the Hessian of u and by

Lu := Hu−
g

d
∆u

the trace free Hessian. Let us denote by M[u] the trace free tensor

M[u] := ∇u⊗∇u −
g

d
|∇u|2 .
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Let gi,j be the inverse of the metric tensor, i.e., gi,j gj,k = δik, where δ
i
k denotes the

Kronecker symbol. If Ai,j and Bi,j are two tensors, we use the notation

A : B := gi,m gj,nAi,j Bm,n and ‖A‖2 := A : A ,

where we used the Einstein summation convention. We define

λ⋆ := inf
u∈H2(M)\{0}

∫

M

[

‖Lu− 1
2 M[u] ‖2 +Ric (∇u,∇u)

]

e−u/2 dvg
∫

M

|∇u|2 e−u/2 dvg

. (1)

In this paper we will prove the two following results.

Theorem 1. Assume that d = 2 and λ⋆ > 0. If u is a smooth solution to

−
1

2
∆u+ λ = eu , (2)

then u is a constant function if λ ∈ (0, λ⋆).

Note that the hypothesis that λ⋆ > 0 is in principle weaker than assuming that
the Ricci curvature is everywhere positive on M. See Remark 5 for more details.

Next, let us consider the Moser-Trudinger-Onofri inequality on M written as

1

4
‖∇u‖2L2(M) + λ

∫

M

u dvg ≥ λ log

(
∫

M

eu dvg

)

∀u ∈ H1(M) , (3)

for some constant λ > 0. Let us denote by λ1 the first positive eigenvalue of −∆.
We would like to draw the attention of the reader to the fact that, because of the
normalization of the volume of M, there is a discrepancy of a factor 4 π with many
results that are available in the literature. This factor corresponds to the surface of
the usual S2 sphere, considered with the measure induced by Lebesgue’s measure
in R

3.

Corollary 2. If d = 2, then (3) holds with λ = Λ := min{1, λ⋆} ≤ λ1/2. Moreover,
if Λ is strictly smaller than λ1/2, then the optimal constant in (3) is strictly larger
than Λ.

As we shall see later, in the case of the normalized sphere, λ⋆ = λ1/2 = 1 is
optimal, but for λ = λ⋆, Eq. (2) has non-constant solutions because of the conformal
invariance: see [31, 24] for more details on the Moser-Trudinger-Onofri inequality
on the sphere, and references therein. The interested reader is invited to refer to the
historical papers [48, 38, 41], and to [27, 28] for recent results on functionals related
to the inequality, that have been obtained by variational methods. These last two
papers solve the question, in any dimension, of whether the first best constant can
be reached. This is equivalent to showing that the difference of the two terms
in (3) is bounded from below. Earlier results have been obtained by T. Aubin
in [1], in the case of the sphere S

n, and P. Cherrier in [21] for general 2-manifolds.
The present paper focuses on the value of the second best constant, defined as the
largest value of λ such that (3) holds. The value of the first best constant is of
little concern to us, as it appears as the 1

4 coefficient in front of ‖∇u‖2L2(M) and

can be factored into λ. The method used by Z. Faget in [27, 28] relies on a blow-
up analysis which is reminiscent for d = 2 of [40]. It generalizes some results
contained in [2, Theorem 2.50 page 68]. Other references of general interest in the
context of the Moser-Trudinger-Onofri inequality are [14, 5, 34, 42, 31]. A review
of results related with the Moser-Trudinger-Onofri inequality in the case M = S

2
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can be found in [24]. Let us mention that in [30], A. Ghigi provides a proof of this
inequality based on the Prékopa-Leindler inequality and that many more details can
be found in the book [31, Chapters 16-18] of N. Ghoussoub and A. Moradifam. In
the context of Einstein-Kähler geometry another proof appears in [44, Theorem 5.2]
(also see for instance [47, 43] and [8] for recent results on Kählerian manifolds).
In [44], Y.A. Rubinstein gives a proof of the Onofri inequality on S

2 that does not
use symmetrization/rearrangement arguments. Also see [45] and in particular [45,
Corollary 10.12] which contains a reinforced version of the inequality. We shall
refer to [16] for background material in this direction. The reader interested in
understanding how the Moser-Trudinger-Onofri inequality is related to the problem
of prescribing the Gaussian curvature on S

2 is invited to refer to [15, Section 3] for
an introductory survey, and to [18, 17, 19] for more details. There are also many
references about the equation (2), which is a particular version of the so-called
Liouville equation. The book [46] contains a good description of the literature
about this equation and many references. More references will be given within the
text, whenever needed.

At this point, we should emphasize that in most of the literature the Moser-
Trudinger-Onofri inequality in dimension d = 2 is not written as in (3), but in the
form

e
µ2 ‖∇u‖2

L2(M) ≥ C

∫

M

eu dvg

for all functions u ∈ H1(M) such that
∫

M
u dvg = 0, for some constant C which is

in general non-explicit. In dimension d = 2, the optimal constant is µ2 = 1
4 . This

amounts to write that the functional

u 7→ µ2 ‖∇u‖2L2(M) +

∫

M

u dvg − log

(
∫

M

eu dvg

)

is bounded from below by logC. The issue of the first best constant is to prove that
if µ2 is replaced by a smaller constant, the functional becomes unbounded from
below. This is different than proving Inequality (3), except when C = 1 and λ = 1.
E. Onofri proved in [41] that this is the case, with optimal values for both C and λ,
when M = S

2, up to a factor 4 π that comes from the normalization of volg(M).
Except for the sphere we are aware of only one occurrence in the literature of the
form (3) of the inequality, that has been derived by E. Fontenas in [29, Théorème 2]
under more restrictive conditions on M. This result will be commented in more
detail in Remark 4.

The proof of Theorem 1 is a rigidity method inspired by the one of [9] for the
equation

−∆u+ λu = up−1 ,

which is the Euler-Lagrange equation corresponding to the optimality case in the
interpolation inequality

‖∇v‖2L2(M) ≥
λ

p− 2

[

‖v‖2Lp(M) − ‖v‖2L2(M)

]

∀ v ∈ H1(M) . (4)

See [9, 37, 4, 22, 25] for further results on this problem and [2, 33] for general
accounts on Sobolev’s inequality on Riemannian manifolds. Concerning spectral
issues, a standard textbook is [7].

The case of the exponential nonlinearity in (2) has been much less considered in
the literature, except when M is the two dimensional sphere S

2. Let us mention
the uniqueness result of [20] for (2) with λ = 1. In [29], and in [6] in the case of
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the ultraspherical operator, the result is achieved by considering the interpolation
inequalities (4) and then, as in [9] or [5] (in the case of the sphere), by taking the
limit as p → ∞. Here we consider a direct approach, based on rigidity methods and
an associated nonlinear flow. As far as we know, this is an entirely new approach
which is interesting in that it provides explicit estimates on the optimal constant
in (3).

One may wonder if rigidity results can be achieved for dimensions d > 2 with
our method. We will give a negative answer in Section 1. Corollary 2 is established
in Section 2 using a nonlinear flow that has already been considered on the sphere
in [24]. The case d = 1 is very simple and will be considered for the sake of
completeness in Section 3. An important application of our method is the case of
the Euclidean space with weights, with applications to chemotaxis. Section 4 is
devoted to this issue with a main result in this direction stated in Theorem 8, that
raises difficult questions of symmetry breaking.

1. Proof of Theorem 1. In this section we consider a smooth solution to (2) and
perform a computation to prove the rigidity result of Theorem 1. There is no a

priori reason to assume that d = 2 and so we shall do the computations for any
dimension d ≥ 1, which raises no special additional difficulties. However, due to
restrictions that are inherent to the method and will be explicitely exposed, only
d = 2 can be covered. On several occasions, one has to divide by (d − 1), so the
case d = 1 has to be excluded and will be handled directly in Section 3.

In the case of (4), it is well known (see [37, 4, 26]) that an interpolation depending
on a parameter θ ∈ (0, 1) between an estimate based on the Ricci curvature and
another one based on the first eigenvalue of the Laplace-Beltrami operator can be
used to obtain some improvements. Here we apply the same technique and realize
in the end that only θ = 1 is admissible in dimension d = 2. However, when d is
considered as a real parameter in the range (1, 2), it is possible to optimize on θ
when 0 ≤ θ ≤ 1. We will comment this and possible improvements at the end of
this section.

Preliminaries. A simple expansion of the square shows that

‖Hu‖2 = ‖Lu‖2 +
1

d
(∆u)2 .

The Bochner-Lichnerovicz-Weitzenböck formula asserts that

1

2
∆ |∇u|2 = ‖Hu‖2 +∇(∆u) · ∇u+Ric (∇u,∇u)

where Ric denotes the Ricci tensor and, as a consequence,

1

2
∆ |∇u|2 = ‖Lu‖2 +

1

d
(∆u)2 +∇(∆u) · ∇u+Ric (∇u,∇u) . (5)
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An identity based on integrations by parts. Using integrations by parts, we
may notice that

−

∫

M

∆u |∇u|2 e−u/2 dvg

= −
1

2

∫

M

|∇u|4 e−u/2 dvg + 2

∫

M

Hu : ∇u⊗∇u e−u/2 dvg

= −
1

2

∫

M

|∇u|4 e−u/2 dvg + 2

∫

M

(

Lu+
g

d
∆u

)

: ∇u ⊗∇u e−u/2 dvg

= −
1

2

∫

M

|∇u|4 e−u/2 dvg + 2

∫

M

Lu : M[u] e−u/2 dvg

+
2

d

∫

M

∆u |∇u|2 e−u/2 dvg ,

with M[u] := ∇u⊗∇u − g
d |∇u|2, which proves that

d+ 2

d

∫

M

∆u |∇u|2 e−u/2 dvg

=
1

2

∫

M

|∇u|4 e−u/2 dvg − 2

∫

M

Lu : M[u] e−u/2 dvg

and finally

∫

M

∆u |∇u|2 e−u/2 dvg

=
1

2

d

d+ 2

∫

M

|∇u|4 e−u/2 dvg −
2 d

d+ 2

∫

M

Lu : M[u] e−u/2 dvg . (6)

An identity based on the Bochner-Lichnerovicz-Weitzenböck formula. By
expanding ∆(e−u/2) = (14 |∇u|2 − 1

2 ∆u) e−u/2, we have that

∫

M

|∇u|2 ∆(e−u/2) dvg =
1

4

∫

M

|∇u|4 e−u/2 dvg −
1

2

∫

M

∆u |∇u|2 e−u/2 dvg

so that, if we multiply (5) by e−u/2 and integrate by parts, then we get

1

8

∫

M

|∇u|4 e−u/2 dvg −
1

4

∫

M

∆u |∇u|2 e−u/2 dvg

=

∫

M

‖Lu‖2 e−u/2 dvg +
1

d

∫

M

(∆u)2 e−u/2 dvg

+

∫

M

(

∇(∆u) · ∇u
)

e−u/2 dvg +

∫

M

Ric (∇u,∇u) e−u/2 dvg

=

∫

M

‖Lu‖2 e−u/2 dvg −
d− 1

d

∫

M

(∆u)2 e−u/2 dvg

+
1

2

∫

M

∆u |∇u|2 e−u/2 dvg +

∫

M

Ric (∇u,∇u) e−u/2 dvg ,
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from which we deduce that

∫

M

(∆u)2 e−u/2 dvg

=
3

4

d

d− 1

∫

M

∆u |∇u|2 e−u/2 dvg −
1

8

d

d− 1

∫

M

|∇u|4 e−u/2 dvg

+
d

d− 1

∫

M

‖Lu‖2 e−u/2 dvg +
d

d− 1

∫

M

Ric (∇u,∇u) e−u/2 dvg . (7)

A Poincaré inequality. Since

4∆(e−u/4) =
1

4
|∇u|2 e−u/4 −∆u e−u/4 ,

we get that

16

∫

M

|∆(e−u/4)|2 dvg =
1

16

∫

M

|∇u|4 e−u/2 dvg −
1

2

∫

M

|∇u|2∆u e−u/2 dvg

+

∫

M

(∆u)2 e−u/2 dvg .

On the other hand, a Poincaré inequality applied to ∇(e−u/4), as in [26, Lemma 7],
shows that

∫

M

|∆(e−u/4)|2 dvg ≥ λ1

∫

M

|∇(e−u/4)|2 dvg =
λ1

16

∫

M

|∇u|2 e−u/2 dvg , (8)

so that

∫

M

(∆u)2 e−u/2 dvg ≥ λ1

∫

M

|∇u|2 e−u/2 dvg −
1

16

∫

M

|∇u|4 e−u/2 dvg

+
1

2

∫

M

|∇u|2 ∆u e−u/2 dvg . (9)

An identity based on the equation. By expanding ∆(e−u/2) = (14 |∇u|2 −
1
2 ∆u) e−u/2, we have that

∫

M

(− 1
2 ∆u)∆(e−u/2) dvg =

1

4

∫

M

(∆u)2 e−u/2 dvg −
1

8

∫

M

∆u |∇u|2 e−u/2 dvg

so that, if we multiply (2) by ∆(e−u/2)− 1
2 |∇u|2 e−u/2, then we get

1

4

∫

M

(∆u)2 e−u/2 dvg +
1

8

∫

M

∆u |∇u|2 e−u/2 dvg −
λ

2

∫

M

|∇u|2 e−u/2 dvg = 0 .

We then split the first term in the equality as the sum of 1−θ
4

∫

M
(∆u)2 e−u/2 dvg

and θ
4

∫

M (∆u)2 e−u/2 dvg, with a parameter θ ≤ 1, and we bound the resulting



ONOFRI INEQUALITIES AND RIGIDITY RESULTS 7

terms using (9) and (7), respectively:

1− θ

4

[

λ1

∫

M

|∇u|2 e−u/2 dvg −
1

16

∫

M

|∇u|4 e−u/2 dvg

+
1

2

∫

M

|∇u|2 ∆u e−u/2 dvg

]

+
θ

4

[

3

4

d

d− 1

∫

M

∆u |∇u|2 e−u/2 dvg −
1

8

d

d− 1

∫

M

|∇u|4 e−u/2 dvg

+
d

d− 1

∫

M

‖Lu‖2 e−u/2 dvg +
d

d− 1

∫

M

Ric (∇u,∇u) e−u/2 dvg

]

+
1

8

∫

M

∆u |∇u|2 e−u/2 dvg −
λ

2

∫

M

|∇u|2 e−u/2 dvg ≤ 0 .

Collecting terms, we get

θ

4

d

d− 1

[
∫

M

‖Lu‖2 e−u/2 dvg +

∫

M

Ric (∇u,∇u) e−u/2 dvg

]

−
1

64

(

1− θ + 2 θ
d

d− 1

)
∫

M

|∇u|4 e−u/2 dvg

+

(

1− θ

8
+

3 θ

16

d

d− 1
+

1

8

)
∫

M

∆u |∇u|2 e−u/2 dvg

+

(

1− θ

4
λ1 −

λ

2

)
∫

M

|∇u|2 e−u/2 dvg ≤ 0

and can now use (6) to obtain

θ

4

d

d− 1

[
∫

M

‖Lu‖2 e−u/2 dvg +

∫

M

Ric (∇u,∇u) e−u/2 dvg

]

−
1

64

(

1− θ + 2 θ
d

d− 1

)
∫

M

|∇u|4 e−u/2 dvg

+

(

1− θ

8
+

3 θ

16

d

d− 1
+

1

8

)[

1

2

d

d+ 2

∫

M

|∇u|4 e−u/2 dvg

−
2 d

d+ 2

∫

M

Lu : M[u] e−u/2 dvg

]

+

(

1− θ

4
λ1 −

λ

2

)
∫

M

|∇u|2 e−u/2 dvg ≤ 0 .

Recall that M[u] denotes the trace free tensor

M[u] := ∇u⊗∇u −
g

d
|∇u|2 .

We observe that

‖M[u]‖2 =
∥

∥

∥
∇u⊗∇u−

g

d
|∇u|2

∥

∥

∥

2

=

(

1−
1

d

)

|∇u|4 .
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Altogether we end up with
∫

M

(

a ‖Lu‖2 + b (Lu : M[u]) + c ‖M[u]‖2
)

e−u/2 dvg

+
θ

4

d

d− 1

∫

M

Ric (∇u,∇u) e−u/2 dvg

+

(

1− θ

4
λ1 −

λ

2

)
∫

M

|∇u|2 e−u/2 dvg ≤ 0

with

a =
θ

4

d

d− 1
,

b = −

(

1− θ

8
+

3 θ

16

d

d− 1
+

1

8

)

2 d

d+ 2
,

c =

[(

1− θ

8
+

3 θ

16

d

d− 1
+

1

8

)

1

2

d

d+ 2
−

1

64

(

1− θ + 2 θ
d

d− 1

)]

d

d− 1
.

Remark 3. By the Lichnerowicz’ theorem (see [36] or [26, Section 2])

d

d− 1

∫

M

Ric (∇u,∇u) e−u/2 dvg ≤

∫

M

|∇u|2 e−u/2 dvg

so that the largest possible value of λ for which we a priori know that

θ

4

d

d− 1

∫

M

Ric (∇u,∇u) e−u/2 dvg +
(

1
4 λ1 (1− θ)− λ

)

∫

M

|∇u|2 e−u/2 dvg

is nonnegative corresponds to the smallest possible value of θ, i.e. θ = θ0(d).

Discussion. With a simple but tedious computation, one can show that the dis-
criminant δ := b

2 − 4 a c has the sign of

16 (d− 1)2 − (6− d) (d + 2) θ .

If we denote by θ0 = θ0(d) the value of θ for which δ = 0, then we have

θ0 =
16 (d− 1)2

(6− d) (d+ 2)
.

Altogether we can rewrite our estimate as

a

∫

M

∥

∥Lu+ b

2 a
M[u]

∥

∥

2
e−u/2 dvg +

(

c− b
2

4 a

)

∫

M

‖M[u]‖2 e−u/2 dvg

+ 4 (1− θ)

∫

M

|∆(e−u/4)|2 dvg +
θ

4

d

d− 1

∫

M

Ric (∇u,∇u) e−u/2 dvg

−
λ

2

∫

M

|∇u|2 e−u/2 dvg = 0

and use the Poincaré inequality (8) to establish that

0 ≥ a

∫

M

∥

∥Lu+ b

2 a
M[u]

∥

∥

2
e−u/2 dvg −

δ
4 a

∫

M

‖M[u]‖2 e−u/2 dvg

+
(

1
4 λ1 (1− θ)− λ

2

)

∫

M

|∇u|2 e−u/2 dvg +
θ
4

d
d−1

∫

M

Ric (∇u,∇u) e−u/2 dvg .

(10)
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Our goal is to show that u has to be a constant, that is,
∫

M |∇u|2 e−u/2 dvg = 0.
We assume that d ≥ 2 is an integer. The discriminant δ is nonpositive if and only
if d < 6 and θ ≥ θ0(d). This is compatible with the condition θ ≤ 1 only if d = 2;
in that case, θ = θ0(2) = 1 and as a consequence, we can rewrite (10) as

0 ≥

∫

M

‖Lu− 1
2 M[u]‖2 e−u/2 dvg +

∫

M

Ric (∇u,∇u) e−u/2 dvg

− λ

∫

M

|∇u|2 e−u/2 dvg

≥ (λ⋆ − λ)

∫

M

|∇u|2 e−u/2 dvg .

Hence we have shown that ∇u ≡ 0 for any λ < λ⋆, which concludes the proof of
Theorem 1.

Remark 4. In order to compare our results with the results deduced from the
curvature-dimension method (see for instance [3]), we can consider the case where
Ric is uniformly bounded from below by some positive constant ρ and formally
assume that d ∈ (1, 2) takes real values. This can be made precise for instance
in the setting of the ultra-spherical operator (see for instance [6]), with exactly
the same conditions as above. See [29] and [24, Section 7.1] for more details. If
1 < d ≤ 2, we find that rigidity holds if

λ ≤ max
θ∈[θ0(d),1]

(

1

2
λ1 (1− θ) +

θ

2

d

d− 1
ρ

)

=
1

2
λ1 (1− θ0(d)) +

θ0(d)

2

d

d− 1
ρ

according to Remark 3. Let x = d
d−1

ρ
λ1

≤ 1. We have found that that rigidity
holds if

2
λ

λ1
≤ 1− θ0(d) + θ0(d)x =: f1(x)

Quite surprisingly, a better condition has been obtained in [29, Théorème 2], when
1 < d < 2, which amounts to

2
λ

λ1
≤ d (2− d) + (d− 1)2 x =: f2(x) ,

by taking the limit as p → ∞ in (4). We may indeed check that f2(x) − f1(x) =
(d−1)2 (d−2)2

(6−d) (d+2) (1 − x) ≥ 0

Without assuming the positivity of ρ, one gets a similar result with our approach.
In the range d ∈ (1, 2), our computations show that rigidity holds for any λ at most
equal to the infimum on u ∈ H2(M) \ {0} of

2

∫

M

[

a
∥

∥Lu+ b

2 a
M[u]

∥

∥

2
+ 4 (1−θ) |∆(e−u/4)|2 + θ

4
d

d−1 Ric (∇u,∇u)
]

e−u/2 dvg

under the condition that
∫

M |∇u|2 e−u/2 dvg = 1, a = 4 d (d−1)
(6−d) (d+2) , b = − d (3 d+2)

2 (6−d) (d+2)

and θ = θ0(d). However, in the same spirit as above, a passage to the limit as p → ∞
in the inequality obtained in [26, Theorem 4] gives a better result.

Let us emphasize that these considerations are essentially formal because d is
restricted to the interval (1, 2) but can be entirely justified, as it is currently done
in the curvature-dimension approach. See for instance [29, Théorème 2], and related
references.
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2. Proof of Corollary 2. Let us minimize the functional

Fλ[u] :=
1

4
‖∇u‖2L2(M) + λ

∫

M

u dvg − λ log

(
∫

M

eu dvg

)

on H1(M). According to [27, 28], Fλ[u] has no minimizer if λ > 1. Let us assume
that

λ < 1

(we shall take care of the equality case later). It is then standard that there is a
well-defined minimizer u. Note that since Fλ[u] does not change when adding some
constant to u, we can choose the value of

∫

M
eu dvg = λ and then u satisfies (2). If

u is smooth and λ < λ⋆, we can apply the result of Theorem 1. Then the minimizer
u has to be a constant, for instance u ≡ 1, so that

Fλ[u] ≥ Fλ[1] = 0 ∀u ∈ H1(M) .

Notice that we can get rid of any smoothness requirement by considering the flow
below. By passing to the limit as λ ր λ⋆, we get that the inequality also holds true
if λ = λ⋆.

Using the following Taylor expansion of Fλ as ε → 0,

Fλ[1 + ε ϕ] = ε2
[

1

4
‖∇ϕ‖2L2(M) +

λ

2

∫

M

ϕ2 dvg

]

+ o(ε2)

=
ε2

2

(

λ1

2
− λ

)

+ o(ε2) ,

where ϕ is an eigenfunction associated with the first positive eigenvalue λ1 of −∆,
it is straightforward to see that the best constant λ in (3) is such that

λ ≤
λ1

2
.

To complete the proof of Corollary 2, it remains to consider the case λ⋆ < λ1/2
and show that the optimal constant cannot be equal to λ⋆. This can be done in the
same spirit as in [26, Corollary 2]. Let us consider the evolution equation defined
by

∂f

∂t
= ∆(e−f/2)− 1

2 |∇f |2 e−f/2 , (11)

with initial datum u ∈ H1(M). Let us define

Gλ[f ] :=

∫

M

‖Lf − 1
2 M[f ] ‖2 e−f/2 dvg +

∫

M

Ric (∇f,∇f) e−f/2 dvg

− λ

∫

M

|∇f |2 e−f/2 dvg .

Then for any λ ≤ λ⋆ we have

d

dt
Fλ[f(t, ·)] =

∫

M

(

− 1
2 ∆f + λ

)

(

∆(e−f/2)− 1
2 |∇f |2 e−f/2

)

dvg = −Gλ[f(t, ·)]

Since Fλ is nonnegative and limt→∞ Fλ[f(t, ·)] = 0, we obtain that

Fλ[u] ≥

∫ ∞

0

Gλ[f(t, ·)] dt

for any solution f to (11) with initial datum u ∈ L1(M) is such that ∇u ∈ L2(M).
We have an equality if the solution is smooth for any t ≥ 0. Otherwise we have
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to regularize and then pass to the limit so that, with full generality, we can only
expect for an inequality.

Remark 5. One has to mention that the sphereM = S
2 is an important case of ap-

plication of our method, for which other types of remainder terms can be produced.
See [24] for more details. It has to be noted that on S

2 we have λ⋆ = ρ = λ1/2 = 1.
As noted by many authors, e.g., in [5, 6, 29, 24] (also see references in [24]), the
Onofri inequality is a limit case of various Sobolev type inequalities, for which sim-
ilar methods have been developed: see [25] for a review and some recent results.

Another interesting case for our method is the flat square torus, defined as the
square (0, 1) × (0, 1) with double periodicity, or simply T

2 = R
2/Z2. For general

properties of the solutions of (2) on T
2, see [46, Section 2.5]. In this case, and

also for any compact manifold M with nonnegative Ricci curvature, by defining
v = e−u/2 one can see that

λ⋆ = inf
v∈H2(M)\{0}

∫

M

( ‖Lv ‖2

v + 1
v Ric (∇v,∇v)

)

dvg
∫

M
|∇v|2

v dvg
.

According to [35, Theorem 0.1], there exists C > 0 such that for any 0 < λ < C, all
solutions u of (2) are uniformly bounded in L∞(M). In the proofs of Theorem 1
and Corollary 2, it is henceforth possible to replace λ⋆ by the infimum taken over
the space of all functions v ∈ H2(M) \ {0} such that − 2 var(log v) = var(u) =
supess(u) − infess(u) ≤ K for some positive constant K, which is independent of
λ > 0. Then, with this new definition of λ⋆, we obtain the estimate

λ⋆ ≥ e−K/2 inf

∫

M

(

‖Lv ‖2 +Ric (∇v,∇v)
)

dvg
∫

M
|∇v|2 dvg

= e−K/2 inf

∫

M

(

∆v)2 dvg
∫

M
|∇v|2 dvg

,

where the last equality is a straightforward consequence of the Bochner-Lichne-
rovicz-Weitzenböck formula. As a consequence of the Poincaré inequality (see for
instance [26, Lemma 5]), we obtain the estimate λ⋆ ≥ e−K/2 λ1. It is remarkable
that our method applies when the lowest eigenvalue of Ric (∇v,∇v) takes value 0
in M. In the case of the flat torus, we even have that Ric (∇v,∇v) ≡ 0 on M.

3. The case d = 1. For simplicity, we can consider the case of the circle. Hence
we identify M with the 1-periodic interval [0, 1) ≈ R/Z ≈ S

1. Consider a solution
of the ordinary differential equation

−
1

2
u′′ + λ− eu = 0 (12)

with periodic boundary conditions. If we multiply the equation by (e−u/2)′′ −
1
2 |u

′|2 e−u/2, then we get that
∫ 1

0

(

1
4 |u

′′|2 + 1
8 |u

′|2 u′′ − λ
2 |u′|2

)

e−u/2 dx = 0 .

The middle term is easy to handle using one integration by parts:
∫ 1

0

|u′|2 u′′ e−u/2 dx = 1
6

∫ 1

0

|u′|4 e−u/2 dx . (13)

Hence we have
∫ 1

0

(

1
4 |u

′′|2 + 1
48 |u

′|4 − λ
2 |u′|2

)

e−u/2 dx = 0 . (14)
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On the other hand, by the Poincaré inequality,
∫ 1

0

∣

∣

∣

∣

(

e−u/4
)′′

∣

∣

∣

∣

2

dx ≥ 4 π2

∫ 1

0

∣

∣

∣

∣

(

e−u/4
)′
∣

∣

∣

∣

2

dx ,

where 4 π2 is the first positive eigenvalue of − d2

dx2 on the periodic interval of length 1.
From (13) we derive

∫ 1

0

(

|u′′|2 − 1
48 |u

′|4
)

e−u/2 dx− 4 π2

∫ 1

0

|u′|2 e−u/2 dx ≥ 0 . (15)

Combining (14) and (15), we get

5

96

∫ 1

0

|u′|4 e−u/2 dx + (2π2 − λ)

∫ 1

0

|u′|2 e−u/2 dx ≤ 0 .

Hence we have proven the following result.

Proposition 6. Assume that d = 1. With the above notations, if u is a smooth
solution to (12) on S

1 ≈ [0, 1), then u is a constant function for any λ ∈ (0, 2 π2).

Exactly as in the case of a manifold of dimension two, a variational approach
allows to deduce a Moser-Trudinger-Onofri inequality.

Corollary 7. If d = 1, then the following inequality holds on S
1 ≈ [0, 1):

1

8 π2

∫ 1

0

|u′|2 dx +

∫ 1

0

u dx ≥ log

(
∫ 1

0

eu dx

)

∀u ∈ H1(S1) .

Moreover 8 π2 is the optimal constant.

The only difference with Corollary 2 is that we can identify the optimal constant
in the inequality by considering u = 1+ ε ϕ and by taking the limit as ε → 0, with
ϕ(x) = cos( 2π x).

4. Weighted Moser-Trudinger-Onofri inequalities on the two-dimensional

Euclidean space. The Euclidean Onofri inequality (see [14, 24]) can be deduced
from (3) when M = S

2 using the stereographic projection and reads

1

16 π

∫

R2

|∇u|2 dx ≥ log

(
∫

R2

eu dµ

)

−

∫

R2

u dµ . (16)

Here dµ(x) dx denotes the probability measure defined by µ(x) = 1
π (1 + |x|2)−2,

x ∈ R
2, and the inequality holds for any function u ∈ L1(R2, dµ) such that ∇u ∈

L2(R2). The constant 16 π is optimal as can be shown by considering the inequality
on S

2 and comparing with the value given when expanding around a constant, as
was done in Section 2.

In this section, our goal is to give sufficient conditions on a general probability
measure µ so that the inequality

1

16 π

∫

R2

|∇u|2 dx ≥ λ

[

log

(
∫

R2

eu dµ

)

−

∫

R2

u dµ

]

(17)

holds for some λ > 0 and get an estimate of the optimal value of λ. Here dµ = µ dx
is a probability measure with density µ with respect to the Lebesgue measure. All
our computations are done without symmetry assumption, and our final estimate
is (30). In practical applications (see Examples 1–4) the function µ is radially
symmetric and one has to assume that λ is in a range for which the solution to (17),
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or at least the optimal function for (16), is radially symmetric. This delicate issue
of symmetry breaking will be illustrated in Example 3.

Since (17) does not change when adding some constant to u, we can look for
minimizers satisfying the constraint

∫

R2 e
u dµ = 1. These solve the Euler-Lagrange

equation

−
1

8 π
∆u + λµ− λ eu µ = 0 . (18)

We can multiply each term of (18) by 1
µ ∆(e−

u
2 ) − 1

2µ |∇u|
2
e−

u
2 and integrate,

which gives the following identities

−

∫

R2

∆u∆(e−u/2)
1

µ
dx =

∫

R2

∆u

(

∆u−
1

2
|∇u|

2

)

e−u/2 1

2µ
dx ,

∫

R2

µ
1

µ
∆(e−u/2) dx = 0 ,

∫

R2

euµ

(

1

µ
∆(e−

u
2 )−

1

2µ
|∇u|

2
e−

u
2

)

dx = 0 .

Defining ν := e−u/2/µ = e−u/2−g with g := logµ and dν := ν dx we have

I[u] = 2

∫

R2

(∆u)2 dν +

∫

R2

∆u |∇u|2 dν − 16 π λ

∫

R2

|∇u|2 e−u/2 dx = 0 .

Let us introduce some notations, which are consistent with the ones on manifolds.

Let us denote by Hu =
(

∂2u
∂xi∂xj

)

i,j=1,2
the Hessian of u, Lu = Hu − 1

2 ∆u I2 is

the trace free Hessian and M[u] := ∇u ⊗ ∇u − 1
2 |∇u|

2
I2, where ∇u ⊗ ∇u =

(

∂u
∂xi

∂u
∂xj

)

i,j=1,2
. For the convenience of the reader, we split the computations in

four steps.

1) Let us start with some preliminary computations. An integration by parts shows
that

2

∫

R2

∆u∇u · ∇g dν −

∫

R2

|∇u|
2
∇u · ∇g dν

= − 2

∫

R2

Hu : (∇u⊗∇g) dν − 2

∫

R2

(Hg −∇g ⊗∇g) : (∇u⊗∇u) dν

= − 2

∫

R2

Hu : (∇u⊗∇g) dν − 2

∫

R2

Hg : (∇u⊗∇u) dν + 2

∫

R2

(∇u · ∇g)2 dν .

(19)

By expanding Lu− 1
2 M[u], we also get that

∫

R2

(

Lu−
1

2
M[u]

)

: (∇u ⊗∇g) dν

=

∫

R2

Hu : (∇u ⊗∇g)dν −
1

2

∫

R2

∆u∇u · ∇g dν −
1

4

∫

R2

|∇u|
2
∇u · ∇g dν . (20)

Recalling the definition of ν = e−
1
2u−g, we also find that

−
1

2

∫

R2

|∇u|2 ∇u · ∇g dν =

∫

R2

|∇u|2 ∇g e−g · ∇(e−
1
2u) dx

= − 2

∫

R2

Hu : (∇u ⊗∇g) dν +

∫

R2

|∇u|
2
(|∇g|2 −∆g) dν . (21)
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Equations (19), (20) and (21) allow us to eliminate
∫

R2

∆u∇u · ∇g dν ,

∫

R2

|∇u|2 ∇u · ∇g dν and

∫

R2

Hu : (∇u⊗∇g) dν

in terms of the other quantities:
∫

R2

∆u∇u · ∇g dν =

∫

R2

|∇u|
2
(|∇g|2 −∆g) dν

− 2

∫

R2

(

Lu−
1

2
M[u]

)

: (∇u⊗∇g) dν , (22)

∫

R2

|∇u|
2
∇u · ∇g dν = 4

∫

R2

Hg : (∇u ⊗∇u)dν − 4

∫

R2

(∇u · ∇g)2 dν

− 8

∫

R2

(

Lu−
1

2
M[u]

)

: (∇u⊗∇g) dν (23)

+ 6

∫

R2

|∇u|
2
(|∇g|2 −∆g) dν ,

∫

R2

Hu : (∇u⊗∇g) dν =

∫

R2

Hg : (∇u ⊗∇u)dν −

∫

R2

(∇u · ∇g)2 dν

− 2

∫

R2

(

Lu−
1

2
M[u]

)

: (∇u⊗∇g) dν (24)

+ 2

∫

R2

|∇u|2 (|∇g|2 −∆g) dν .

Moreover, the reader is invited to check that

‖Lu‖2 = ‖Hu‖2 −
1

2
(∆u)2 (25)

and

‖M[u]‖2 =
1

2
|∇u|4 . (26)

2) On the one hand, integrating the second term in the expression of I[u] by parts
gives

∫

R2

∆u |∇u|
2
dν

= −

∫

R2

∇u · ∇
(

|∇u|
2
ν
)

dx

= −

∫

R2

∇u ·

(

2Hu∇u−
1

2
∇u |∇u|

2
− |∇u|

2
∇g

)

dν

= −

∫

R2

(

2Hu : ∇u⊗∇u−
1

2
|∇u|

4
− |∇u|

2
(∇u · ∇g)

)

dν

= −

∫

R2

(

2 Lu : ∇u⊗∇u+∆u |∇u|
2
−

1

2
|∇u|

4
− |∇u|

2
(∇u · ∇g)

)

dν

= −

∫

R2

(

2 Lu : M[u] + ∆u |∇u|
2
−

1

2
|∇u|

4
− |∇u|

2
(∇u · ∇g)

)

dν ,

that is
∫

R2

∆u |∇u|
2
dν = −

∫

R2

(

Lu : M[u]−
1

4
|∇u|

4
−

1

2
|∇u|

2
(∇u · ∇g)

)

dν .
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According to (23) and (26), we obtain

∫

R2

∆u |∇u|
2
dν = −

∫

R2

Lu : M[u] dν

+
1

2

∫

R2

‖M[u]‖2 dν + 2

∫

R2

Hg : (∇u ⊗∇u)dν

− 2

∫

R2

(∇u · ∇g)2 dν− 4

∫

R2

(

Lu−
1

2
M[u]

)

: (∇u⊗∇g) dν

+ 3

∫

R2

|∇u|
2
(|∇g|2 −∆g) dν . (27)

3) On the other hand, integrating by parts twice yields

∫

R2

∆ |∇u|2 dν =

∫

R2

|∇u|2 ∆(e−u/2)
dx

µ
+

∫

R2

|∇u|2
(

|∇g|2 −∆g
)

dν

+

∫

R2

|∇u|
2
(∇u · ∇g)dν ,

= −
1

2

∫

R2

∆u |∇u|
2
dν +

1

4

∫

R2

|∇u|
4
dν

+

∫

R2

|∇u|
2 (

|∇g|2 −∆g
)

dν +

∫

R2

|∇u|
2
(∇u · ∇g) dν .

(28)

Integrating by parts again we have that

∫

R2

∇∆u · ∇u dν = −

∫

R2

∆u

(

∆u−
1

2
|∇u|

2
− (∇u · ∇g)

)

dν ,

which we can use along with the Bochner-Lichnerovicz-Weitzenböck formula on R
2

(with Ricci tensor identically equal to 0),

∆ |∇u|
2
= 2 ‖Lu‖2 + (∆u)2 + 2∇∆u · ∇u ,

to get

∫

R2

∆ |∇u|
2
dν =

∫

R2

(

2 ‖Lu‖2 − (∆u)2 +∆u |∇u|
2
+ 2∆u (∇u · ∇g)

)

dν .

Combined with (28) this proves that

∫

R2

(∆u)2 dν = 2

∫

R2

‖Lu‖2 dν +
3

2

∫

R2

∆u |∇u|2 dν −
1

4

∫

R2

|∇u|4 dν

−

∫

R2

|∇u|
2 (

|∇g|2 −∆g
)

dν + 2

∫

R2

∆u (∇u · ∇g) dν −

∫

R2

|∇u|
2
(∇u · ∇g) dν .
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Using (22), (23), (26) and (27), we obtain
∫

R2

(∆u)2 dν

= 2

∫

R2

‖Lu‖2 dν

−
3

2

∫

R2

Lu : M[u] dν +
3

4

∫

R2

‖M[u]‖2 dν + 3

∫

R2

Hg : (∇u ⊗∇u) dν

− 3

∫

R2

(∇u · ∇g)2 dν − 6

∫

R2

(

Lu−
1

2
M[u]

)

: (∇u ⊗∇g) dν

+
9

2

∫

R2

|∇u|
2
(|∇g|2 −∆g) dν

−
1

2

∫

R2

‖M[u]‖2 dν −

∫

R2

|∇u|2
(

|∇g|2 −∆g
)

dν

+2

∫

R2

|∇u|
2
(|∇g|2 −∆g) dν − 4

∫

R2

(

Lu−
1

2
M[u]

)

: (∇u ⊗∇g) dν

− 4

∫

R2

Hg : (∇u⊗∇u) dν + 4

∫

R2

(∇u · ∇g)2 dν

+8

∫

R2

(

Lu−
1

2
M[u]

)

: (∇u⊗∇g) dν

− 6

∫

R2

|∇u|
2 (

|∇g|2 −∆g
)

dν .

Collecting terms, we arrive at
∫

R2

(∆u)2 dν = 2

∫

R2

‖Lu‖2 dν −
3

2

∫

R2

Lu : M[u] dν +
1

4

∫

R2

‖M[u]‖2 dν

− 2

∫

R2

(

Lu−
1

2
M[u]

)

: (∇u⊗∇g) dν

−

∫

R2

Hg : (∇u⊗∇u) dν +

∫

R2

(∇u · ∇g)2 dν

−
1

2

∫

R2

|∇u|2 (|∇g|2 −∆g) dν . (29)

4) By reinjecting (27) and (29) in the expression of I, we get that

0 = I[u] = 4

∫

R2

‖Lu‖2 dν − 4

∫

R2

Lu : M[u] dν +

∫

R2

‖M[u]‖2 dν

− 8

∫

R2

(

Lu−
1

2
M[u]

)

: (∇u⊗∇g) dν

+ 2

∫

R2

|∇u|
2
(|∇g|2 −∆g) dν − 16 π λ

∫

R2

|∇u|
2
e−u/2 dx .

Since ‖∇u ⊗ ∇g‖2 = |∇u|2 |∇g|2, then we get for the corresponding trace free
quantity

Nu := ∇u⊗∇g −
1

2
(∇u · ∇g) I2

that

‖Nu‖2 = |∇u|2 |∇g|2 −
1

2
(∇u · ∇g)2
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and hence obtain the identity

0 = 4

∫

R2

∥

∥

∥

∥

Lu−
1

2
M[u]− Nu

∥

∥

∥

∥

2

dν

− 2

∫

R2

[(

∆g + |∇g|2 − (∇g · ω)2
)

e−g + 8 π λ
]

|∇u|2 e−u/2 dx (30)

where ω := ∇u/|∇u|. If we assume that
∫

R2 |∇u|2 e−u/2 dx 6= 0 and define

Λ :=
1

8 π

∫

R2

[

(∇u · ∇g)2 − (∆g + |∇g|2) |∇u|2
]

e−u/2−g dx
∫

R2 |∇u|2 e−u/2 dx
,

then we get a contradiction if λ < Λ. To keep maximal generality, one could even

include the term
∫

R2

∥

∥Lu− 1
2 M[u]− Nu

∥

∥

2
dν in the definition of Λ, as it was done

in the case of manifolds. However, this is a quite complicated criterion to verify
since it involves the solution to (18) itself. Hence it makes sense to consider the
simpler case where µ has radial symmetry. In that case it is also known from [32]
that u is radially symmetric if µ is a monotone non-increasing function of |x|. Let

Λ⋆ := −
1

8 π
inf
x∈R2

(

e−g ∆g
)

= inf
x∈R2

−∆ logµ

8 π µ
.

Theorem 8. Assume that µ is a radially symmetric function. Then any radially
symmetric solution to (18) is a constant if λ < Λ⋆ and the inequality (17) holds
with λ = Λ⋆ if equality is achieved among radial functions.

Example 1. The Euclidean Onofri inequality corresponds to

µ(x) =
1

π (1 + |x|2)2
∀x ∈ R

2 .

Since −∆ logµ = 8 π µ, it is known that Λ⋆ = 1 is the optimal constant. See [14]
for further details. Let us notice that the analysis of the equation

Lu−
1

2
M[u]− Nu = 0

in the case Λ⋆ = 1 provides a proof of the uniqueness of the radial solution to (18),
which is alternative to the result of [11].

Example 2. It is straightforward to deduce a perturbation result from Theorem 8,
that goes as follows. Let

µ(x) =
e−h(x)

Z (1 + |x|2)2
∀x ∈ R

2 ,

where h is a radial function and Z a normalization constant so that µ is a probability
measure. We shall assume that h has a bounded variation and is such that |x|4 ∆h
is bounded from below. Then we have the estimate

inf
x∈R2

−∆ logµ

8 π µ
≥ e−Var(h)

[

1 +
1

8
inf
x∈R2

(1 + |x|2)2 ∆h

]

.

Example 3. The subcritical Onofri inequality has been studied in [12]. It plays an
important role for the study of the subcritical Keller-Segel model and its asymptotics
for large times, and goes as follows. Let µ = n/M where n is given as the unique
(up to constants) radial solution to

−∆c = n = M
ec−

1
2 |x|

2

∫

R2 ec−
1
2 |x|

2
dx
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and the mass M is taken in the interval M ∈ (0, 8 π). According to [32], n is radially
symmetric as a consequence of the moving plane method. It is straightforward to
check that

inf
x∈R2

−∆ logµ

8 π µ
=

M

8 π
+ inf

x∈R2

1

4 π µ

but the symmetry of the solution to (17) is not true for λ > M
8 π and M

8π turns out
to be the value of the optimal constant in (17). See [13, 12] for further details.

Example 4. The parabolic-parabolic Keller-Segel model has global in time solu-
tions with mass larger than 8 π for some values of its parameters, according to [10].
The stationary solutions in self-similar variables can be written as

−∆c = ε x · ∇c+ n with n = M
ec−

1
2 |x|

2

∫

R2 e
c− 1

2 |x|
2
dx

(where ε > 0 is a given parameter) and have been shown to be radially symmetric
in [39]. To prove that a weighted Onofri inequality holds with µ = n/M , it is
therefore sufficient to establish the range of λ ∈ (0,Λ⋆) such that the minimizer of
u 7→

∫

R2 |∇u|2 dx− 16 π λ
[

log
(∫

R2 e
u dµ

)

−
∫

R2 u dµ
]

is radially symmetric, where

inf
x∈R2

−∆ logµ

8 π µ
=

M

8 π
+ inf

x∈R2

ε x · ∇c+ 2

8 π µ
.

Such symmetry breaking issues are however known to be difficult: see for ins-
tance [23] for a discussion of a related problem.
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